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Preface

These lecture notes introduce a collection of techniques for the analy-
sis of nonlinear control systems rooted in the theory of formal power
series and their associated combinatorial algebras. Formal power se-
ries methods in control theory began with the work R. E. Kalman in
the 1960s, primarily in connection with the partial realization problem
for linear systems. Parallel developments by M. P. Schützenberger in
automata theory and the remarkable discoveries of K.-T. Chen in the
1950s concerning the algebra of iterated path integrals subsequently led
M. Fliess in the 1970s to introduce what is now called a Chen-Fliess
series or Fliess operator. The underlying formal power series which
generates such an operator provides an elegant and compact way to
represent the input-output map of a control affine nonlinear system. As
these generating series are indexed by words over a noncommutative
alphabet, there is a natural link between nonlinear control theory and
the combinatorics of words, a mature and beautiful field going back to
seminal papers of A. Thue at the start of the twentieth century.

Following the initial work of Fliess, the area grew rapidly with
important contributions by P. E. Crouch, G. Duchamp, A. Ferfera,
R. L. Grossman, C. Hespel, V. Hoang Ngoc Minh, A. Isidori, G. Ja-
cob, B. Jakubczyk, M. Kawski, D. Krob, M. Lamnabhi, F. Lamnabhi-
Lagarrigue, R. G. Larson, P. Lemux, N. E. Oussous, M. Petitot,
C. Reutenauer, F. Rotella, W. J. Rugh, E. D. Sontag, H. J. Sussmann,
X. G. Viennot, and Y. Wang. The work of A. Ferfera was especially
valuable for understanding how to describe interconnected nonlinear
systems using Chen-Fliess series. More recently, the author, in collabo-
ration with L. A. Duffaut Espinosa and K. Ebrahimi-Fard, has built on
the work of Ferfera to show that there are combinatorial Hopf algebras
underlying the feedback structures appearing in control theory. They
are useful for doing explicit calculations. This approach was largely
inspired by analogous combinatorial algebras appearing in the work of
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A. Connes, D. Kreimer, and H. Moscovici in quantum field theory and
in J. C. Butcher’s approach to numerical integration. One of the goals
of these notes is to introduce the reader to some of these more recent
developments. Finally, it should be stated that these notes are simply
an introduction to the subject from one researcher’s point of view. A
more encyclopedic treatment of this topic is well beyond the scope of
this book.

It is generally assumed that the reader has had an introduction to
linear system theory, say at the level of Kailath’s Linear Systems, and
some exposure to elementary topics in real analysis, abstract algebra,
and differential geometry. The reader would also benefit from knowl-
edge of geometric system theory as presented in the book by Isidori
Nonlinear Control Systems. But otherwise, the treatment of the sub-
ject is from first principles and is as self-contained as possible. The
material is organized as follows. The first chapter is an overview of the
central topics that appear in later chapters. It is written in a more
casual style and meant to motivate the formal power series approach
to system theory while staying mainly in a linear system setting. It is
designed to be largely independent of the other chapters so that a more
experienced reader can start directly with Chapter 2 with little loss of
continuity. The rest of the book follows a more systematic theorem-
proof format. Chapter 2 introduces some elementary background and
tools concerning formal power series. Chapter 3 then addresses the
analysis of nonlinear input-output systems and their interconnections
from a formal power series perspective. Chapters 4 and 5 introduce the
notions of rational series and Lie series, respectively, which are then
applied in Chapter 6 to develop the theory of finite dimensional state
space realizations for nonlinear input-output systems.

W. S. Gray
April 2025
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1. Introduction

This chapter introduces some elementary concepts concerning real an-
alytic functions, formal functions, linear integral operators, and linear
state space realizations. The primary goal is to motivate the more gen-
eral treatment of these topics in subsequent chapters. From a system
theory point of view, real analytic functions provide a convenient class
of input and output signals. They can also be used to describe various
types of analytic systems. A formal function is a type of generalized
function which is sometimes more convenient for algebraic analysis
than a traditional function. Integral operators, linear or otherwise, de-
scribe a category of input-output systems frequently encountered in
applications. Starting with the linear case provides a familiar setting
in which to get oriented. Operators which have a finite dimensional lin-
ear time-invariant state space realization are of particular importance
as they are computationally convenient and ubiquitous in systems and
control theory.

1.1 Real Analytic Functions

A function u : U ⊆ R→ R is said to be real analytic at a point t0 ∈ U ,
if it can be represented in terms of a convergent power series

u(t) =

∞∑

n=0

c(n)
(t− t0)

n

n!
(1.1)

on an interval (t0 − T, t0 + T ) ⊂ U , where c is a sequence of real
numbers, and T is either a positive real number or T = +∞. The
largest such T for which the series (1.1) converges is referred to as
the radius of convergence of u at t0. When T = +∞, u is said to be
entire. The function u is real analytic on an interval (a, b) ⊂ U if it
is real analytic at every point t0 ∈ (a, b). In this case, the radius of
convergence may vary as a function of t0.
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One can extend the definition of u to a mapping on the complex
plane, C, by letting

u(z) =

∞∑

n=0

c(n)
(z − t0)n

n!
(1.2)

on the largest open disk D0 = {z ∈ C : |z − t0| < T} for which the
series converges. The function is then analytic at t0 in the sense of
complex variables, that is, the derivative of u exists not only at t0 but
at every point in some neighborhood of t0 in the complex plane. In
fact, all the higher order derivatives of u are well defined in such a
neighborhood. The Cauchy integral formula says in this case that the
n-th derivative of u at t0 can be computed as

u(n)(t0) =
n!

2πi

∮

C

u(z)

(z − t0)n+1
dz,

where C is a closed contour lying within D0 and encircling the point
t0, for example, all z satisfying |z − t0| = T ′ < T . Since u is analytic
on and within the region D′0 = {z ∈ C : |z − t0| ≤ T ′}, the real-valued
function u(z) is continuous on this closed and bounded region. Hence,
there exists a nonnegative real number K satisfying

K = max
z∈D′

0

|u(z)| .

Setting z(t) = t0 + T ′eit on [0, 2π] and applying the identity

∮

C
f(z) dz =

∫ 2π

0
f(z(t))z′(t) dt

gives

|c(n)| =
∣∣∣u(n)(t0)

∣∣∣

=
n!

2π

∣∣∣∣
∮

C

u(z)

(z − t0)n+1
dz

∣∣∣∣

=
n!

2π

∣∣∣∣
∫ 2π

0

u(t0 + T ′eit)

(T ′eit)n+1
iT ′eit dt

∣∣∣∣

≤ n!

2π
· K

(T ′)n

∫ 2π

0
dt

= KMnn!, ∀n ≥ 0, (1.3)
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where M := 1/T ′. This means then that the coefficients of an analytic
function can only grow in modulus at a certain maximum rate as n
increases. A sequence like c(n) = (n!)2, for example, can never define
an analytic function. The inequality (1.3) is called a Cauchy growth
condition and the real numbers K and M are growth constants for the
sequence c. They are not necessarily unique unless one considers the
smallest possible growth constants. Normally, M will be referred to
as a geometric growth constant for c. If some estimate M ′ is available
a priori for a given sequence c then a lower bound on the radius of
convergence for series (1.2) can be computed using the fact that

|u(z)| ≤
∞∑

n=0

|c(n)| |(z − t0)
n|

n!

≤
∞∑

n=0

K(M ′ |z − t0|)n.

That is, the series converges at least for all z ∈ C such thatM ′ |z − t0| <
1, or equivalently, when

|z − t0| < 1/M ′ < T.

Conversely, if u is analytic at the origin with the nearest singularity
being z′ 6= 0, then for any ǫ > 0 there exists N ∈ N0 := {0, 1, 2, . . .}
such that

|c(n)| ≤
(

1

|z′| + ǫ

)
n!, n ≥ N.

In which case, one can always find a constant K > 1 such that

|c(n)| ≤ K

(
1

|z′| + ǫ

)
n!, n ≥ 0.

It is not difficult to show that 1/ |z′| is in fact the smallest possible
geometric growth constant for c. Finally, if it is known that c satisfies
the more restrictive growth condition

|c(n)| ≤ KMn, ∀n ≥ 0 (1.4)

then clearly
|u(z)| ≤ KeM |z−t0|, ∀z ∈ C,

implying that u is entire. Analogous statements can be made for the
real analytic series (1.1) by restricting z to the real number line.
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A power series representation of a real analytic function is unique
in a local sense. Suppose there exists two series representations of u at
t0, namely,

u(t) =

∞∑

n=0

c(n)
(t− t0)

n

n!

and

u(t) =
∞∑

n=0

d(n)
(t− t0)

n

n!

with radii of convergence Tc and Td, respectively. Since u is continuous
at t0 (see Problem 1.1.3), it follows that

lim
t→t0

u(t) = lim
t→t0

∞∑

n=0

c(n)
(t− t0)n

n!
= c(0)

lim
t→t0

u(t) = lim
t→t0

∞∑

n=0

d(n)
(t− t0)n

n!
= d(0),

and thus, c(0) = d(0). A similar argument can be made for the function

ũ(t) :=
u(t) − c(0)

t− t0
=
u(t) − d(0)

t− t0

to show that c(1) = d(1), and so on. In addition, since c(n) = d(n)
for all n ≥ 0, it follows immediately that Tc = Td =: T . Thus, if
there exists a power series representation of u at t0, it is unique. It
is also easily shown that if t1 ∈ R such that |t1 − t0| < T then the
series representation of u can be re-centered about t1. That is, u can
be written as

u(t) =

∞∑

n=0

b(n)
(t− t1)n

n!
, |t− t1| < T − |t1 − t0|,

where each b(n) is given by an absolutely convergent series

b(n) =

∞∑

k=0

c(n + k)
(t1 − t0)

k

k!
, n ≥ 0 (1.5)

(see Problem 1.1.4). So once a power series representation of u is iden-
tified at one point, any other power series representation at another
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point within the radius of convergence can be explicitly computed us-
ing equation (1.5). Modulo this type of transformation, it makes sense
to speak of the coefficients of u in a neighborhood of t0.

A fundamental idea throughout this book is that within the ra-
dius of convergence, the series coefficients of u completely characterize
the function u. Therefore, operating on the coefficients in some man-
ner produces a corresponding transformation of the function and vice
versa. Consider the following examples.

Example 1.1 As discussed earlier, if u is real analytic at t0, then it
is differentiable on a neighborhood of t0. Observe that

u′(t) =

∞∑

n=1

c(n)
(t− t0)

n−1

(n− 1)!

=
∞∑

n=0

c(n + 1)
(t − t0)

n

n!

=:

∞∑

n=0

d(n)
(t− t0)

n

n!
, |t− t0| < T (1.6)

(see Problem 1.1.5). Therefore, the left-shift mapping between two
sequences

x−1 : c 7→ d, (1.7)

where d(n) = c(n+ 1), n ≥ 0 corresponds to mapping u to u′.

Example 1.2 Consider taking the square of u. Clearly,

u2(t) =
∞∑

n=0

c(n)
(t− t0)n

n!

∞∑

k=0

c(k)
(t− t0)

k

k!

=
∞∑

n=0

(
c(0)

0!

c(n)

n!
+
c(1)

1!

c(n− 1)

(n− 1)!
+ · · ·+

c(n)

n!

c(0)

0!

)
(t− t0)

n

=:
∞∑

n=0

d(n)
(t− t0)

n

n!
, |t− t0| < T.

Thus, the mapping between sequences
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(·)2 : c 7→ d,

where d(n) :=
∑n

k=0

(n
k

)
c(k)c(n− k), n ≥ 0 corresponds to mapping u

to u2.

When u has coefficients which satisfy (1.4), u is entire, and its right-
sided Laplace transform is well defined (cf. Problem 1.1.6). Specifically,

L [u](s) :=

∫ ∞

0
u(t)e−st dt

=
∞∑

n=0

c(n)

∫ ∞

0

tn

n!
e−st dt

= s−1
∞∑

n=0

c(n)(s−1)n, (1.8)

provided Re(s) > 0. In which case,

|L [u](s)| ≤ K
∣∣s−1

∣∣
∞∑

n=0

(M
∣∣s−1

∣∣)n

=
K
∣∣s−1

∣∣
1 −M |s−1|

whenever
∣∣s−1

∣∣ < 1/M =: S. The Laplace transform of u, when written
as a power series in s−1, is described by the same sequence, c, as is
its counterpart u in (1.1) modulo the factors 1/n! and the extra factor
of s−1 corresponding to a right-shift of c. It is often convenient to
introduce an abstract symbol, x, and to write the sequence c as a
formal power series

c =
∞∑

n=0

c(n) xn.

The word formal in this case refers to the fact no actual summation
of the series terms is considered, so convergence is not an issue. In
this context, no notational distinction is usually made between the
sequence c and the series c. The mapping

Lf : u 7→ c,

assuming t0 = 0 in equation (1.1), is called the formal Laplace trans-
form (see Table 1.1 and Problem 1.1.7) It is well defined whether or
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Table 1.1. The formal Laplace transform of some common functions.

u(t), t ≥ 0 Lf [u]

tk/k!, k ≥ 0 xk

tkeat/k!, k ≥ 0, a 6= 0
∑∞

n=0

(
n+k
k

)
anxn+k

sin(bt)
∑∞

n=0(−1)nb2n+1 x2n+1

cos(bt)
∑∞

n=0(−1)nb2n x2n

sinh(bt)
∑∞

n=0 b
2n+1 x2n+1

cosh(bt)
∑∞

n=0 b
2n x2n

not the series (1.8) converges for any value of s−1. But when it does,
then clearly

L [u](s) = xLf [u]|x→s−1

everywhere in the region of convergence for L [u] where the series
converges and where Re(s) > 0.1

One approach to characterizing the radius of convergence of (1.8)
involves forming the Hankel matrix of c, namely,

Hc =




c(0) c(1) c(2) · · ·
c(1) c(2) c(3) · · ·
c(2) c(3) c(4) · · ·

...
...

...
. . .


 .

In the event that Hc has finite rank n > 0, it follows that the first n+1
columns of the matrix must be linearly dependent. That is, there exists
a polynomial q̃ =

∑n
ℓ=0 q̃(ℓ)x

ℓ with at least one coefficient q̃(ℓ) 6= 0
such that




c(0) c(1) · · · c(n) · · ·
c(1) c(2) · · · c(n + 1) · · ·
c(2) c(3) · · · c(n + 2) · · ·

...
...

...
. . .







q̃(0)
q̃(1)

...
q̃(n)

0
0
...




= 0,

1 Some authors define the formal Laplace transform with a left-shift applied so
that Lf [1] = x−1 and L [u](s) = Lf [u]|x→s−1 . That convention will not be
used here.
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or equivalently,
n∑

ℓ=0

c(k + ℓ)q̃(ℓ) = 0, k ≥ 0. (1.9)

Exploiting the Hankel structure, it is possible to show more specifically
that the first n columns of Hc are linearly independent, and thus,
q̃(n) 6= 0 (see Problem 1.1.8). Now let q be the polynomial derived from
q̃ by simply reversing the order of its coefficients, i.e., q(i) = q̃(n− i),
i = 0, 1, . . . , n. Observe that

cq =
∞∑

i=0

n∑

j=0

c(i)q(j)xi+j

=

∞∑

i=0

n∑

j=0

c(i − j)q(j)xi

=

∞∑

i=0

p(i)xi

= p, (1.10)

assuming that c(i) = 0 when i < 0 and defining

p(i) =

n∑

j=0

c(i− j)q(j)

=
n∑

j=0

c(i− j)q̃(n− j).

Note that equation (1.9) implies for k ≥ 0 that

p(n+ k) =

n∑

j=0

c(n+ k − j)q̃(n− j)

=

n∑

ℓ=0

c(k + ℓ)q̃(ℓ)

= 0.

Thus, p can be viewed as the image of q̃ under an augmented Hankel
matrix, namely,
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


0 0 · · · c(0) · · ·
0 0 · · · c(1) · · ·
...

...
...

...
0 c(0) · · · c(n− 1) · · ·
c(0) c(1) · · · c(n) · · ·
c(1) c(2) · · · c(n+ 1) · · ·
c(2) c(3) · · · c(n+ 2) · · ·

...
...

...
. . .







q̃(0)
q̃(1)

...
q̃(n)

0
0
...




=




p(0)
p(1)

...
p(n− 1)

0
0
...




.

(1.11)
In which case, p = cq is a polynomial in x of at most degree n − 1.
One could formally write then that c = pq−1, where q−1 is understood
to be a formal power series with the property q−1q = qq−1 = 1. In
this situation, c is called a rational series. Readers familiar with linear
system theory will recognize this as the formal counterpart to the re-
lationship between a rational transfer function and the system Hankel
matrix constructed from the series coefficients (Markov parameters) of
the transfer function when written as a power series in the variable s−1.
But in the present context, the corresponding Laplace transform of u is
a rational function in s−1. Specifically, L [u](s) = s−1N(s−1)/D(s−1),
where

N(s−1) = p|x→s−1 , deg(N) ≤ n− 1 (1.12)

D(s−1) = q|x→s−1 , deg(D) ≤ n. (1.13)

It can be shown that N and D have no common roots as polyno-
mials in s−1, that is, the rational function N/D is irreducible (see
Problem 1.1.9). Therefore, the radius of convergence of the series rep-
resentation of L [u] at the origin is S = mini |λi|, where λi is the i-th
root of the polynomial D. When this analysis is combined with the
requirement that Re(s) > 0, which holds if and only if Re(s−1) > 0,
the resulting region of convergence is shown in Figure 1.1.

Example 1.3 If c =
∑

i≥1 2i−1xi then the corresponding Hankel ma-
trix is

Hc =




0 1 2 4 · · ·
1 2 4 8 · · ·
2 4 8 16 · · ·
...

...
...

...
. . .


 ,

which clearly has rank two. Thus, there exists polynomials p and q
such that c = pq−1 with deg(p) ≤ 1 and deg(q) ≤ 2. From (1.11),
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Im(s-1)

Re(s-1)

region of convergence

|λi| |λj| |λk|
x xx

Fig. 1.1. The region of convergence for the series representation of L [u].

observe that



0 0 0 1 · · ·
0 0 1 2 · · ·
0 1 2 4 · · ·
1 2 4 8 · · ·
2 4 8 16 · · ·
...

...
...

...
. . .







0
−2

1
0
0
...




=




0
1

0
0
...



.

Therefore, q̃ = x2 − 2x or q = 1 − 2x and p = x. To confirm this
calculation, note that

c = pq−1 =
x

1 − 2x
= x

∞∑

i=0

2ixi =

∞∑

i=1

2i−1xi.

The Laplace transform of the corresponding input

u(t) =

∞∑

i=1

2i−1
ti

i!
=

1

2

(
e2t − 1

)
, t ≥ 0

is
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L [u](s) = s−1
∞∑

i=1

2i−1s−i =
s−2

1 − 2s−1
.

The radius of convergence for the infinite sum is clearly defined by∣∣2s−1
∣∣ < 1 or

∣∣s−1
∣∣ < 1/2. This corresponds to the location of the pole

of D(s−1) = 1 − 2s−1 at s−1 = 1/2. Of course in system theory it is
more customary to write rational functions in terms of s rather than
s−1, but the latter is actually more natural when doing series analysis.

The notion of real analyticity can be extended to multivariable
functions in the following manner. A function f : U ⊂ Rk → Rℓ is
said to be real analytic at a point z0 = (z1,0, . . . , zk,0) ∈ Rk if it has a
convergent power series representation

f(z1, . . . , zk) =

∞∑

n1,...,nk=0

c(n1, . . . , nk)
(z1 − z1,0)n1

n1!
· · · (zk − zk,0)

nk

nk!

on some open neighborhood V ⊂ U of z0, where each c(n1, . . . , nk) ∈
Rℓ. Extending the setup to the complex variable setting and apply-
ing the corresponding version of the Cauchy integral formula gives an
expression for the coefficients

c(n1, . . . , nk)

=
n1! · · ·nk!

(2πi)n

∮

C1

1

(z1 − z1,0)n1+1
· · ·
∮

Ck

f(z1, . . . , zk)

(zk − zk,0)nk+1
dzk · · · dz1,

where each integral is defined componentwise, n := n1 + n2 · · · + nk,
and |zi − zi,0| < Ri for i = 1, 2, . . . , k. Define the growth constants

K = max
i

max
|zi−zi,0|<Ri

|f(z1, . . . , zk)|

Mi =
1

Ri

assuming |y| := max{|y1| , . . . , |yℓ|}. Then it follows directly that

|c(n1, . . . , nk)| ≤ KMn1
1 · · ·Mnk

k n1! · · · nk! (1.14)

≤ KMnn1! · · · nk! (1.15)

≤ KMnn! (1.16)
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with M := max1≤i≤kMi and using the multinomial coefficients prop-
erty (

n

n1 n2 · · · nk

)
:=

n!

n1!n2! · · ·nk!
≥ 1.

Clearly, the inequality (1.14) is the multivariable extension of the
Cauchy growth condition (1.3). Sometimes in calculations, however,
it is easier to use the more generous upper bounds (1.15) or (1.16).

1.2 Formal Functions

A function f : U ⊂ Rm → Rℓ is said to be smooth at a point z0 ∈ U if
its partial derivatives

∂kf(z)

∂zi1∂zi2 · · · ∂zik

∣∣∣∣
z=z0

are well defined for every ij ∈ {1, . . . ,m}, k = 0, 1, . . .. The set of all
such functions will be denoted by C∞(z0). It is possible in this case
that ∣∣∣∣∣

∂kf(z)

∂zi1∂zi2 · · · ∂zik

∣∣∣∣
z=z0

∣∣∣∣∣ ≤ KMk(k!)s

only if s > 1. The constant s is called the Gevrey order of the growth
bound.2 Two functions f, g ∈ C∞(z0) will be called ∼g equivalent if
there exists an open neighborhood U0 of z0 in the domain of each
function such that f = g on U0.

3 It is easily verified that this is an
equivalence relation on C∞(z0). The quotient set, that is, the set of
all equivalence classes, is represented by C∞(z0)/∼g.

Definition 1.1 A germ at z0 is an equivalence class in C∞(z0)/ ∼g.

Two functions in f, g ∈ C∞(z0) will be called ∼j equivalent when

∂kf(z)

∂zi1∂zi2 · · · ∂zik

∣∣∣∣
z=z0

=
∂kg(z)

∂zi1∂zi2 · · · ∂zik

∣∣∣∣
z=z0

for all ij ∈ {1, . . . ,m}, k = 0, 1, . . .. It is equally straightforward to
show that ∼j also defines an equivalence relation on C∞(z0), and the
corresponding quotient set is denoted by C∞(z0)/∼j .

2 Classically, the definition assumes s ∈ [1,∞), but it will be useful here to allow
s ∈ [0,∞). See, for example, (1.4) and Problem 1.1.2.

3 The reader may want to review the material in Section A.2 of Appendix A.



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

1.2 Formal Functions 13

Definition 1.2 An infinite jet at z0 is an equivalence class in
C∞(z0)/∼j .

Clearly f ∼g g implies that f ∼j g, but the following example
illustrates that the converse of this implication is false.

Example 1.4 Consider the functions f(z) = 0 for all z ∈ R and

g(z) =

{
e−1/z

2
: z 6= 0

0 : z = 0.

Both f and g are in C∞(0), and it can be directly checked that f ∼j g
while f 6∼g g. That is, an infinite jet is not a faithful representation of a
germ. Put another way, not all functions are equal to their Taylor series
in a region of convergence with nonzero radius unless they are real
analytic at the point in question. In this case, f is real analytic at z0 =
0, while g is not (see Problem 1.2.1). Note in particular that

∣∣g(n)(0)
∣∣ =

0 < KMnn!, n = 0, 1, . . . for any K,M > 0. So satisfying the Cauchy
growth condition alone is not sufficient for equating a function with
its Taylor series, that is,

g(z) 6=
∞∑

n=0

g(n)(0)
zn

n!

at every point except z = 0.

In the previous section, it was shown that given a function f : U ⊂
R→ R which is real analytic at a point, say z0 = 0, one can uniquely
identify a formal power series c = Lf [f ] which satisfies a Cauchy
growth condition. The above example, however, illustrates that the
reverse process of mapping a series to a smooth function is not as
simple as one might first surmise. Without the additional analyticity
assumption, such a series can only represent a class of functions. This
motivates the following definition.

Definition 1.3 A formal function at z0 is a class of functions de-
scribed by an infinite jet at z0.

A convenient way to describe the set of all formal functions at a point,
namely C∞(z0)/ ∼j, is to identify every infinite jet with a formal power
series defined over a set of symbols X = {x1, x2, . . . , xm}, usually
called an alphabet, where each letter xi represents an argument zi of
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f . Specifically, define for any word xi1xi2 · · · xik the corresponding ℓ-
vector

∂kf(z)

∂zi1∂zi2 · · · ∂zik

∣∣∣∣
z=z0

. (1.17)

Since the order of partial differentiation is not important, it is natural
to allow the letters of X to commute, i.e., xixj = xjxi. In which case,
an ordering x1 < x2 < · · · < xm can be introduced and a given infinite
jet can be uniquely identified with the formal power series

c =
∑

n1,n2,...,nm≥0

c(n1, n2, . . . , nm)xn1
1 x

n2
2 · · · xnm

m ,

where xni
i := xixi · · · xi (xi appears ni times). If Rℓ [[X]] denotes the

set of all possible c, then clearly C∞(z0)/ ∼j can be identified with
at least a subset of Rℓ [[X]]. But it turns out that one can say more
than this. Consider, for example, the special case where m = 1 so that
f : U ⊂ R → Rℓ. and X = {x}. It can be shown that the formal
Laplace transform

Lf : C∞(z0) → Rℓ [[X]], f 7→ c,

where the coefficients of c correspond to the partial derivatives of f ,
is a surjective mapping.4 Hence, for the series c =

∑
n≥0(n!)2xn there

exists at least one function in C∞(z0) which is well defined on a neigh-
borhood of z0 and whose derivatives grow at this non Cauchy rate. If
Lf is restricted to real analytic functions then the coefficients of c, as
discussed in the previous section, must satisfy a Cauchy growth rate.
But in general, the image of Lf is all of Rℓ [[X]]. In this context, a
formal Borel transform is any mapping of the form

Bf : Rℓ [[X]] → C∞(z0)

such that Lf Bf (c) = c for all c ∈ Rℓ [[X]]. That is, Bf is any right
inverse of Lf . It constitutes a left inverse, namely, Bf Lf (f) = f , only
in special cases, for example, when f is real analytic, and Bf maps all
such series to the function defined by its convergent Taylor series. It
is more common to define the formal Laplace-Borel transform pair as

Lf :

∞∑

n=0

c(n)
zn

n!
7→

∞∑

n=0

c(n)xn

4 This is called Borel’s Lemma.
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Bf :

∞∑

n=0

c(n)xn 7→
∞∑

n=0

c(n)
zn

n!
.

Their interpretation is strictly in the formal sense when the series
involved do not converge, otherwise, they have the usual interpretation
as mappings between functions. In either case,

∑
n≥0 c(n)xn is called

the generating function associated with c, while
∑

n≥0 c(n)zn/n! is
referred to as its exponential generating function.

1.3 Linear Integral Operators

Since real analytic functions are always absolutely integrable within
their region of convergence, they provide a convenient class of ker-
nel functions for integral operators. Consider a causal linear integral
operator

y(t) =
m∑

i=1

∫ t

t0

Hi(t, τ)ui(τ) dτ, (1.18)

where y(t) ∈ Rℓ, t ≥ t0 and every ui is piecewise continuous. If each
kernel function Hi : R2 → Rℓ is real analytic at (t0, t0), then there
exists at least a finite T > 0 such that on the set D = {(t, τ) ∈
R2 : t0 + T ≥ t ≥ τ ≥ t0}, Hi(t, τ) can be expressed as a uniformly
convergent series

Hi(t, τ) =
∞∑

n0,n1=0

c(n1, i, n0)
(t− τ)n1

n1!

(τ − t0)
n0

n0!
. (1.19)

Here the coefficients have been indexed in manner that is more con-
sistent with the way in which a formal power series will be used to
describe an integral operator. Causality mandates that the kernel func-
tions be identically zero when t < τ , so these series representations are
only used on D. Substituting equation (1.19) into equation (1.18) and
integrating term-by-term, it follows that

y(t) =
∞∑

n0,n1=0

m∑

i=1

c(n1, i, n0)

∫ t

t0

(t− τ)n1

n1!
ui(τ)

(τ − t0)
n0

n0!
dτ. (1.20)

Now introduce a letter xi for each input ui, and define also a fictitious
input function u0 ≡ 1 and corresponding letter x0. For each xi define
an associated integral
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Exi [u](t, t0) =

∫ t

t0

ui(τ) dτ.

In which case,
Ex0 [u](t, t0) = t− t0,

and if the integration is repeated

Ex20 [u](t, t0) :=

∫ t

t0

u0(τ)Ex0 [u](τ, t0) dτ =
(t− t0)2

2!
.

After n0 successive integrations,

Exn0
0

[u](t, t0) =
(t− t0)n0

n0!
.

Similarly, for any i = 1, . . . ,m, let

Exix
n0
0

[u](t, t0) =

∫ t

t0

ui(τ)Exn0
0

[u](τ, t0) dτ

=

∫ t

t0

ui(τ)
(τ − t0)n0

n0!
dτ. (1.21)

This last integral is close in form to those that appear in the series
(1.20) except for the terms involving n1. So integrate the expression
(1.21) once more and apply the integration by parts formula:

Ex0xix
n0
0

[u](t, t0) =

∫ t

t0

∫ τ

t0

ui(ξ)
(ξ − t0)n0

n0!
dξ dτ

=

∫ τ

t0

ui(ξ)
(ξ − t0)

n0

n0!
dξ (τ − t0)

∣∣∣∣
t

t0

−
∫ t

t0

(τ − t0) ui(τ)
(τ − t0)n0

n0!
dτ

=

∫ t

t0

(t− τ) ui(τ)
(τ − t0)

n0

n0!
dτ. (1.22)

A straightforward induction gives

Exn1
0 xix

n0
0

[u](t, t0) =

∫ t

t0

(t− τ)n1

n1!
ui(τ)

(τ − t0)
n0

n0!
dτ (1.23)

(see Problem 1.3.1). Thus, series (1.20) has the alternative expression
in terms of iterated integrals
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y(t) =

∞∑

n0,n1=0

m∑

i=1

c(n1, i, n0) Exn1
0 xix

n0
0

[u](t, t0). (1.24)

The form of this series suggests that indexing the summations in terms
of words over the alphabet X = {x0, x1, . . . , xm} would be more nat-
ural. So the following notation is introduced:

(c, η) =

{
c(n1, i, n0) : η = xn1

0 xix
n0
0

0 : otherwise

for all n0, n1 ≥ 0 and i = 1, . . . ,m. In which case, the series (1.24) has
the concise representation

y(t) =
∑

η∈X∗

(c, η)Eη [u](t, t0), (1.25)

where X∗ is the set of all words over X (including the empty word
∅) and E∅ := 1. A key observation in this context is that the letters
of X do not commute, since, for example, the integrals Ex0x1 and
Ex1x0 are not equivalent. Thus, c =

∑
η∈X∗(c, η) η must be viewed as

a noncommutative formal power series. It will be referred to as the
generating series for this integral operator. The symbol Rℓ〈〈X〉〉 will
denote the set of all possible noncommutative formal power series over
X taking coefficients from Rℓ. Note that any series c ∈ Rℓ〈〈X〉〉 can
be equivalently described as a mapping of the form

c : X∗ → Rℓ, η 7→ (c, η).

In principle, one could define an input-output operator, Fc : u 7→ y,
using the expression (1.25) for any c ∈ Rℓ〈〈X〉〉 provided that the series
converges for every u in the set of admissible inputs. Such operators
are called Fliess operators, and the series is known as the Chen-Fliess
functional expansion. From an historical point of view, Fliess operators
can be viewed as a special class of Volterra operators. An operator V
is called a Volterra operator if it can be represented by a convergent
series

y(t) = V [u](t)

= w0(t) +
∞∑

k=1

m∑

i1,...,ik=1

∫ t

t0

∫ τk

t0

· · ·
∫ τ2

t0

wik···i1(t, τk, . . . , τ1)·
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uik(τk) · · · ui1(τ1) dτ1 · · · dτk,

where each kernel function, wik···i1 , is an ℓ vector-valued function de-
fined on a set

Dk = {(t, τk, . . . , τ1) ∈ Rk+1 : t0 + T ≥ t ≥ τk ≥ · · · ≥ τ1 ≥ t0}.

Each integral in this series can be viewed as a generalized convolution
integral, and a finite Volterra operator refers to the case where only a
finite number of the kernel functions are nonzero. Volterra operators
date back to the 1880s and are arguably the most widely encountered
type of nonlinear operators encountered in physics and engineering.
Observe that the linear operator in (1.18) is among the simplest ex-
amples of a Volterra operator, and it was rewritten in (1.25) as a Fliess
operator. It will be shown in Chapter 3 that any Volterra operator hav-
ing real analytic kernels has a Fliess operator representation over some
admissible set of inputs.

In the theory of linear systems, the series coefficients of a real ana-
lytic kernel function can be used to determine the nature of the opera-
tor. For example, in the linear time-invariant case, each kernel function
Hi(t, τ) in (1.19) reduces to the form

Hi(t− τ) =

∞∑

k=0

(c, xk0xi)
(t− τ)k

k!

with the corresponding Fliess operator Fc given by

y(t) =

m∑

i=1

∞∑

k=0

(c, xk0xi)

∫ t

t0

(t− τ)k

k!
ui(τ) dτ

=

m∑

i=1

∞∑

k=0

(c, xk0xi)Exk0xi
[u](t, t0). (1.26)

Suppose the output is scalar-valued. For each i = 1, 2, . . . ,m define the
formal power series ci =

∑∞
k=0(c, x

k
0xi)x

k
0xi. If every Hankel matrix

Hci =




(c, xi) (c, x0xi) (c, x20xi) · · ·
(c, x0xi) (c, x20xi) (c, x30xi) · · ·
(c, x20xi) (c, x30xi) (c, x40xi) · · ·

...
...

...
. . .


 (1.27)
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has finite rank then every ci is rational in the sense that there exist
polynomials in x0, say ai and bi, such that ci = (bia

−1
i )xi (see equation

(1.10)). In which case, the power series c can be written as

c =
m∑

i=1

ci =
m∑

i=1

(bia
−1
i )xi. (1.28)

In general, any formal power series over X is said to be rational if
it can be written in terms of a finite number of polynomials using
a finite number of sums, products and inversions. Series (1.28) is a
special case where the polynomials in the letters {x1, x2, . . . , xm} are
all homogeneous with degree one. In Chapter 4, this idea will be more
fully developed. It will be shown in the next section that systems
having rational generating series of the form (1.28) always have finite
dimensional state space realizations.

The formal Laplace transform of the linear Fliess operator Fc : u 7→
y is defined to be

Lf : Fc 7→ c,

assuming that c can be uniquely determined given Fc. In the lin-
ear time-invariant case observe that the formal Laplace transforms
of the input and output functions, cu =

∑
k≥0(cu, x

k
0)xk0 and cy =∑

k≥0(cy, x
k
0)xk0 , respectively, are related by

cy = c ◦ cu
:= c|xi→x0cui

=

m∑

i=1

∞∑

j=0

(c, xj0xi)x
j+1
0 cui ,

or equivalently,

(c ◦ cu, xk0) :=

m∑

i=1

k−1∑

j=0

(c, xk−j−10 xi)(cui , x
j
0), k ≥ 1 (1.29)

(see Problem 1.3.3). The summation on the right-hand side with re-
spect to j is a convolution sum, as is expected from linear system
theory. The impulse response of the operator relative to the input ui
corresponds to

hi = ci|xi→1 =

∞∑

j=0

(c, xj0xi)x
j
0, i = 1, 2, . . . ,m (1.30)
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since

hi(t) = Fc[δ](t) =

∞∑

j=0

(c, xj0xi)Exj0xi
[δ](t, 0−)

=

∞∑

j=0

(c, xj0xi)
tj

j!
, t ≥ 0+,

where δ denotes the Dirac delta function. The formal power series prod-
uct ‘◦’ is a special case of the composition product. In general, it gives
the generating series for the composition of two Fliess operators, that
is, for arbitrary series c ∈ Rℓ〈〈X〉〉 and d ∈ Rm〈〈X〉〉 Fc ◦ Fd = Fc◦d.
So from a systems point of view, it describes the series interconnection
of two input-output systems. This product will be first introduced in
Chapter 2 and then further developed in Chapter 3. In particular, it
will be shown that the composition product is an example of what is
called Hopf convolution, a well known product in the theory of Hopf
algebras. This machinery will give not only deeper insight into the al-
gebra, but also provide convenient computational tools for solving real
problems.

Up to this point, all the discussion has been for analytic operators.
But a formal Fliess operator can also be defined in the event that the
underlying series describing Fc does not converge, i.e., when generating
series c does not satisfy a Cauchy growth condition. In this case, the
mapping cu 7→ cy = c◦cu takes formal inputs to formal outputs with no
underlying assumption of convergence. This mapping is viewed as the
formal counterpart of the mapping u 7→ y = Fc[u] in the real analytic
case. In some analysis encountered in later chapters, it will be easier to
first establish algebraic results via the use of formal functions, formal
operators, or formal differential equations, after which convergence
issues can be determined independently. In other instances, such as in
this section, it is more intuitive to start with the analytic case, and then
extract out the algebraic structures on which the formal counterparts
are based.

1.4 State Space Realizations of Rational Operators

An operator Fc is said to be rational whenever its generating series c is
rational. As an example, consider the case where c is given by equation
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(1.28). It is straightforward to show that the generating series for the
output function,

cy =
m∑

i=1

(bia
−1
i )x0cui ,

is rational whenever cu is rational, i.e., when each cui is rational (see
Problem 1.3.3). A pillar of linear system theory is that the rational
operator Fc always has a finite dimensional state space realization of
the form

ż(t) = Az(t) +
m∑

i=1

Biui(t), z(t0) = 0 (1.31)

y(t) = Cz(t), (1.32)

where A ∈ Rn×n, Bi ∈ Rn×1 and C ∈ R1×n, and whose solution
φ(t, t0, 0, u) satisfies

y(t) = Fc[u](t) = Cφ(t, t0, 0, u)

for every integrable input u. Setting m = 1 and integrating both sides
of the state equation (1.31) gives

z(t) =

∫ t

t0

Az(τ) dτ +

∫ t

t0

B1u1(τ) dτ.

Substituting for z(τ) on the right-hand side with the entire expression
gives

z(t) =

∫ t

t0

A

[∫ τ2

t0

Az(τ1) dτ1 +

∫ τ2

t0

B1u1(τ1) dτ1

]
dτ2 +

∫ t

t0

B1u1(τ) dτ

= A2

∫ t

t0

∫ τ2

t0

z(τ1) dτ1dτ2 +AB1

∫ t

t0

∫ τ2

t0

u(τ1) dτ1dτ2+

B1

∫ t

t0

u1(τ) dτ.

Continuing in this way gives what is called the Peano-Baker series
representation of the solution to the state equation

z(t) =
∞∑

k=0

AkB1

∫ t

t0

∫ τk+1

t0

· · ·
∫ τ2

t0

u1(τ1) dτ1dτ2 · · · dτk+1.
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From the output equation (1.32) it then follows that

y(t) =

∞∑

k=0

CAkB1Exk0x1
[u](t),

or equivalently,

y(t) =
∑

η∈X∗

(c, η)Eη [u](t, t0),

where

(c, η) =

{
CAkB1 : η = xk0x1, k ≥ 0

0 : otherwise.

The triple (A,B1, C) is said to be a representation of the generating
series c. The distinction between realizing Fc and representing c is mi-
nor in the present context. It is straightforward to show that (A,B,C)
realizes Fc if and only if it represents c (see Problem 1.4.1). But for
more general types of rational series, this type of connection is not so
transparent. It will be shown in Chapter 6, using the tools developed
in Chapter 4, that the problem of realizing a rational operator goes
well beyond the traditional boundaries of linear system theory and in-
volves more fundamentally the class of bilinear systems, that is, state
space systems of the form

ż(t) = Az(t) +
m∑

i=1

Niz(t)ui(t), z(t0) = z0

y(t) = Cz(t).

In particular, note the product between the state z(t) and the input ui.
Despite the name, this system is truly nonlinear (see Problem 1.4.2).

Another observation about rational operators is that cy = c ◦ cu
may not be a polynomial even when each cui is a polynomial. This
fact is central to defining an abstract notion of system state. Suppose,
for example, that c = (ba−1)x1, where the polynomials a and b have
no common roots. Assume that given any polynomial p, p̃ denotes
the polynomial whose coefficients appear in the reverse order of those
defining p. In light of the Hankel matrix discussion in Section 1.1, it is
clear that deg(ã) = rank(Hc) = n. It can be assumed without loss of
generality that ã is monic, i.e., the coefficient of its highest order term
is one so that

ã = (ã, ∅) + (ã, x0)x0 + · · · + (ã, xn−10 )xn−10 + xn0 .
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Then any polynomial in x0, say c̃u, can be uniquely decomposed via
Euclidian division into the form c̃u = ãp̃ + r̃, where p̃ and r̃ are poly-
nomials with the remainder polynomial having the form

r̃ = (r̃, ∅) + (r̃, x0)x0 + · · · + (r̃, xn−10 )xn−10 .

In which case,

cy = c ◦ cu = (ba−1x1) ◦ (ap+ r) = bx0p+ (ba−1)x0r

is polynomial if and only if r = 0. In this setting, two input polyno-
mials c̃u and c̃u′ are said to be equivalent when their corresponding
remainder polynomials, r̃ and r̃′, are identical. Their respective output
series, cy and cy′ , can therefore only differ at most by a polynomial.
A collection of equivalent inputs forms an equivalence class which can
be uniquely identified by the n coefficients of the remainder polyno-
mial which they have in common. Thus, the quotient set can be put
in one-to-one correspondence with the n dimensional vector space Rn.
It is this representation of the quotient set that provides the famil-
iar notion of a state space in linear systems theory. To see this more
clearly, consider how the state r̃− is transformed by introducing a new
constant term u+ ∈ R according to the mapping

Φ : (r̃−, u+) 7→ r̃+ = [x0r̃− + u+]ã,

where [·]ã denotes the operator which extracts the remainder polyno-
mial from a given polynomial after division by ã. Using the fact that
xn0 = ã− (ã, ∅) − (ã, x0)x0 − · · · − (ã, xn−10 )xn−10 , observe that

x0r̃− + u+ = (r̃−, ∅)x0 + (r̃−, x0)x
2
0 + · · · + (r̃−, x

n−1
0 )xn0 + u+

= ã(r̃−, x
n−1
0 ) + [−(ã, ∅)(r̃−, x

n−1
0 ) + u+]+

[(r̃−, ∅) − (ã, x0)(r̃−, x
n−1
0 )]x0 + · · ·+

[(r̃−, x
n−2
0 ) − (ã, xn−10 )(r̃−, x

n−1
0 )]xn−10

= ã(r̃−, x
n−1
0 ) + r̃+.

Therefore, r̃+ = Φ(r̃−, u+) can be written in component form as




(r̃+, ∅)
(r̃+, x0)

...

(r̃+, x
n−1
0 )



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=




0 · · · 0 −(ã, ∅)
1 · · · 0 −(ã, x0)
...

. . .
...

...

0 · · · 1 −(ã, xn−10 )







(r̃−, ∅)
(r̃−, x0)

...

(r̃−, x
n−1
0 )


+




1
0
...
0


u+.

More conventionally, this is equivalent to writing the state equa-
tion (1.31) (with m = 1) in the integral form

z(t+) − z(t−) = A

∫ t+

t−

z(τ) dτ +B1

∫ t+

t−

u1(τ) dτ,

where z(t+) denotes the n dimensional state vector at time instant

t = t+ corresponding to r̃+ and u+ =
∫ t+
t−
u1(τ) dτ . In this setting,

the system output y(t+) is generally understood to only be a function
of the current system state, z(t+). If the input happens to remain
in the equivalence class corresponding to r̃+ for all t > t+ then the
respective output would be completely determined by r̃+. In which
case, there must exist a series cy+ depending only on r̃+ such that

y(t) =
∞∑

k=0

(cy+ , x
k
0)

(t− t+)k

k!
, t ≥ t+. (1.33)

It is perhaps easiest to see from classical arguments that cy+ = Hc(r̃+),
where Hc is the Hankel mapping corresponding to c. That is, Hc is the
linear mapping on the real vector space of polynomials whose matrix
representation is the Hankel matrix Hc. (No notational distinction will
be made between the mapping and its matrix representation.) Observe
that if r̃− = 0 and u+ = 1 then clearly r̃+ = 1 and y|r̃+=1 corresponds
to the impulse response of the system (see (1.30)). So immediately, one
can conclude that cy+ |r̃+=1 = h1 = Hc(1). Now suppose that r̃− = 1
and u+ = 0. Then r̃+ = x0 and y|r̃+=x0 is the derivative of the impulse
response, that is, cy+ |r̃+=x0 = x−10 (h1) = Hc(x0), where x−10 (·) denotes
the left-shift operator (see (1.7)). Proceeding in this fashion, it becomes
evident that

cy+ |r̃+=xj0
= x−j0 (h1) = Hc(x

j
0), j = 0, 1, . . . , n − 1,

where x−j0 (·) is the left-shift operator applied j times. Using superpo-
sition for an arbitrary r̃+, one must conclude that cy+ = Hc(r+). In
light of (1.33),
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y(t+) = (cy+ , ∅)

= (Hc(r+), ∅)

=
[
(c, x1) (c, x0x1) · · · (c, xn−10 x1)

]




(r̃+, ∅)
(r̃+, x0)

...

(r̃+, x
n−1
0 )




= Cz(t+).

The realization (A,B1, C) is the well known controllability canonical
form of Fc.

It is also possible to characterize a state space realization for Fc
using exclusively the Hankel mapping Hc : c̃u 7→ cy+ . Suppose the
rank of its Hankel matrix representation is n. When c̃u and c̃u′ are
equivalent polynomials, their difference must be in the null space of
Hc. That is,

Hc(c̃u − c̃u′) = Hc(ã(p̃ − p̃′)) = 0,

since Hc(ã) = 0 (see Problem 1.1.9). Conversely, observe that given
any two polynomials c̃u and c̃u′ with c̃u − c̃u′ in the null space of Hc,
it follows that they must be equivalent. Specifically, assume

Hc(c̃u − c̃u′) = Hc(r̃ − r̃′) = 0,

where the first n columns of the Hankel matrix are independent. Since
r̃− r̃′ is a polynomial of at most degree n− 1, one must conclude that
r̃ − r̃′ = 0. In summary then,

c̃u ∼ c̃u′ ⇐⇒ Hc(c̃u) = Hc(c̃u′) ⇐⇒ c̃u − c̃u′ ∈ null(Hc).

A standard result concerning such equivalence relations states that
Hc has a unique decomposition of the form Hc(c̃u) = QcPc(c̃u),
where Pc : c̃u 7→ r̃ = [c̃u]ã and Qc : r̃ 7→ cy+ are linear map-
pings, and Qc is an isomorphism onto Rn. This is referred to as the
canonical factorization of Hc (see Figure 1.2). Those familiar with
linear systems theory will recognize this factorization as equivalent
to a controllability/observability factorization of the Hankel matrix,
Hc = O(A,C)C(A,B1), where

O(A,C) =
[
CT ATCT (AT )2CT · · ·

]T
(1.34)

C(A,B1) =
[
B1 AB1 A

2B1 · · ·
]
, (1.35)
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Pc Qc

✲c̃u cy+
Hc

r̃ = [c̃u]ã

❅
❅
❅
❅
❅❘ �

�
�
��✒

Fig. 1.2. The canonical factorization of the Hankel mapping Hc : c̃u 7→ cy+ .

and (A,B1, C) is the n dimensional controllability canonical realization
of Fc (see Problem 1.4.4). As in the previous discussion, the set of
equivalence classes forms a state space for Fc which can be identified
with the vector space Rn. Here n is the minimal state space dimension
possible for the rational mapping under consideration. It will be shown
in Chapter 4 that for arbitrary rational series, a generalized notion of
the Hankel matrix plays a central role in characterizing the existence
and minimality of bilinear state space realizations.

In the event that Fc is not rational, it is natural to ask whether
concepts concerning linear and bilinear state space realizations can be
generalized in some natural way. The mathematical framework intro-
duced in Chapter 5 to address this question is the theory of free Lie
algebras. Roughly speaking, a free Lie algebras is a noncommutative
algebra generated by an alphabet X. In general, an algebra has both a
vector space structure and a vector product.5 In the case of a free Lie
algebra, the product is the Lie bracket [xi, xj ] = xixj − xjxi, where
xi, xj ∈ X. It is possible in this context to define a universal realiza-
tion of Fc and a universal representation of c, which are in general
infinite dimensional. It will be shown in Chapter 6 that if the addi-
tional property of c having finite Lie rank is available, a generalization
of the Hankel rank of c, then Fc has a finite dimensional input-affine
state space realization

ż(t) = f(z(t)) +

m∑

i=1

gi(z(t))ui(t), z(t0) = z0

y(t) = h(z(t)),

5 See Section A.1 of Appendix A.
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where (f, g, h) are either real analytic or merely formal functions of the
state depending on the growth rate of the coefficients of c. The rational
case in this context is the special situation where all the functions are
linear, i.e., f(z) = Az, gi(z) = Nizi and g(z) = Cz. In addition, it
will be shown that the generating series c has a finite dimensional
differential representation, a generalization of a linear representation.

Finally, the notions of relative degree and the zeros of a trans-
fer function play a relatively minor role in the theory of linear time-
invariant systems. But these concepts have generalizations that play a
more central role in nonlinear system theory due to their connection to
feedback linearization, that is, a method to exactly linearize a nonlin-
ear system via nonlinear feedback. These generalizations will appear
first in Chapter 5 in the context of universal realizations and then in
Chapter 6 when input-affine realizations are available. The connection
to linear system theory can be most easily seen using a dynamical
interpretation of a system’s zeros known as zero dynamics.

Consider a single-input, single-output system with an irreducible
transfer function

H(s) = K
b(s)

a(s)
= K

b0 + b1s+ · · · + bn−r−1s
n−r−1 + sn−r

a0 + a1s+ · · · + an−1sn−1 + sn
,

where K 6= 0 and 1 ≤ r < n. The relative degree of H(s) corresponds
to r = deg(a(s)) − deg(b(s)) or, equivalently, to fact that the transfer
function when written as a power series in s−1 has the form H(s) =∑

k≥r hks
−k with hr = K 6= 0. Euclidean division can once again

be applied to provide a canonical state space realization of the input-
output map. Specifically, divide b(s) into a(s) so that a(s) = b(s)p(s)+
r(s) with (r(s), b(s)) being a coprime pair of polynomials

p(s) = p0 + p1s+ · · · + pr−1s
r−1 + sr

r(s) = r0 + r1s+ · · · + rn−r−2s
n−r−2 + rn−r−1s

n−r−1

and deg(r(s)) < deg(b(s)). In which case,

H(s) =
K

p(s) + r(s)
b(s)

=
K

p(s)

(
1 +

r(s)

b(s)

1

p(s)

)−1
,

so that H(s) can be viewed as a feedback interconnection with 1/p(s)
in the forward path, r(s)/b(s) in the feedback path, and K scaling the
input. Let (A1, b1, c1) and (A2, b2, c2) be minimal realizations of 1/p(s)
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and r(s)/b(s), respectively. Then a realization of H(s) follows directly
from this feedback structure to be

ż =

[
A1 −b1c2
b2c1 A2

]
z +

[
Kb1

0

]
u, z(0) = z0

y =
[
c1 0

]
z.

If both realizations are in controller canonical form (that is, the Ai are
in lower companion form and bi = [0, 0, . . . , 0, 1]T ), then this realization
becomes

ż1 = z2

ż2 = z3
...

żr−1 = zr

żr = Pξ +Rη +Ku

η̇ = Sξ +Qη

y = z1,

where ξ = [ξ1 · · · ξr], η = [η1 · · · ηn−r], P = −[p0 · · · pr−1], R =
−[r0 · · · rn−r−1], S = en−r(n− r)eT1 (r), and

Q =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−b0 −b1 −b2 · · · −bn−r−1



.

(Here ei(j) ∈ Rj has a one in the i-th position and zero elsewhere.)
This is called the Byrnes-Isidori normal form for H(s). If ξ(0) = 0 and
u(t) = u∗(t) := −Rη(t)/K, then ξ̇(t) = 0, t ≥ 0. Thus, y(t) = 0, t ≥ 0,
and η is the solution to η̇ = Qη, η(0) = η0. These internal dynamics
are called the zero dynamics of the system due to the fact the roots of
b(s) = det(sI −Q) are the zeros of H(s). In this case,

u∗(t) = −R

K
eQtη0 =

∞∑

k=0

−R

K
Qkη0

tk

k!
(1.36)

(see Problem 1.4.5).
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Problems

Section 1.1

Problem 1.1.1 Consider the function u(t) = 1/(1+ t2) defined on R.

(a) Show that u is real analytic on R but is not entire.
(b) Plot u on the interval [−1.2, 1.2].
(c) Define the truncated Taylor series of u at t = 0 to be

uN (t) =

N∑

n=0

c(n)
tn

n!
.

On the same figure generated in part (b), plot uN (t) for N =
10, 20, 30 over (−1, 1).

(d) Explain what happens as N continues to increase.

Remark: In complex analysis, the following statements are equivalent
for a function u : C→ C:

1. u is entire.
2. u is analytic on C.
3. u can be represented by a single Taylor series.

The example above illustrates that statement 2 does not imply state-
ment 3 if u is only real analytic on R.

Problem 1.1.2 Consider a real analytic function u : R → R whose
Taylor series at t = 0 has coefficients c(n), n ≥ 0 satisfying the Gevrey
growth condition

|c(n)| ≤ KMn(n!)s, ∀n ≥ 0

with 0 ≤ s < 1.

(a) Determine the radius of convergence for this series representation.
(b) When s = 0 show that |u(t)| can be bounded by an exponential

function.
(c) Show how part (b) can be generalized for any 0 ≤ s < 1 using the

Mittag-Leffler function.

Remark: For any fixed 0 ≤ α < 1, the gamma function satisfies the
inequality Γ (αn + 1) ≤ KαM

n
α (n!)α for some Kα,Mα > 0 provided

αn ≫ 1.
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Problem 1.1.3 Let u : U ⊂ R→ R be real analytic at t0. Show that
u is continuous at t0.

Problem 1.1.4 Verify equation (1.5) for the coefficients of a re-
centered power series.

Problem 1.1.5 Show that if u : U ⊂ R→ R is real analytic at t0 then
the derivative of u is well defined within the radius of convergence and
can be computed by equation (1.6). Also show that in this situation u
must be smooth within the radius of convergence.

Problem 1.1.6 Show that the function u(t) = et
2

is entire but does
not have a well defined right-sided Laplace transform.

Problem 1.1.7 Verify all the entries in Table 1.1.

Problem 1.1.8 Let c be a series with corresponding Hankel matrix
Hc. Assume that the rank of Hc is n <∞.

(a) Using the Hankel structure of Hc, show that the (n+ 1)-st column
of Hc is in the span of the first n columns of Hc.

(b) Show by induction that every column of Hc beyond the first n
columns must be in the span of the first n columns. Therefore, the
first n columns of Hc must be linearly independent.

(c) Suppose q̃ is a nonzero polynomial satisfying equation (1.9). Using
the result from part (b), show that q̃(n) 6= 0.

Problem 1.1.9 Suppose c = pq−1, where p and q are polynomials in
x with deg(p) < deg(q̃) = rank(Hc).

(a) Show that Hc(q̃r̃) = 0 for any polynomial r̃ in x.
(b) Prove that p and q can share no common roots.

Problem 1.1.10 For each series c below, determine, if possible, two
polynomials p and q such that c = pq−1. Also compute the Laplace
transform for the corresponding input u and its region of convergence.

(a) c = x2

(b) c = x+ x3 + x5 + · · ·
(c) c = 1 − 1

2x+ 1
3x

2 − · · ·

Section 1.2
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Problem 1.2.1 Determine whether each function below is real an-
alytic at t = 0. If so, determine the radius of convergence; if not,
comment on whether the function is at least smooth at t = 0.

(a) u(t) = et

(b) u(t) = 1/(t2 + 1)

(c) u(t) =

{
e−1/t

2
: t 6= 0

0 : t = 0

(d) u(t) =

{
t log |t| : t 6= 0

0 : t = 0

Section 1.3

Problem 1.3.1 Provide the following details regarding the Chen-
Fliess series for a linear time-invariant system:

(a) The integration by parts calculation that gives equation (1.22).
(b) The inductive proof that leads to equation (1.23).

Problem 1.3.2 A function u : U ⊂ R → Rm is said to be absolutely
integrable on an interval [t0, t1] ⊂ U if

∫ t1

t0

|ui(t)| dt <∞, i = 1, . . . ,m.

Assume that the interval [t0, t1] is finite. Show that if u is piecewise
continuous (meaning that each ui has at most a finite number of jump
discontinuities) then

(a) u is absolutely integrable;
(b) the inequality

∫ t1

t0

|ui(t)|p dt <∞, i = 1, . . . ,m

is satisfied for every integer p ≥ 1;
(c) the iterated integral Eη[u](t, t0) is finite for all t ∈ [t0, t1] and every

η ∈ X∗.

Problem 1.3.3 Show that the formal Laplace transforms of u and
y, where y = Fc[u] and c is given by equation (1.26), are related
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by cy = c ◦ cu as described in equation (1.29). Also verify that cy
is rational whenever c and cu are rational, that is, when ci = bia

−1
i

and cui = piq
−1
i , where ai, bi, pi and qi are polynomials in x0 for

i = 1, 2, . . . ,m.

Section 1.4

Problem 1.4.1 Suppose that (A,B,C) is known to represent a formal
power series c : X∗ → R. Show that (A,B,C) also realizes the linear
input-output operator

Fc : u 7→ y(t) =
m∑

i=1

∫ t

t0

Hi(t− τ)ui(τ) dτ, t ≥ t0,

where the series Hi(t) =
∑∞

k=0(c, x
k
0xi) t

k/k!, i = 1, . . . ,m. Show that
the converse statement is also true.

Problem 1.4.2 Consider a bilinear state space system

ż(t) = N0z(t) +N1z(t)u(t), z(0) = z0

y(t) = Cz(t).

(a) Write the solution z(t) of the state equation in terms of a Peano-
Baker series.

(b) Give a series expression for the output y(t).
(c) Determine y(t) for the case:

N0 =

[
0 1
0 0

]
, N1 =

[
0 0
1 0

]
, C =

[
1 0

]
, z0 =

[
0
1

]
.

Problem 1.4.3 Let c be the generating series for the integral operator
in equation (1.26) with m = 1.

(a) Show that Hc(c̃u) = x
−(nu+1)
0 (c ◦ cu), where c̃u is a polynomial of

degree nu.
(b) Suppose c is a rational series. Let c̃u and c̃u′ be equivalent poly-

nomials with corresponding output series cy+ = Hc(c̃u) and cy′+ =

Hc(c̃u′). Using only the result from part (a), show that cy+ = cy′+ ,
or equivalently, that c̃u − c̃u′ is in the null space of Hc.
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Problem 1.4.4 Show that the observability and controllability ma-
trices described by equations (1.34)-(1.35) produce the canonical fac-
torization of the Hankel mapping Hc.

Problem 1.4.5 Let (A,B,C) be a linear state space realization in
Byrnes-Isidori normal form of the transfer functionH(s) =

∑
k≥r hrs

−k.

(a) Show that the zero-input response must have the form y0(t) =∑
k≥r CA

kz0 t
k/k!.

(b) A well known necessary and sufficient condition for an input
u∗(t) = eαtg to yield y(t) = 0, t ≥ 0 is the existence of a pair
(z0, g) such that

[
z0I −A −B

C 0

] [
z0
g

]
=

[
0
0

]
.

Show that this implies in (1.36) that α must be an eigenvalue of
Q with eigenvector η0, i.e., α is a zero of H(s), and g = −Rη0/K.

Bibliographic Notes

More detailed bibliographic notes are deferred to the later chapters,
where the topics in this chapter reappear more fully developed. Here
some citations are provided of a more general nature for those readers
wanting to expand their background in various directions.

Section 1.1 The study of real analytic functions in one variable is a
standard topic in real analysis. Basic treatments of the subject appear
in the introductory textbooks by Bartle [5], Bromwich [25], and Knopp
[144]. More advanced topics can be found in the books by Balser [4] and
Ruiz [177]. Power series in one variable are also treated in these same
introductory texts. For the multivariable versions of these topics, the
book by Gröbner [107] is very complete. Any basic text in complex
analysis will address the topic of analytic functions defined on the
complex plane, see, for example, [2, 27, 188]. For a thorough treatment
of this topic in the multivariable setting see the book by Hörmander
[118].

Section 1.2 An accessible treatment of formal functions appears in
the book by Castrigiano and Hayes [33, Chapter 4]. The text by Wilf
[215] provides a general introduction to the topic of generating func-
tions. A number of books are available concerning formal power series,
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most do so in the context of formal languages or theoretical computer
science. This includes the books by Berstel [7], Berstel and Reutenauer
[8], Conway [51], Gross and Lentin [108], Harrison [114], Kuich and Sa-
lomaa [146], Reutenauer [169], Rèvèsz [170], Rozenberg and Salomaa
[173], Salomaa [178], and Salomaa and Soittola [179]. A survey of the
subject as it applies to systems theory appears in the tutorial paper
by Fliess [76] and the textbook by Isidori [122, Chapter 3].

Section 1.3 Many texts are available treating linear integral oper-
ators. A few from the mathematical point of view include those by
Kreyszig [145], and Naylor and Sell [163]. Those from a systems point
of view include the texts by Callier and Desoer [29] and Kailath [134].
A number of references are available addressing nonlinear integral op-
erators. The books by Isidori [122], Rugh [176], and Schetzen [182],
as well as the papers by Brockett [23], Crouch [52], and Wong [218]
provide good introductions.

Section 1.4 Realization theory for linear systems is treated very com-
prehensively in the textbook by Kailath [134]. Chapter 5, in particu-
lar, gives a nice overview of the algebraic approach to the subject,
which underlies many of the concepts appearing in this book. See the
early work of Kalman for some historical perspective on this approach
[135, 136]. The textbooks by Callier and Desoer [29] and Chen [34]
are also useful references. Concerning nonlinear state space realiza-
tions, the textbooks by Isidori [122], Khalil [142], Nijmeijer and van
der Schaft [165], Sontag [190], and Vidyasagar [206] all give compre-
hensive introductions to the subject.
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Many of the mathematical objects that appear in this book arise nat-
urally in the theory of formal languages. So the starting point for this
chapter is an introduction to formal power series in this setting. As
these ideas are developed, it will become apparent that formal power
series often have a combinatorial nature, that this, their manipula-
tion involves partitions, permutations, etc. Considerable time will be
spent on the shuffle product, as it is ubiquitous when combinatorics is
applied in system theory. In this regard, combinatorial Hopf algebras
are also useful, especially when explicit computations are needed. So
the notion of a Hopf algebra is introduced along with some important
examples which will be useful henceforth. Finally, a general notion
of composition for formal power series is presented. This device will
be used in Chapter 3 for describing the series interconnection of two
input-output systems and to define a formal input-output map.

2.1 Formal Languages

A finite nonempty set of arbitrary symbols X = {x0, x1, . . . , xm} is
called an alphabet. Each element of X is called a letter, and any finite
sequence of letters from X, η = xik · · · xi1 , is called a word over X.
Two words η and ξ are equivalent, i.e., η = ξ, if one word is letter by
letter equivalent to the other. The length of a word η is equivalent to
the number of letters in η and will be denoted by |η| . In addition, |η|xi
is equivalent to the number of times the letter xi appears in η. The
empty word, ∅, has length zero. The set of words with length k will be
denoted by Xk. The set of all words is represented by X∗, while X+

is the set of all words with positive length, i.e., the nonempty words.
A language is any subset of X∗.

Consider the following binary operation on X∗.
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Definition 2.1 The catenation product on X∗ is the associative
mapping

C : X∗ ×X∗ → X∗, (η, ξ) 7→ ηξ.

That is, for any η, ξ, ν ∈ X∗ it follows that

(ηξ)ν = η(ξν).

Furthermore, the empty word ∅ is an identity element for C since

∅η = η∅ = η, ∀η ∈ X∗.

For any positive integer i and η ∈ X∗, the i-th iterate of η is ηi = η · · · η,
where η appears i times. Normally, η0 := ∅. The triple (X∗, C, ∅) (or
simply X∗ when the rest is understood) is referred to in algebraic
parlance as a free monoid on X. The adjective free is referring to the
assumption that there are no relationships between the letters. For
example, the letter x1 can not be used to represent the word x2x3. In
some situations involving groups, it is useful to have relationships like
xixj = xjxi = ∅ so that xj can be thought of as the multiplicative
inverse of xi and vice versa.

Given two arbitrary monoids (M,✷, e) and (M ′,✷′, e′), a mapping
ρ : M →M ′ is called a monoid homomorphism if

ρ(η✷ξ) = ρ(η)✷′ρ(ξ), ∀η, ξ ∈M (2.1)

and ρ(e) = e′. When ρ is bijective it is called an isomorphism. Given
an arbitrary alphabet X = {x0, x1, . . . , xm}, any mapping ρ : X →M ′

can be uniquely extended to a homomorphism ρ : X∗ →M ′ by letting

ρ(xikxik−1
· · · xi1) = ρ(xik)✷′ρ(xik−1

)✷′ · · ·✷′ρ(xi1)

(see Problem 2.1.3). If yi := ρ(xi) for each xi ∈ X, then ρ(X∗) can
be viewed as a free submonoid of M ′ corresponding to the alphabet
Y = {y0, y1, . . . , ym}. If ρ is injective, i.e., if ρ(η) = ρ(ξ) always implies
that η = ξ , ∀η, ξ ∈ X∗, then ρ is called a coding of X∗.

Example 2.1 Suppose X = {0, 1, . . . , 9} and Y = {0, 1}. The binary
coded decimals

ρ(0) = 0000, ρ(1) = 0001, . . . ρ(9) = 1001

define a coding of X∗, but not an isomorphism since, for example, the
word 1010 ∈ Y ∗ is not in the range of ρ.
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Example 2.2 Consider the usual multiplicative monoid {R+, ·, 1} on
the set of positive real numbers, R+, and the additive monoid {R,+, 0}
on the set of real numbers R. Select any a ∈ R+ then the map

ρ : R+ → R, y 7→ y′ = loga(y)

defines an isomorphism since ρ is bijective,

ρ(y1y2) = ρ(y1) + ρ(y2), y1, y2 ∈ R+,

and ρ(1)=0.

Example 2.3 The natural numbers N0 := {0, 1, 2, . . .} provide the
submonoid {N0,+, 0} of the monoid {R,+, 0}. With X = {x} and
X∗ = {∅, x, x2, . . .}, the mapping |xi| = i, i ≥ 0 defines an isomorphism
between X∗ and N0. It is clearly a restriction of the isomorphism in the
previous example, where x ∈ R+ is left unspecified, and ∅ is identified
with 1 ∈ R+.

This last example suggests an alternative way to express a power
series in one variable,

c =

∞∑

i=0

c(i)xi.

Namely, defining (c, η) = c(|η|) for every η ∈ X∗, where X = {x}, the
series can be written as the summation over X∗

c =
∑

η∈X∗

(c, η) η.

Example 2.4 Any R-linear mapping on the vector space Rn can be
represented by a matrix in Rn×n. The collection of matrices Rn×n

clearly forms a monoid under the usual definition of matrix multi-
plication, where the identity matrix, In, is the multiplicative identity
element. Given an alphabet X = {x0, x1, . . . , xm}, let µ denote a map-
ping which assigns a specific matrix to each letter, namely, µ(xi) = Ni

for i = 0, 1, . . . ,m. Then there exists a unique free submonoid in Rn×n
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generated by N := {N0, N1, . . . , Nm} (the Ni’s are not necessarily lin-
early independent). This type of matrix monoid plays a central role in
the theory of linear representations for formal power series presented
in Section 4.2.

2.2 Formal Power Series

Given an alphabet X = {x0, x1, . . . , xm}, a formal power series c is
any function of the form

c : X∗ → Rℓ.

The image of a word η ∈ X∗ under c is denoted by (c, η) and is
called the coefficient of η in c. It is customary to write c as the formal
summation

c =
∑

η∈X∗

(c, η) η.

The coefficient (c, ∅) is referred to as the constant term, and c is called
proper when this coefficient is zero. The support of c is the language

supp(c) := {η ∈ X∗ : (c, η) 6= 0}.

The order of c is defined as

ord(c) =

{
min{|η| : η ∈ supp(c)} : c 6= 0

∞ : c = 0.

So when c is proper, it follows that ord(c) > 0. The set of all formal
power series will be denoted by Rℓ〈〈X〉〉. In addition, the set of all
formal power series with finite support, i.e., the set of all polynomials,
will be represented by Rℓ〈X〉. The degree of a polynomial p is

deg(p) =

{
max{|η| : η ∈ supp(p)} : p 6= 0

−∞ : p = 0.

As a matter of notation, η = ∅ denotes the empty word in X∗, while
the polynomials p = 1∅ and p = 0∅ will usually be written simply as
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p = 1 and p = 0, respectively.1 When ℓ ≥ 1, the i-th component series
of c ∈ Rℓ〈〈X〉〉 is

ci =
∑

η∈X∗

(c, η)iη,

where (c, η)i is the i-th component of the vector (c, η) ∈ Rℓ. In which
case, there is a natural bijection between Rℓ〈〈X〉〉 and (R〈〈X〉〉)ℓ.

The sets Rℓ〈〈X〉〉 and Rℓ〈X〉 exhibit considerable algebraic struc-
ture. For example, each admits a vector space structure over R when
addition c+ d is defined by the coefficients

(c+ d, η) = (c, η) + (d, η), ∀η ∈ X∗,

and scalar multiplication αc is given by

(αc, η) = α(c, η), ∀η ∈ X∗, ∀α ∈ R.

It is straightforward to show that

ord(c+ d) ≥ min{ord(c), ord(d)}, c, d ∈ R〈〈X〉〉
deg(p + q) ≤ max{deg(p),deg(q)}, p, q ∈ R〈X〉.

When ℓ = 1, each set forms a ring, an associative R-algebra, and a
module over the ring R〈X〉 using the following product.2

Definition 2.2 The catenation product or Cauchy product of
two series (or polynomials) c, d ∈ R〈〈X〉〉 is cd =

∑
η∈X∗(cd, η) η,

where
(cd, η) =

∑

ξ,ν∈X∗

η=ξν

(c, ξ)(d, ν), ∀η ∈ X∗,

or more succinctly, yyy: Absolute reference

to Appendix A in foot-

note.(cd, η) =
∑

η=ξν

(c, ξ)(d, ν), ∀η ∈ X∗.

In this case, the polynomial p = 1 acts as the multiplicative identity
element (see Problem 2.2.1).

1 When it is necessary to distinguish between the scalar 1 and the polynomial 1∅,
the latter will be written as 1.

2 The reader may wish to consult Section A.1 of Appendix A for a brief review of
these algebraic concepts.
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Example 2.5 Suppose X = {x} and consider two polynomials:

c = (c, ∅) + (c, x)x + (c, x2)x2

d = (d, ∅) + (d, x)x + (d, x2)x2.

The familiar polynomial product of c and d is computed as

cd = [(c, ∅) + (c, x)x + (c, x2)x2] [(d, ∅) + (d, x)x + (d, x2)x2]

= (c, ∅)(d, ∅) + [(c, ∅)(d, x) + (c, x)(d, ∅)]x + [(c, ∅)(d, x2)+

(c, x)(d, x) + (c, x2)(d, ∅)]x2 + [(c, x)(d, x2)+

(c, x2)(d, x)]x3 + (c, x2)(d, x2)x4

=

4∑

i=0



∑

j,k≥0
j+k=i

(c, xj)(d, xk)


xi.

Thus, it follows that

(cd, xi) =
∑

j,k≥0
j+k=i

(c, xj)(d, xk)

=
∑

η=ξν

(c, ξ)(d, ν).

So the catenation product of polynomials (or series) over a single letter
alphabet reduces to the usual polynomial product. It is easy to see in
this case that the catenation product is commutative. Also observe
that

(cd, xi) =

i∑

j=0

(c, xj)(d, xi−j).

Hence, for single letter alphabets, the catenation product is exactly
equivalent to the notion of series convolution.

Example 2.6 Suppose X = {x0, x1}, c = 2x0x1 and d = x0 + x1.
Then it follows that

cd = 2x0x1(x0 + x1)

= 2x0x1x0 + 2x0x
2
1,
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while on the other hand

dc = (x0 + x1) 2x0x1

= 2x20x1 + 2x1x0x1.

Thus, the catenation product is not commutative when X contains
more than one letter.

Example 2.7 Consider the special case where the letters of X =
{x1, x2, . . . , xm} commute, that is, xixj = xjxi for all xi, xj ∈ X∗.
Let R [[X]] denote the set of all formal power series on this commut-
ing alphabet. In this case, an alternative definition of the catenation
product is often useful, namely,

cd =
∑

η∈X∗

(cd, η)
η

η!
,

where

(cd, η) =
∑

η=ξν

(c, ξ)(d, ν)
η!

ξ!ν!

and η! := |η|x1 ! |η|x2 ! · · · |η|xm !. For a single letter alphabet, this yields
what is commonly called binomial convolution

(cd, xi) =

i∑

j=0

(
i

j

)
(c, xj)(d, xi−j). (2.2)

The catenation product in the general commutative case will be re-
ferred to as the multinomial catenation product. Binomial convolution
naturally arises when describing the pointwise product of real analytic
functions. That is, if

fc(z) =
∞∑

i=0

(c, xi)
zi

i!

and likewise for fd, then fcfd = fcd (see Problem 2.2.2). It will usually
be clear from context which catenation product is at play. For non-
commutative alphabets, it will always be the Cauchy product. For the
commutative case where the pointwise product of functions is involved,
it will always be the multinomial catenation product.



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

42 2. Formal Power Series

One of the most common operations performed on series is to shift
its coefficients in some manner to other words in the series. For ex-
ample, given the single letter alphabet X = {x}, the familiar left-shift
operator is

x−1(c) = x−1((c, ∅) + (c, x)x + (c, x2)x2 + (c, x3)x3 + · · · )
= (c, x) + (c, x2)x+ (c, x3)x2 + (c, x4)x3 + · · · .

When applied twice, the operator x−1(x−1(·)) could be thought of as
(x2)−1(·). These ideas are generalized for an arbitrary alphabet in the
following definition.

Definition 2.3 Given any ξ ∈ X∗, the corresponding left-shift op-

erator on X∗ is defined as

ξ−1 : X∗ → R〈X〉, η 7→
{
η′ : η = ξη′

0 : otherwise.

Note that in the second half of this definition, η is being mapped to
the zero polynomial, i.e., p = 0, as opposed to the empty word ∅.
So this operator is a mapping into R〈X〉 and not into X∗. For any
c ∈ Rℓ〈〈X〉〉, this definition is extended linearly as

ξ−1(c) =
∑

η∈X∗

(c, η) ξ−1(η)

=
∑

η∈X∗

(c, ξη) η.

In which case, ξ−1(·) acts linearly on the R-vector space Rℓ〈〈X〉〉, that
is,

ξ−1(α1c1 + α2c2) = α1ξ
−1(c1) + α2ξ

−1(c2)

for all αi ∈ R and ci ∈ Rℓ〈〈X〉〉 (see Problem 2.2.3). Two key properties
of left-shift operators are given in the following lemma.

Lemma 2.1 Let xi ∈ X and ξ, ν ∈ X∗ be fixed. For any c, d ∈ R〈〈X〉〉
it follows that:

1. (ξν)−1(c) = ν−1(ξ−1(c))
2. x−1i (cd) = x−1i (c) d+ (c, ∅) x−1i (d).
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Proof:

1. This property follows directly from the definition,

(ξν)−1(c) =
∑

η∈X∗

(c, η) (ξν)−1(η)

=
∑

η∈X∗

(c, η) ν−1(ξ−1(η))

= ν−1ξ−1


∑

η∈X∗

(c, η) η




= ν−1ξ−1(c).

2. For any xi ∈ X observe that

x−1i (cd) =
∑

η∈X∗

(cd, xiη) η

=
∑

η∈X∗


 ∑

xiη=ξν

(c, ξ)(d, ν)


 η

=
∑

η∈X∗


∑

η=ξν

(c, xiξ)(d, ν) + (c, ∅)(d, xiη)


 η

=
∑

η∈X∗


∑

η=ξν

(x−1i (c), ξ)(d, ν)


 η + (c, ∅)

∑

η∈X∗

(x−1i (d), η) η

= x−1i (c) d + (c, ∅)x−1i (d).

2.3 The Ultrametric Space RRRℓ〈〈X〉〉

yyy: Customized run-

ning title and TOC en-

try.

It will be useful in a number of situations to provide the vector space
Rℓ〈〈X〉〉 with a topological structure so that concepts like convergence
are available. Convergence in this case does not mean convergence of a
power series in Rℓ〈〈X〉〉, but rather convergence of a sequence of power
series in Rℓ〈〈X〉〉. The approach taken here employs the following no-
tion of distance.
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Definition 2.4 Given a set S, a function δ : S × S → R is called an
ultrametric if it satisfies the following properties for all s, s′, s′′ ∈ S:

i. δ(s, s′) ≥ 0

ii. δ(s, s′) = 0 if and only if s = s′

iii. δ(s, s′) = δ(s′, s)

iv. δ(s, s′) ≤ max{δ(s, s′′), δ(s′′, s′)}.
The pair (S, δ) is referred to as an ultrametric space.

In the event that property iv is replaced with the triangle inequality,

δ(s, s′) ≤ δ(s, s′′) + δ(s′′, s′), (2.3)

(S, δ) is called a metric space. Clearly, iv implies (2.3) but not con-
versely. Thus, every ultrametric space is a metric space. Now for any
fixed real number σ such that 0 < σ < 1, consider the mapping

dist : Rℓ〈〈X〉〉 × Rℓ〈〈X〉〉 → R, (c, d) 7→ σord(c−d).

The following theorem is essential.

Theorem 2.1 The R-vector space Rℓ〈〈X〉〉 with mapping dist is an
ultrametric space.

Proof: The proof is left as an exercise (see Problem 2.3.1).

Example 2.8 Suppose X = {x} and σ = 1/2. If

c = 1 + x+ x2 + · · ·
d = 1 + x+ x2

then
c− d = x3 + x4 + x5 + · · ·

so that ord(c− d) = 3 and dist(c, d) = 1/8.

A sequence {s1, s2, . . .} in a metric space S is said to converge to s ∈
S, i.e., limi→∞ si = s, if limi→∞ δ(si, s) = 0. This means precisely that
for every ǫ > 0 there exists a natural number Nǫ such that δ(si, s) <
ǫ when i ≥ Nǫ. Any such limit point s will always be unique (see
Problem 2.3.2). As the ultrametric dist never exceeds one, there is
no loss of generality in assuming that 0 < ǫ ≤ 1 when applying the
definition to sequences in Rℓ〈〈X〉〉.
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Example 2.9 Suppose X = {x} and let

c = 1 + x + x2 + · · ·
ci = 1 + x + · · · + xi, i ≥ 0.

Then dist(ci, c) = σi+1. For any 0 < ǫ ≤ 1, set Nǫ = ⌈log(ǫ)/ log(σ)⌉,
where ⌈·⌉ denotes the ceiling function. Then if i ≥ Nǫ it follows that
σi+1 < ǫ. Therefore, limi→∞ ci = c.

Example 2.10 Consider a proper series c and the sequence {1, c, c2, . . .},
where ci denotes the catenation power, that is, ci := cc · · · c, where c
appears i times and c0 := 1. For any i ≥ 1 observe

dist(ci, 0) = σord(c
i−0) = σi ord(c).

The properness of c implies that ord(c) > 0. For any 0 < ǫ ≤ 1, set

Nǫ =

⌈
log(ǫ)

log
(
σord(c)

)
⌉

+ 1,

Then it follows that i ≥ Nǫ gives dist(ci, 0) < ǫ, and thus, limi→∞ c
i =

0.

Using the definition to prove that a given sequence in Rℓ〈〈X〉〉
converges requires one to identify a priori a limit c ∈ Rℓ〈〈X〉〉. The
classical way around this problem is to use the notion of a Cauchy
sequence. A sequence {s1, s2, . . .} in any metric space (S, δ) is said to
be a Cauchy sequence if for every ǫ > 0 there exists a natural number
Nǫ such that δ(si, sj) < ǫ whenever i, j ≥ Nǫ. It is easily verified that
every convergent sequence is a Cauchy sequence (see Problem 2.3.2).
A metric space is said to be complete if every Cauchy sequence is
convergent.

Theorem 2.2 The ultrametric space (Rℓ〈〈X〉〉,dist) is complete.

Proof: Let {c1, c2, . . .} be a Cauchy sequence in Rℓ〈〈X〉〉. Then for
any k ≥ 0 there exists a natural number Nk such that dist(ci, cj) <
σk whenever i, j ≥ Nk. Therefore, ord(ci − cj) > k, or equivalently,
(ci, η) = (cj , η) when |η| ≤ k. Now define a new series c ∈ Rℓ〈〈X〉〉 by
setting
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I

IJ

X 

Fig. 2.1. The subsets in the definition of summable.

(c, η) = (cNk
, η), ∀η ∈ Xk, k ≥ 0.

The claim is that limi→∞ ci = c. Choose any ǫ > 0. Select integer
k ≥ 0 such that σk < ǫ. Then for all i ≥ Nk

dist(ci, c) < σk < ǫ.

This completes the proof.

Frequently, one encounters the situation where a family of formal
power series needs to be added together to form a new series. If this
family is infinite, it is not so obvious at first glance how such a sum
should be defined. Clearly, the topological structure has to be involved.
The following definition addresses this issue.

Definition 2.5 Let {ci}i∈I be a family of series in Rℓ〈〈X〉〉. The fam-
ily is said to be summable if there exists another series c in Rℓ〈〈X〉〉
with the property that for any ǫ > 0, there exists a finite subset Iǫ ⊂ I
such that for any other finite subset J ⊂ I containing Iǫ it follows that

dist


∑

j∈J

cj , c


 < ǫ

(see Figure 2.1).

The set Iǫ denotes the smallest subset of series one must combine in
order to get within ǫ of c. Including more terms, such as those in J ,
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can get one closer to c but no further away than distance ǫ. When
{ci}i∈I is summable, its sum will be written as c =

∑
i∈I ci, and, in

particular,

(c, η) =
∑

i∈I(η)

(ci, η), η ∈ X∗,

where I(η) := {i ∈ I : (ci, η) 6= 0}. It is left to the reader to show
that when the sum c exists, it is unique. The following definition and
theorem provide a convenient test for summability.

Definition 2.6 A family of series {ci}i∈I in Rℓ〈〈X〉〉 is called locally

finite if the set I(η) is finite for every η ∈ X∗.

Theorem 2.3 If a family of series {ci}i∈I in Rℓ〈〈X〉〉 is locally finite
then it is summable.

Proof: For a locally finite family {ci}i∈I , define the series c whose
coefficients are given by the finite summations

(c, η) =
∑

i∈I(η)

(ci, η), ∀η ∈ X∗.

To see that c is indeed the sum of {ci}i∈I , choose any ǫ > 0, and let
k > 0 be an integer such that σk < ǫ. Define the corresponding finite
subset of I

Iǫ =
⋃

|ξ|<k

I(ξ).

Now let J be any finite subset of I containing Iǫ. Assuming c 6= ∑j∈J cj
(i.e., the nontrivial case) then it follows that

ord


∑

j∈J

cj − c


 = min



|η| :


∑

j∈J

cj − c, η


 6= 0, η ∈ X∗





= min



|η| :

∑

j∈J

(cj , η) 6= (c, η), η ∈ X∗




≥ k,

since for any word η ∈ X∗ with |η| < k

∑

j∈J

(cj , η) =
∑

j∈I(η)

(cj , η) = (c, η).



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

48 2. Formal Power Series

In which case,

dist


∑

j∈J

cj , c


 = σord(c−

∑
j∈J cj) ≤ σk < ǫ.

Thus, the family {ci}i∈I is summable, and c is the corresponding sum.

Example 2.11 For any fixed series c ∈ Rℓ〈〈X〉〉, where X is an
arbitrary alphabet, consider the family of series {cη}η∈X∗ , where
cη = (c, η) η. Since the support of each series cη contains at most one
word, the family is locally finite and the sum is obviously c. Further-
more, since these supports are pairwise disjoint, one can unambigu-
ously represent the mapping c : X∗ → Rℓ using the series notation

c =
∑

η∈X∗

cη =
∑

η∈X∗

(c, η) η.

Example 2.12 Suppose X = {x} and consider the family of mono-
mials {ci}i∈N0 , where ci = αix with αi 6= 0 for all i ∈ N0. Clearly
I(x) = N0 is not finite. Therefore, the family {ci}i∈N0 is not locally
finite. The question of whether the family is summable depends en-
tirely on the coefficients. For example, if αi = 1/i, i ∈ N0, then it is
not summable as the coefficient of x in the corresponding sum is not
finite. On the other hand, if αi = 1/i!, i ∈ N0, then this family has the
sum c =

∑
i∈N0

ci = ex, where e = 2.7182 . . .. This demonstrates that
the converse of Theorem 2.3 is not true in general.

Example 2.13 Suppose X is an arbitrary alphabet. Let {αi}i∈N0 be
any sequence of real numbers and c ∈ R〈〈X〉〉 any proper series. Con-
sider the family of series {αici}i∈N0 . For any i ∈ N0 and η ∈ X∗ such
that i > |η|, it is immediate that (ci, η) = 0 since ord(ci) ≥ i. There-
fore, I(η) ⊆ {0, 1, . . . , |η|}. Thus, this family is locally finite, and hence
summable. This fact allows one to extend the domain of definition for
various real analytic functions from R to R〈〈X〉〉. For example, given
any proper c ∈ R〈〈X〉〉, one can define:
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c∗ = (1 − c)−1 =

∞∑

i=0

ci

ec =

∞∑

i=0

ci
1

i!

log(1 + c) =
∞∑

i=1

ci
(−1)i−1

i
.

The first function above arises naturally in the study of rational series
(Chapter 4), while the latter two functions are important when the
free Lie algebra on R〈X〉 is considered (Chapter 5).

The final topic of this section is contractive mappings. This is a
classic subject in the theory of metric spaces. Contractive mappings
often arise in the study of differential equations, operator theory and
functional analysis. Contractive mappings will be used in Chapter 3
to determine when the feedback interconnection of two input-output
systems is well defined.

Definition 2.7 Let (S, δ) be a metric space. A mapping T : S → S is
called a contractive mapping if there exists a real number 0 < α < 1
such that

δ(T (s),T (s′)) ≤ α δ(s, s′), ∀s, s′ ∈ S.

Given any mapping, T , a point s∗ ∈ S is said to be a fixed point if
T (s∗) = s∗. The following theorem gives a condition under which a
fixed point exists and is unique.

Theorem 2.4 Let (S, δ) be a complete nonempty metric space. Then
every contractive mapping T : S → S has precisely one fixed point in
S.

Proof: Select any s1 ∈ S and generate a sequence in S by the iteration
si+1 = T (si), i ≥ 1. It is first shown that if T is contractive then the
sequence {s1, s2, . . .} is a Cauchy sequence. Observe that for any i ≥ 2,

δ(si, si+1) = δ(T (si−1),T (si))

≤ α δ(si−1, si)

≤ α2δ(si−2, si−1)

...
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≤ αi−1 δ(s1, s2).

Applying the triangle inequality and using the assumption that 0 <
α < 1 gives for any j > i ≥ 1

δ(si, sj) ≤ δ(si, si+1) + δ(si+1, si+2) + · · · + δ(sj−1, sj)

≤ (αi−1 + αi + · · · + αj−2)δ(s1, s2)

= αi−1
1 − αj−i

1 − α
δ(s1, s2)

<
αi−1

1 − α
δ(s1, s2).

Clearly, the right-hand side of the last inequality above can be made
arbitrarily small by choosing a sufficiently large i. This proves that
{s1, s2, . . .} is a Cauchy sequence. Since S is assumed to be a complete
metric space, there must exist a unique element s∗ ∈ S such that
limi→∞ si = s∗.

It is next shown that s∗ is the unique fixed point of T . Observe
that

δ(s∗,T (s∗)) ≤ δ(s∗, si) + δ(si,T (s∗))

≤ δ(s∗, si) + α δ(si−1, s
∗).

However, it was just shown that limi→∞ si = s∗. So after taking the
same limit above, one must conclude that δ(s∗,T (s∗)) = 0, or equiva-
lently, s∗ = T (s∗). Suppose T has a second fixed point s̃∗. Then

δ(s∗, s̃∗) = δ(T (s∗),T (s̃∗))

≤ α δ(s∗, s̃∗),

which implies that δ(s∗, s̃∗) = 0 since 0 < α < 1. Hence, s∗ = s̃∗.

Example 2.14 Consider the function

f(z) = z +
π

2
− tan−1(z)

on R. The set R is known to be a complete metric space under the
metric δ(z, z′) = |z − z′|. Clearly, for every z ∈ R

f ′(z) = 1 − 1

1 + z2
< 1.
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For any z, z′ ∈ R with z < z′, it follows from the mean-value theorem
that there is some z̃ ∈ (z, z′) such that

|f(z) − f(z′)| = |f ′(z̃)| |z − z′|
< |z − z′|. (2.4)

This is a slightly weaker condition than that required for a contraction.
Therefore, Theorem 2.4 does not apply. Observe that a fixed point,
z∗, would have to satisfy f(z∗) = z∗, which in this case is precisely
equivalent to requiring that tan−1(z∗) = π/2. But no such number z∗

exists in R. Hence, (2.4) does not guarantee the existence of a fixed
point in general. It does, however, provide for uniqueness when a fixed
point is known to exist by other means (see Problem 2.3.6).

2.4 The Shuffle Product

In this section, a new product on Rℓ〈〈X〉〉 is considered, the shuffle
product. It is probably the most important product after the catena-
tion product for analyzing nonlinear systems in a formal power series
setting. The following definition describes the basic idea when only
words are involved. But the goal is to eventually define a shuffle alge-
bra on Rℓ〈〈X〉〉.
Definition 2.8 The shuffle of two words η, ξ ∈ X∗ is defined to be
the language

Sη,ξ = {ν ∈ X∗ : ν = η1ξ1η2ξ2 · · · ηnξn, ηi, ξi ∈ X∗,

η = η1η2 · · · ηn, ξ = ξ1ξ2 · · · ξn, n ≥ 1}.

In particular, Sη,∅ = {η} and S∅,ξ = {ξ}.
This shuffle operation most likely derives its name from the manner
in which playing cards are mixed, that is, η and ξ are combined so as
to preserve the relative ordering of their respective components. For
example, the word ηi is to the left of ηi+1 before and after the shuffle
operation is performed. An equivalent definition of the shuffle with a
more combinatorial flavor can be given in terms of set bisections. For
any integer n ≥ 0, let [n] = {1, 2, . . . , n} with [0] = ∅. A pair of subsets
(I, J) is a bisection of [n] if I ∪ J = [n] and I ∩ J = ∅. Given a word
ν = ν1ν2 · · · νℓ with νi ∈ X and a subset I = {i1 < i2 < · · · < ik}
of [|ν|], let νI = νi1νi2 · · · νik denote a subword of ν. For example, if
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A x1

B

x0

x0

x1

 

Fig. 2.2. Two paths corresponding to the word x0x
2
1x0 in the shuffle language in

Example 2.15.

ν = x0x1x0x1 and I = {2, 4} then νI = x21. It is easily verified that
ν ∈ Sη,ξ if and only if there exists a bisection (I, J) of [|ν|] such that
νI = η and νJ = ξ. Therefore, any ν ∈ Sη,ξ satisfies |ν| = |η|+ |ξ|, and,
in general Sη,ξ can contain at most

(|η| + |ξ|
|η|

)

distinct words.

Example 2.15 Suppose X = {x0, x1}, η = x0x1 and ξ = x1x0. A
systematic way to construct a word in the shuffle language Sη,ξ is to
create a table as shown in Figure 2.2, where the rows are labeled from
top to bottom with the letters of η, and the columns are labeled from
left to right with the letters of ξ. Consider a path connecting point
A to point B, where one is only permitted to move down and to the
right. With each path one can associate a single word in Sη,ξ by keeping
track of which rows and columns have been traversed. For example, the
two paths corresponding to the word x0x

2
1x0 are shown in the figure.

Proceeding in this way, the complete shuffle language is found to be

Sη,ξ = {x0x21x0, x0x1x0x1, x1x0x1x0, x1x20x1}.

A third equivalent definition of the shuffle can be given recursively
in terms of formal polynomials. This approach has two advantages: it is



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

2.4 The Shuffle Product 53

more computational in nature, and it is easier to determine when words
have a multiplicity greater than one, i.e. when they can be generated
by more than one bisection or path in the context of the previous
definitions.

Definition 2.9 The shuffle product of two words is

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ), (2.5)

where xi, xj ∈ X, η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η = η.3

The claim, which is left to the reader to verify, is that

Sη,ξ = supp(η ⊔⊔ ξ).

Example 2.16 Reconsider the previous example where η = x0x1 and
ξ = x1x0. Then

x0x1 ⊔⊔ x1x0 = x0(x1 ⊔⊔ x1x0) + x1(x0x1 ⊔⊔ x0)

= x0[x
2
1x0 + x1(x1 ⊔⊔ x0)] + x1[x0(x1 ⊔⊔ x0) + x20x1]

= 2x0x
2
1x0 + x0x1x0x1 + x1x0x1x0 + 2x1x

2
0x1.

Thus, six words are generated by this product, but two of them have
multiplicity 2. Furthermore,

supp(x0x1 ⊔⊔ x1x0) = {x0x21x0, x0x1x0x1, x1x0x1x0, x1x20x1}
= Sη,ξ.

Example 2.17 Given a language L ⊆ X∗, the characteristic series of
L is the element in R〈〈X〉〉 defined by char(L) =

∑
ν∈L ν. Suppose, for

example, X = {x0, x1}. Then

char(X) = x0 + x1 = x0 ⊔⊔ ∅ + ∅ ⊔⊔ x1

=
∑

r0,r1≥0
r0+r1=1

xr00 ⊔⊔ xr11 .

3 The symbol ⊔⊔ is the letter Sha in the Cyrillic alphabet, which is used, for
example, in the Bulgarian, Russian and Ukrainian written languages. It is used
to represent a sound which is roughly equivalent to the sh sound in the English
word shuffle.
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Similarly,

char(X2) = x20 + x0x1 + x1x0 + x21

= x20 ⊔⊔ ∅ + x0 ⊔⊔ x1 + ∅ ⊔⊔ x21

=
∑

r0,r1≥0
r0+r1=2

xr00 ⊔⊔ xr11 .

An inductive argument for an arbitrary alphabet X = {x0, x1, . . . , xm}
produces the useful identity

char(Xk) =
∑

r0,r1,...,rm≥0
r0+r1+···+rm=k

xr00 ⊔⊔ xr11 ⊔⊔ · · · ⊔⊔ xrmm , k ≥ 0 (2.6)

(see Problem 2.4.6).

The definition of the shuffle product is extended linearly to any two
series c, d ∈ R〈〈X〉〉 by letting

c ⊔⊔ d =
∑

η,ξ∈X∗

(c, η)(d, ξ) η ⊔⊔ ξ. (2.7)

For a fixed ν ∈ X∗, the coefficient

(c ⊔⊔ d, ν) = (c, η)(d, ξ)(η ⊔⊔ ξ, ν) = 0, |η| + |ξ| 6= |ν|.

Hence, the infinite sum in (2.7) is well defined since the family of
polynomials {η ⊔⊔ ξ}(η,ξ)∈X∗×X∗ is locally finite, i.e., I(ν) ⊆ {(η, ξ) ∈
X∗ ×X∗ : |η| + |ξ| = |ν|} is finite for every ν ∈ X∗. Given two series
c, d ∈ Rℓ〈〈X〉〉 the shuffle product c ⊔⊔ d is defined componentwise, i.e.,
the i-th component series of c ⊔⊔ d is (c ⊔⊔ d)i = ci ⊔⊔ di, where 1 ≤ i ≤ ℓ.

Example 2.18 Reconsider Example 2.6 where X = {x0, x1} and

c = 2x0x1, d = x0 + x1.

Observe that

c ⊔⊔ d = 2[x0x1 ⊔⊔ x0] + 2[x0x1 ⊔⊔ x1]

= 2 (x0[x1 ⊔⊔ x0] + x0[x0x1 ⊔⊔ ∅]) + 2 (x0[x1 ⊔⊔ x1] + x1[x0x1 ⊔⊔ ∅])

= 2x0(x1x0 + x0x1 + x0x1) + 2(2x0x
2
1 + x1x0x1)
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= 4x20x1 + 2x0x1x0 + 2x1x0x1 + 4x0x
2
1

and

d ⊔⊔ c = 2[x0 ⊔⊔ x0x1] + 2[x1 ⊔⊔ x0x1]

= 2 (x0[∅ ⊔⊔ x0x1] + x0[x0 ⊔⊔ x1]) + 2 (x1[∅ ⊔⊔ x0x1] + x0[x1 ⊔⊔ x1])

= 2(x20x1 + x0(x0x1 + x1x0)) + 2(x1x0x1 + 2x0x
2
1)

= 4x20x1 + 2x0x1x0 + 2x1x0x1 + 4x0x
2
1

= c ⊔⊔ d.

In general, the shuffle product is commutative. It is also associa-
tive and distributes over addition. Thus, R〈〈X〉〉 forms a commuta-
tive R-algebra, the shuffle algebra, with multiplicative identity ele-
ment 1. In addition, the shuffle algebra is an integral domain, namely,
it has the property that c ⊔⊔ d = 0 if and only if at least one of its
arguments is the zero series (see Problem 2.4.1). This fact yields an-
other basic property of the shuffle product. Using the property that
ord(c + d) ≥ min(ord(c), ord(d)), it is easy to see in general that
ord(c ⊔⊔ d) ≥ ord(c) + ord(d). But the following stronger claim holds.

Lemma 2.2 For any c, d ∈ R〈〈X〉〉, ord(c ⊔⊔ d) = ord(c) + ord(d).

Proof: Consider only the nontrivial case where both c and d are not
zero. Define the nonzero polynomials p, q ∈ R〈X〉 by c = p + c′ and
d = q + d′, where p is the homogeneous part of c satisfying ord(p) =
ord(c) and ord(c′) = ord(c − p) > ord(c), and likewise for q. In which
case,

c ⊔⊔ d = (p+ c′) ⊔⊔ (q + d′) = p ⊔⊔ q + p ⊔⊔ d′ + c′ ⊔⊔ q + c′ ⊔⊔ d′.

As the shuffle algebra is an integral domain, it is immediate that
p ⊔⊔ q 6= 0 and ord(p ⊔⊔ q) = ord(p) + ord(q) = ord(c) + ord(d). Further-
more, each of the last three terms has order exceeding ord(c) + ord(d),
for example, ord(p ⊔⊔ d′) ≥ ord(p) + ord(d′) > ord(c) + ord(d). There-
fore, the identity in question must hold.

As alluded to earlier, the shuffle algebra plays a central role in the
analysis of nonlinear systems. To better understand this connection,
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let {u0, u1, . . . , um} be a fixed set of piecewise continuous real-valued
functions defined on a finite interval [t0, t1]. For any word η ∈ X+

define recursively the iterated integral

Eη[u](t, t0) = Exiη′ [u](t, t0) =

∫ t

t0

ui(τ)Eη′ [u](τ, t0) dτ

with E∅[u](t, t0) = 1 for all t ∈ [t0, t1]. For any polynomial p ∈ R〈X〉
extend this definition as

Ep[u](t, t0) =
∑

η∈X∗

(p, η) Eη [u](t, t0).

Let E(R〈X〉) denote the set of all such finite linear combinations of
iterated integrals. Clearly, E(R〈X〉) forms an R-vector space. The fol-
lowing lemma provides additional algebraic structure.

Lemma 2.3 For any η, ξ ∈ X∗

Eη[u](t, t0)Eξ [u](t, t0) = Eη ⊔⊔ ξ[u](t, t0).

Proof: The claim is trivially true when |η| + |ξ| = 0 and |η| + |ξ| = 1.
Assume it holds up to the case where |η| + |ξ| = n ≥ 1, and suppose
for example that ξ is nonempty. Then via integration by parts formula

UV =

∫
dU V +

∫
U dV

it follows for any xi ∈ X that

Exiη[u](t, t0) Eξ[u](t, t0) =

∫ t

t0

ui(τ)Eη [u](τ, t0) Eξ[u](τ, t0) dτ+

∫ t

t0

uj(τ)Exiη[u](τ, t0) Eξ′ [u](τ, t0) dτ

= Exi(η ⊔⊔ ξ)+xj((xiη) ⊔⊔ ξ′)[u](t, t0)

= E(xiη) ⊔⊔ ξ[u](t, t0),

where ξ = xjξ
′. Hence, by induction, the identity holds for all words

η, ξ ∈ X∗.

The vector space E(R〈X〉) thus forms an associative and commuta-
tive R-algebra with product EpEq = Ep ⊔⊔ q and multiplicative identity
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element E1 = 1. It will be shown in Chapter 3 (see Theorems 3.7 and
3.40) that the mapping

ρ : E(R〈X〉) → R〈X〉, Ep 7→ p

is well defined and bijective. Thus, this R-algebra is isomorphic to the
shuffle R-algebra on R〈X〉 since

ρ(EpEq) = ρ(Ep ⊔⊔ q) = p ⊔⊔ q

= ρ(Ep) ⊔⊔ ρ(Eq)

for all p, q ∈ R〈X〉 and ρ(E1) = 1. This shuffle isomorphism, or more
precisely its extension in Chapter 3 to Rℓ〈〈X〉〉, means that the shuffle
product underlies any calculation that involves the product of iterated
integrals. As will be seen shortly, this happens naturally when input-
output systems are interconnected.

The section is concluded by describing how the left-shift operator
interacts with the shuffle product.

Theorem 2.5 The left-shift operator acts as a derivation on the shuf-
fle product, i.e., for c, d ∈ R〈〈X〉〉 and xk ∈ X

x−1k (c ⊔⊔ d) = x−1k (c) ⊔⊔ d+ c ⊔⊔ x−1k (d).

Proof: First consider the identity when restricted to words η, ξ ∈ X∗.
If either word is the empty word then the claim is trivial. If η, ξ ∈ X+

then let η = xiη
′ and ξ = xjξ

′ and observe for any xk ∈ X that

x−1k (η ⊔⊔ ξ) = x−1k (xi(η
′
⊔⊔ ξ) + xj(η ⊔⊔ ξ′))

= δki(η
′
⊔⊔ ξ) + δkj(η ⊔⊔ ξ′)

= (δkiη
′) ⊔⊔ ξ + η ⊔⊔ (δkjξ

′)

= x−1k (η) ⊔⊔ ξ + η ⊔⊔ x−1k (ξ),

where

δij =

{
1 : i = j
0 : otherwise.

Now in the general case,

x−1k (c ⊔⊔ d) =
∑

η,ξ∈X∗

(c, η)(d, ξ)x−1k (η ⊔⊔ ξ)
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B L

✲V1 × V2 V1 ⊗ V2

⊗

V3

❅
❅
❅
❅
❅❘

�
�

�
��✠

Fig. 2.3. The commutative diagram for the mappings B and L in Definition 2.10.

=
∑

η,ξ∈X∗

(c, η)(d, ξ)x−1k (η) ⊔⊔ ξ +
∑

η,ξ∈X∗

(c, η)(d, ξ) η ⊔⊔ x−1k (ξ)

= x−1k (c) ⊔⊔ d+ c ⊔⊔ x−1k (d).

2.5 Catenation-Shuffle Product Duality

In this section, a duality is presented between the catenation product
and the shuffle product when each is viewed as a linear mapping on
a tensor product space. A few preliminary concepts need to be estab-
lished first before the precise sense of this duality can be described.

Let V1, V2, and V3 be three arbitrary vector spaces over R. Consider
an R-bilinear map of the form B : V1 × V2 → V3, that is, a map where

B(αw + βx, y) = αB(w, y) + βB(x, y)

B(x, αy + βz) = αB(x, y) + βB(x, z)

for all α, β ∈ R, w, x ∈ V1 and y, z ∈ V2. In this context, consider the
following definition.

Definition 2.10 The tensor product space V1⊗V2 is another vector
space on which there exists a unique R-linear mapping L : V1⊗V2 → V3
such that

B(x, y) = L(x⊗ y), ∀x ∈ V1, y ∈ V2 (2.8)

(see Figure 2.3).
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Example 2.19 Let V1 = V2 = R2 and V3 = R with their usual R-
vector space structures. For any matrix A ∈ R2×2, a corresponding
R-bilinear mapping of the form R2 × R2 → R is

B : (x, y) 7→ xTAT y = a11x1y1 + a21x1y2 + a12x2y1 + a22x2y2

=
[
a11 a21 a12 a22

]



x1y1
x1y2
x2y1
x2y2




= vec(A)T (x⊗ y),

where vec(·) is the matrix column stacking operator, and ⊗ is the
Kronecker matrix product. Therefore B can be made to look like a
map of the form R4 → R in which

x⊗ y + x′ ⊗ y = (x + x′) ⊗ y (2.9)

x⊗ y + x⊗ y′ = x⊗ (y + y′) (2.10)

α(x⊗ y) = (αx) ⊗ y = x⊗ (αy) (2.11)

for all x, x′, y, y′ ∈ R2 and α ∈ R. Taking e1 = [1 0]T and e2 = [0 1]T

as a basis for R2, a corresponding basis for the vector space R2⊗R2 is
{e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2} so that

x⊗ y =

2∑

i,j=1

xiyj(ei ⊗ ej). (2.12)

In this coordinate system, vector addition and scalar multiplication
are defined in the usual way to provide an R-vector space structure for
R2 ⊗R2. It is then straightforward to verify that

L : R2 ⊗ R2 → R, x⊗ y 7→ vec(A)T (x⊗ y) (2.13)

is an R-linear map satisfying the identity (2.8) (see Problem 2.5.1).

Next consider the following two concepts.

Definition 2.11 A scalar product on an R-vector space V is an
R-bilinear mapping (·, ·)V : V × V → R with the following properties:

i. (x, x)V ≥ 0, ∀x ∈ V
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ii. (x, x)V = 0 if and only if x = 0

iii. (x, x′)V = (x′, x)V , ∀x, x′ ∈ V .

Given a spanning set {bi}i∈I for V , a scalar product is completely
determined by V (bi, bj) for all i, j ∈ I. If the spanning set is or-
thonormal, i.e., if V (bi, bj) = δij , then it follows that (x, y)V =∑

i∈I(x, bi)(y, bi).

Example 2.20 Suppose V1 = R2 with the scalar product (x, x′)V1 =
xTx′. Observe from the previous example that (2.12) can be written
as

x⊗ y =

2∑

i,j=1

(x⊗ y, ei ⊗ ej) ei ⊗ ej,

where (x ⊗ y, ei ⊗ ej) := (xT ei)(y
T ej) = xiyj. This in turn induces a

scalar product on V2 = R2 ⊗ R2, namely,

(x⊗ y, x′ ⊗ y′)V2 =
2∑

i,j=1

(x⊗ y, ei ⊗ ej)(x
′ ⊗ y′, ei ⊗ ej)

=
2∑

i,j=1

xiyjx
′
iy
′
j

= (x, x′)V1(y, y′)V1 .

Definition 2.12 Given any R-linear mapping T : V1 → V2, where
each vector space has a scalar product, an adjoint of T is any R-
linear map T ∗ : V2 → V1 which satisfies the identity

(T (x), y)V2 = (x,T ∗(y))V1 , ∀x ∈ V1, y ∈ V2.

The following example illustrates that for finite dimensional spaces
such an adjoint map always exists and corresponds uniquely to the
transpose of any matrix representation of T .

Example 2.21 Suppose V1 = Rn and V2 = Rm with the respective
scalar products

(x1, x2)Rn = xT1 x2
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(y1, y2)Rm = yT1 y2.

If A : Rn → Rm, x 7→ y = Ax for some matrix A ∈ Rm×n then the
adjoint of A must satisfy

(Ax, y)Rm = xTAT y = (x,AT y)Rn .

Therefore, A∗ : y 7→ AT y.

The desired catenation-shuffle duality is now described using scalar
products on the infinite dimensional vector spaces V1 = R〈X〉 and
V2 = R〈X〉 ⊗ R〈X〉. Their orthonormal spanning sets are taken to be
X∗ and X∗ ⊗X∗, respectively, so that

(p, q)V1 =
∑

η∈X∗

(p, η)(q, η)

(p⊗ q, r ⊗ s)V2 =
∑

η,η′∈X∗

(p⊗ q, η ⊗ η′)(r ⊗ s, η ⊗ η′)

=
∑

η,η′∈X∗

(p, η)(q, η′)(r, η)(s, η′)

= (p, r)V1(q, s)V1 .

(Henceforth, the subscripts on these scalar products will be omitted.)
Also observe that X∗⊗X∗ forms a monoid under the catenation prod-
uct (η⊗η′)(ξ⊗ξ′) = (ηξ⊗η′ξ′), which can be extended linearly so that
R〈X〉⊗R〈X〉 is an R-algebra under this catenation product. Likewise,
one can define (η⊗ η′) ⊔⊔ (ξ ⊗ ξ′) = (η ⊔⊔ ξ)⊗ (η′ ⊔⊔ ξ′) to yield a shuffle
algebra on R〈X〉 ⊗ R〈X〉.

The catenation product and the shuffle product can now be identi-
fied, respectively, with the R-linear mappings:

cat : R〈X〉 ⊗ R〈X〉 → R〈X〉, p⊗ q 7→ pq

sh : R〈X〉 ⊗ R〈X〉 → R〈X〉, p⊗ q 7→ p ⊔⊔ q.

The corresponding adjoint mappings cat∗ and sh∗ are then R-linear
mappings of the form R〈X〉 → R〈X〉⊗R〈X〉 which satisfy, respectively,
the identities:

(cat(p⊗ q), r) = (p⊗ q, cat∗(r)) (2.14)

(sh(p⊗ q), r) = (p⊗ q, sh∗(r)) (2.15)
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for all p, q, r ∈ R〈X〉. Explicit expressions for sh∗ and cat∗ can be
derived directly from these relations. For example, given any ξ, ν ∈ X∗

and r ∈ R〈X〉 it follows that

(ξ ⊔⊔ ν, r) = (sh(ξ ⊗ ν), r) = (ξ ⊗ ν, sh∗(r))

= (sh∗(r), ξ ⊗ ν).

Therefore,

sh∗(r) =
∑

ξ,ν∈X∗

(sh∗(r), ξ ⊗ ν) ξ ⊗ ν

=
∑

ξ,ν∈X∗

(r, ξ ⊔⊔ ν) ξ ⊗ ν. (2.16)

A similar analysis reveals that

cat∗(r) =
∑

ξ,ν∈X∗

(r, ξν) ξ ⊗ ν. (2.17)

Example 2.22 Using (2.16) and (2.17), respectively, observe that for
xij ∈ X∗:

sh∗(1) = 1⊗ 1

sh∗(xi1) = xi1 ⊗ 1 + 1⊗ xi1

sh∗(xi2xi1) = xi2xi1 ⊗ 1 + xi2 ⊗ xi1 + xi1 ⊗ xi2 + 1⊗ xi2xi1

= (xi2 ⊗ 1 + 1⊗ xi2)(xi1 ⊗ 1 + 1⊗ xi1)

= sh∗(xi2)sh∗(xi1)

...

sh∗(xik · · · xi1) = sh∗(xik) · · · sh∗(xi1)

and

cat∗(1) = 1⊗ 1

cat∗(xi1) = xi ⊗ 1 + 1⊗ xi1

cat∗(xi1xi2) = xi1xi2 ⊗ 1 + xi1 ⊗ xi2 + 1⊗ xi1xi2
...

cat∗(xi1 · · · xik) = xi1 · · · xik ⊗ 1 + 1⊗ xi1 · · · xik+
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k−1∑

j=1

xi1 · · · xij ⊗ xij+1 · · · xik ,

where 1 denotes the unit polynomial 1∅. Note that this last identity
above can be written in the inductive form

cat∗(xiη) = (xi ⊗ 1)cat∗(η) + 1⊗ xiη

(see Problem 2.5.2).

The next theorem states the desired duality in terms of R-algebra
homomorphisms.4

Theorem 2.6 The adjoint map sh∗ is an R-algebra homomorphism
for the catenation product cat, and the adjoint map cat∗ is an R-algebra
homomorphism for the shuffle product sh. Specifically, this means that

sh∗(pq) = sh∗(p) sh∗(q) (2.18)

cat∗(p ⊔⊔ q) = cat∗(p) ⊔⊔ cat∗(q) (2.19)

for all p, q ∈ R〈X〉.

Proof: It is shown that sh∗ is an R-algebra homomorphism for the
catenation product by first showing via induction that for all k ≥ 1
and xij ∈ X

sh∗(xik · · · xi1) = (xik ⊗ 1 + 1⊗ xik)sh∗(xik−1
· · · xi1)

= sh∗(xik)sh∗(xik−1
· · · xi1). (2.20)

In which case, as indicated in the previous example,

sh∗(xik · · · xi1) = sh∗(xik) · · · sh∗(xi1).

Therefore, (2.18) holds for all words since the identity clearly holds if
one or both words are empty. The k = 1 case is trivial. If the claim
holds for some fixed k ≥ 1 then it follows that

sh∗(xik+1
xik · · · xi1) =

∑

ξ,ν∈X∗

(xik+1
xik · · · xi1 , ξ ⊔⊔ ν) ξ ⊗ ν

4 This concept will be defined more precisely in Definition 2.13.
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=
∑

ξ,ν∈X∗

(xik · · · xi1 , x−1ik+1
(ξ ⊔⊔ ν)) ξ ⊗ ν

=
∑

ξ,ν∈X∗

[(xik · · · xi1 , x−1ik+1
(ξ) ⊔⊔ ν)+

(xik · · · xi1 , ξ ⊔⊔ x−1ik+1
(ν))] ξ ⊗ ν

=
∑

ξ,ν∈X∗

(xik · · · xi1 , ξ ⊔⊔ ν) (xik+1
ξ) ⊗ ν+

∑

ξ,ν∈X∗

(xik · · · xi1 , ξ ⊔⊔ ν) ξ ⊗ (xik+1
ν)

= (xik+1
⊗ 1) sh∗(xik · · · xi1)+

(1⊗ xik+1
) sh∗(xik · · · xi1)

= sh∗(xik+1
) sh∗(xik · · · xi1).

Thus, one must conclude that (2.20) holds for all k ≥ 1. Finally, by
linearity, sh∗(pq) = sh∗(p) sh∗(q) for all p, q ∈ R〈X〉.

Next it is shown that cat∗ is a shuffle algebra homomorphism. For
any η, η′ ∈ X∗, equation (2.16) and the above result imply that

sh∗(ηη′) =
∑

ξ,ν∈X∗

(ηη′, ξ ⊔⊔ ν) ξ ⊗ ν (2.21)

=


 ∑

ξ,ν∈X∗

(η, ξ ⊔⊔ ν) ξ ⊗ ν


 ·


 ∑

ξ′,ν′∈X∗

(η′, ξ′ ⊔⊔ ν ′) ξ′ ⊗ ν ′




=
∑

ξ,ν,ξ′,ν′∈X∗

(η, ξ ⊔⊔ ν)(η′, ξ′ ⊔⊔ ν ′) ξξ′ ⊗ νν ′. (2.22)

Taking the scalar product of the right-hand sides of equations (2.21)
and (2.22) with ξ̄ ⊗ ν̄ gives

(ηη′, ξ̄ ⊔⊔ ν̄) =
∑

ξ,ν,ξ′,ν′∈X∗

(η, ξ ⊔⊔ ν)(η′, ξ′ ⊔⊔ ν ′)(ξ̄, ξξ′)(ν̄, νν ′).

This identity, combined with (2.17), produces the following:

cat∗(ξ̄ ⊔⊔ ν̄) =
∑

η,η′∈X∗

(ξ̄ ⊔⊔ ν̄, ηη′) η ⊗ η′

=
∑

ξ,η,ν,ξ′,η′,ν′∈X∗

(η, ξ ⊔⊔ ν)(η′, ξ′ ⊔⊔ ν ′)(ξ̄, ξξ′)(ν̄ , νν ′) η ⊗ η′
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=
∑

ξ,ν,ξ′,ν′∈X∗

(ξ̄, ξξ′)(ν̄, νν ′)·

∑

η∈X∗

(η, ξ ⊔⊔ ν) η


 ⊗


 ∑

η′∈X∗

(η′, ξ′ ⊔⊔ ν ′) η′




=
∑

ξ,ν,ξ′,ν′∈X∗

(ξ̄, ξξ′)(ν̄, νν ′) (ξ ⊔⊔ ν) ⊗ (ξ′ ⊔⊔ ν ′)

=


 ∑

ξ,ξ′∈X∗

(ξ̄, ξξ′) ξ ⊗ ξ′


 ⊔⊔


 ∑

ν,ν′∈X∗

(ν̄, νν ′) ν ⊗ ν ′




= cat∗(ξ̄) ⊔⊔ cat∗(ν̄).

Again by linearity, this last equality holds for all p, q ∈ R〈X〉.

This basic duality theory can be generalized in several useful ways.
First consider the tensor product space

R〈X〉⊗k := R〈X〉 ⊗ R〈X〉 ⊗ · · · ⊗ R〈X〉,

where R〈X〉 appears k ≥ 1 times on the right-hand side. Define the
k-shuffle product

shk : R〈X〉⊗k → R〈X〉,
p1 ⊗ p2 ⊗ · · · ⊗ pk 7→ p1 ⊔⊔ p2 ⊔⊔ · · · ⊔⊔ pk.

A straight forward generalization of Theorem 2.6 gives

sh∗k(q1q2 · · · qℓ) = sh∗k(q1)sh∗k(q2) · · · sh∗k(qℓ),

where sh∗k(·) satisfies

(p1 ⊔⊔ p2 ⊔⊔ · · · ⊔⊔ pk, q) = (p1 ⊗ p2 · · · ⊗ pk, sh
∗
k(q)), (2.23)

and, in particular,

sh∗k(xi) = xi ⊗ 1⊗ · · · ⊗ 1 + 1⊗ xi ⊗ · · · ⊗ 1 + · · · + 1⊗ 1⊗ · · · ⊗ xi.

This latter identity is written more compactly as

sh∗k(xi) =

k∑

j=1

x⊗ji ,
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where

x⊗ji :=

k terms︷ ︸︸ ︷
1⊗ · · · ⊗ xi︸ ︷︷ ︸
j-th position

⊗ · · · ⊗ 1 .

One can also generalize the various scalar products discussed above
to at least partially admit power series and not just polynomials. For
example, given any c, d ∈ R〈〈X〉〉 and p, q ∈ R〈X〉, define

(c, p) =
∑

η∈X∗

(c, η)(p, η)

(c⊗ d, p ⊗ q) =
∑

η,η′∈X∗

(c⊗ d, η ⊗ η′)(p ⊗ q, η ⊗ η′)

=
∑

η,η′∈X∗

(c, η)(d, η′)(p, η)(q, η′)

= (c, p)(d, q).

Since each summation above is finite, there are no convergence issues
to consider, as would be the case if one tried to define a scalar prod-
uct on R〈〈X〉〉 × R〈〈X〉〉. In this context, all of the results presented
so far extend in the expected manner and, in fact, can be combined
with the shuffle product generalization above. A particularly impor-
tant example of this, which is used in Chapter 5, is the generalization
of identity (2.23):

(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, q) = (c1 ⊗ c2 ⊗ · · · ⊗ ck, sh
∗
k(q)), (2.24)

where ci ∈ R〈〈X〉〉 for i = 1, 2, . . . , k and q ∈ R〈X〉.

2.6 Hopf Algebras

The catenation-shuffle product duality described in the previous sec-
tion is just part of a larger algebraic picture, one involving Hopf al-
gebras. So this perspective is presented in this section. The starting
point is the standard definition of a Hopf algebra, which at first glance
seems like a rather complex mathematical object. It will then be shown
that the catenation-shuffle product duality provides two Hopf algebras,
which not unexpectedly are duals of each other in a certain sense. Next,
a canonical construction of a Hopf algebra from a group is described.
The Faà di Bruno Hopf algebra is presented as a specific example of
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(b) Unitary property

Fig. 2.4. Defining properties of an R-algebra (A,µ, σ).

this construction. This particular algebra is important as it strongly
motivates the synthesis of a second Hopf algebra which plays a central
role in the analysis of feedback systems. The latter will be presented
in Chapter 3.

First consider what it means for a set A to be a unital associative
R-algebra. Let A be an R-vector space with two R-linear maps

µ : A⊗A→ A,

and
σ : R→ A,

which satisfy the associative and unitary properties, respectively, as
described by the commutative diagrams in Figure 2.4.5 Here id is the
identity map on A, αℓ : k⊗ a 7→ ka, and αr : a⊗ k 7→ ak, where k ∈ R
and a ∈ A. Therefore, R⊗A and A⊗R are each canonically identified
with A. These diagrams are equivalent to, respectively, the identities

(ab)c = a(bc), a, b, c ∈ A
1a = a = a1, a ∈ A,

where ab := µ(a⊗ b) and 1 := σ(1) is the unit of A. Traditionally, µ is
called the multiplication map, and σ is called the unit map. The triple
(A,µ, σ) is a unital associative algebra. The algebra A is said to be
commutative when ab = ba. The corresponding commutative diagram
is shown in Figure 2.5(a), where τ : a⊗ b 7→ b⊗ a for any a, b ∈ A.

Next suppose there exist two R-linear maps

∆ : A→ A⊗A,

5 It is more traditional to use m and u for the multiplication and unit maps,
respectively. But these symbols clash with their use in system theory.
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Fig. 2.5. Defining the commutative and cocommutative properties.

and
ǫ : A→ R

which satisfy the coassociative and counitary properties, respectively,
as illustrated in Figure 2.6. These commutative diagrams are the same
as the ones depicted in Figure 2.4 except that the directions of the
arrows have been reversed. In this case, ∆ is called the comultiplication
map, and ǫ is the counit map. Here βℓ : a→ 1⊗a and βr : a→ a⊗1 for
a ∈ A. These diagrams are equivalent, respectively, to the identities

(id ⊗∆) ◦∆ = (∆ ⊗ id) ◦∆
(ǫ⊗ id) ◦∆ ∼ (id ⊗ ǫ) ◦∆,

where ∼ denotes the canonical equivalence between R⊗A and A⊗R.
The triple (A,∆, ǫ) is called a counital coassociative coalgebra. A com-
mon notation known as Sweedler’s notation is useful for representing
coproducts in a calculation. It has several variations, for example,

∆(a) =
∑

(a)

a(1) ⊗ a(2) =
∑

a(1) ⊗ a(2) = a(1) ⊗ a(2),

depending on the level of brevity desired. They all represent the sum
of all possible pieces of a ∈ A generated by applying the coproduct ∆.
A coalgebra is said to be cocommutative when τ ◦∆ = ∆ as shown in
Figure 2.5(b).

Consider now the following definition.

Definition 2.13 A homomorphism between RRR-algebras (A1, µ1,
σ1) and (A2, µ2, σ2) is any R-linear map ψ : A1 → A2 such that

ψ ◦ µ1 = µ2 ◦ (ψ ⊗ ψ)

ψ ◦ σ1 = σ2.
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Fig. 2.6. Defining properties of an R-coalgebra (A,∆, ǫ).

An analogous definition can be given for a homomorphism between
two R-coalgebras. Using either concept, one can produce the notion of
a bialgebra as described next.

Definition 2.14 The five-tuple (A,µ, σ,∆, ǫ) is called anRRR-bialgebra
when ∆ and ǫ are both R-algebra homomorphisms.

Specifically this means that the mapping ∆ : A → A ⊗ A must
be an R-algebra homomorphism between the R-algebras (A,µ, σ) and
(A⊗A,µA⊗A, σA⊗A), where 6

µA⊗A : (A⊗A) ⊗ (A⊗A) → A⊗A,

(a1 ⊗ a2) ⊗ (a3 ⊗ a4) 7→ µ(a1 ⊗ a3) ⊗ µ(a2 ⊗ a4)

σA⊗A : R⊗ R→ A⊗A,

k1 ⊗ k2 7→ σ(k1) ⊗ σ(k2).

In which case, it follows directly that

1. ∆ ◦ µ = µA⊗A ◦ (∆⊗∆) = (µ ⊗ µ) ◦ (id ⊗ τ ⊗ id) ◦ (∆⊗∆)
2. ∆ ◦ σ = σA⊗A = σ ⊗ σ

(see Problem 2.6.1). Similarly, ǫ : A→ R must be an R-algebra homo-
morphism between the R-algebras (A,µ, σ) and (R, µR, σR). Therefore,

3. ǫ ◦ µ = µR ◦ (ǫ⊗ ǫ) = ǫ · ǫ
4. ǫ ◦ σ = σR = 1.

Note that properties 1 and 2 can be expressed in terms of the commu-
tative diagrams shown in Figure 2.7, and, likewise, properties 3 and 4
are shown in Figure 2.8. They are often written in a more abbreviated
notation as:

1. ∆(aa′) = ∆(a)∆(a′), a, a′ ∈ A

6 In the definition of σA⊗A, R⊗ R is being identified with R via the mapping β.
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Fig. 2.7. Commutative diagrams describing ∆ as an R-algebra homomorphism.
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Fig. 2.8. Commutative diagrams describing ǫ as an R-algebra homomorphism.

2. ∆(1) = 1⊗ 1
3. ǫ(aa′) = ǫ(a)ǫ(a′), a, a′ ∈ A
4. ǫ ◦ σ(k) = k, k ∈ R.

If instead one introduces the notion of an R-coalgebra homomorphism
as suggested above, then an equivalent characterization of a bialgebra
is one where µ and σ are both R-coalgebra homomorphisms, yielding
properties 1 and 3, and properties 2 and 4, respectively. That exercise
is left to the reader.

To complete the development of the Hopf algebra definition, con-
sider the set of all R-linear maps taking vector space A back to itself,
denoted by End(A).7 Given two arbitrary f, g ∈ End(A), the Hopf
convolution product,

7 Such maps are called endomorphisms on vector space A.
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f ⋆ g := µ ◦ (f ⊗ g) ◦∆,

defines another element of End(A). The following theorem is central
to the theory

Theorem 2.7 The triple (End(A), ⋆, ϑ) forms an associative R-algebra
with unit ϑ = σ ◦ ǫ.
Proof: The associativity of the convolution product follows directly
from the associativity of µ and the coassociativity of ∆:

f ⋆ (g ⋆ h) = µ ◦ (f ⊗ (g ⋆ h)) ◦∆
= µ ◦ (f ⊗ (µ ◦ (g ⊗ h) ◦∆)) ◦∆
= µ ◦ ((id ⊗ µ)(f ⊗ (g ⊗ h))(id ⊗∆)) ◦∆
= µ ◦ ((µ⊗ id)((f ⊗ g) ⊗ h))(∆ ⊗ id)) ◦∆
= µ ◦ ((µ ◦ (f ⊗ g) ◦∆) ⊗ h) ◦∆
= µ ◦ ((f ⋆ g) ⊗ h) ◦∆
= (f ⋆ g) ⋆ h.

To show that ϑ is the convolution unit, it is necessary to use the counit
identity (id ⊗ ǫ) ◦∆ = id ⊗ 1 (see Figure 2.6(b)). Observe that

f ⋆ ϑ = µ ◦ (f ⊗ (σ ◦ ǫ)) ◦∆
= µ ◦ ((id ⊗ σ)(f ⊗ 1)(id ⊗ ǫ)) ◦∆
= µ ◦ ((id ⊗ σ)(f ⊗ 1)(id ⊗ 1)).

Thus, for any a ∈ A

(f ⋆ ϑ)(a) = µ((id ⊗ σ)(f ⊗ 1)(a⊗ 1))

= µ(f(a) ⊗ 1)

= f(a)1

= f(a).

Likewise, ϑ ⋆ f = f .

Finally, an element S ∈ End(A) satisfying

S ⋆ id = id ⋆ S = ϑ. (2.25)

is called an antipode of the bialgebra. The corresponding commutative
diagram is shown in Figure 2.9. Equation (2.25) implies that S is the
convolution inverse of id, so formally
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Fig. 2.9. Commutative diagram describing the antipode, S.

S = id⋆−1 = (ϑ− (ϑ− id))⋆−1 = ϑ+

∞∑

k=1

(ϑ− id)⋆k. (2.26)

It can be shown that when an antipode exists, it must be unique. It also
follows that S(1) = 1 and S(aa′) = S(a′)S(a) for any a, a′ ∈ A (see
Problem 2.6.3). This final bit of structure culminates in the definition
below.

Definition 2.15 The six-tuple (A,µ, σ,∆, ǫ, S) is an RRR-Hopf alge-

bra if it is an R-bialgebra with an antipode.

Two R-Hopf algebras can be introduced on R〈X〉, one associated
with the catenation product and the other with the shuffle product.
They are duals of each other in the sense described by Theorem 2.6.
First, the relevant R-bialgebras are described.

Theorem 2.8 (R〈X〉, cat, σ, sh∗, ǫ) is a noncommutative cocommuta-
tive R-bialgebra, where

σ : R→ R〈X〉, k 7→ k1

ǫ : R〈X〉 → R, p 7→ (p, ∅).

Likewise, (R〈X〉, sh, σ, cat∗, ǫ) is a commutative noncocommutative R-
bialgebra.

Proof: The defining properties are easy to check. As an example, con-
sider the bialgebra (R〈X〉, cat, σ, sh∗, ǫ). Here it is necessary to verify
that sh∗ and ǫ are R-algebra homomorphisms. Specifically, this means
that the following identities must be satisfied:

1. sh∗ ◦ cat = (cat ⊗ cat) ◦ (id ⊗ τ ⊗ id) ◦ (sh∗ ⊗ sh∗)
2. sh∗ ◦ σ = σ ⊗ σ
3. ǫ ◦ cat = ǫ · ǫ
4. ǫ ◦ σ = 1,
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where

cat : p⊗ q → pq

sh∗ : r →
∑

ξ,ν∈X∗

(r, ξ ⊔⊔ ν) ξ ⊗ ν.

The details of each calculation are presented below.

1. On the left-hand side, using Theorem 2.6, observe that

sh∗(cat(p⊗ q)) = sh∗(pq) = sh∗(p) sh∗(q)

=
∑

ξ,ν∈X∗

(p, ξ ⊔⊔ ν) ξ ⊗ ν
∑

ξ′,ν′∈X∗

(q, ξ′ ⊔⊔ ν ′) ξ′ ⊗ ν ′

=
∑

ξ,ν,ξ′,ν′∈X∗

(p, ξ ⊔⊔ ν)(q, ξ′ ⊔⊔ ν ′) ξξ′ ⊗ νν ′.

While on the right-side, one has

(cat ⊗ cat) ◦ (id ⊗ τ ⊗ id) ◦ (sh∗ ⊗ sh∗)(p ⊗ q)

= (cat ⊗ cat) ◦ (id ⊗ τ ⊗ id)(sh∗(p) ⊗ sh∗(q))

= (cat ⊗ cat) ◦ (id ⊗ τ ⊗ id)


 ∑

ξ,ν,ξ′,ν′∈X∗

(p, ξ ⊔⊔ ν)(q, ξ′ ⊔⊔ ν ′)

ξ ⊗ ν ⊗ ξ′ ⊗ ν ′




= (cat ⊗ cat)


 ∑

ξ,ν,ξ′,ν′∈X∗

(p, ξ ⊔⊔ ν)(q, ξ′ ⊔⊔ ν ′) ·

ξ ⊗ ξ′ ⊗ ν ⊗ ν ′




=
∑

ξ,ν,ξ′,ν′∈X∗

(p, ξ ⊔⊔ ν)(q, ξ′ ⊔⊔ ν ′) ξξ′ ⊗ νν ′.

Hence, the first identity is satisfied.
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2. Here the left-hand side evaluates to

(sh∗ ◦ σ)(k) = sh∗(k1)

=
∑

ξ,ν∈X∗

(k1, ξ ⊔⊔ ν) ξ ⊗ ν = k(1⊗ 1) = k1⊗ 1.

As expected, the right-hand side gives

(σ ⊗ σ)(k ⊗ 1) = σ(k) ⊗ σ(1) = k1⊗ 1.

3. In this case, the left-hand side is

(ǫ ◦ cat)(p ⊗ q) = ǫ(pq) = (pq, ∅) = (p, ∅)(q, ∅).

While the right-hand side is

(ǫ · ǫ)(p, q) = ǫ(p)ǫ(q) = (p, ∅)(q, ∅).

4. This identity is especially simple. Observe

(ǫ ◦ σ)(k) = ǫ(k1) = k.

It is obvious that the algebra (R〈X〉, cat, σ) is not commutative. To
see that (R〈X〉, sh∗, ǫ) is cocommutative observe from (2.16) that for
any r ∈ R〈X〉 that

τ ◦ sh∗(r) = τ


 ∑

ξ,ν∈X∗

(r, ξ ⊔⊔ ν) ξ ⊗ ν




=
∑

ξ,ν∈X∗

(r, ξ ⊔⊔ ν) ν ⊗ ξ

=
∑

ξ,ν∈X∗

(r, ν ⊔⊔ ξ) ν ⊗ ξ

= sh∗(r).

The analogous arguments regarding the bialgebra (R〈X〉, sh, ǫ,
cat∗, σ) are left to the reader to verify.

Next, the corresponding Hopf algebras are described.
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Theorem 2.9 (R〈X〉, cat, σ, sh∗, ǫ, S) is a noncommutative cocommu-
tative R-Hopf algebra, where the convolution product on End(R〈X〉) is
defined by

f ⋆ g : R〈X〉 → R〈X〉,
p 7→

∑

η,ξ∈X∗

(p, η ⊔⊔ ξ) f(η)g(ξ),

and S is the unique R-linear map satisfying

S(xi1xi2 · · · xik) = (−1)kxikxik−1
· · · xi1

for every xi1xi2 · · · xik ∈ X∗. Likewise, (R〈X〉, sh, σ, cat∗, ǫ, S) is a
commutative noncocommutative R-Hopf algebra, where the convolution
product on End(R〈X〉) is defined by

f ⋆′ g : R〈X〉 → R〈X〉,
p 7→

∑

η,ξ∈X∗

(p, ηξ) f(η) ⊔⊔ g(ξ),

and S is as above.

Proof: Regarding the first claim, it is first necessary to verify that

f ⋆ g := (cat ◦ (f ⊗ g) ◦ sh∗)(p) =
∑

η,ξ∈X∗

(p, η ⊔⊔ ξ) f(η)g(ξ).

Recalling that

sh∗(p) =
∑

η,ξ∈X∗

(p, η ⊔⊔ ξ) η ⊗ ξ,

it follows directly that

((f ⊗ g) ◦ sh∗)(p) =
∑

η,ξ∈X∗

(p, η ⊔⊔ ξ) f(η) ⊗ g(ξ).

Whereupon the desired equality follows immediately. The only remain-
ing task is to verify that I ⋆ S = S ⋆ I = σ ◦ ǫ. Since in this case,
(σ ◦ ǫ)(p) = (p, ∅)1, ∀p ∈ R〈X〉, and, for example, I ⋆ S is R-linear, it
is sufficient to show that

(I ⋆ S)(1) = 1, (I ⋆ S)(ν) = 0, ∀ν ∈ X+.
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The first identity is trivial. The second identity follows from induction.
Observe that any xi ∈ X

(I ⋆ S)(xi) =
∑

η,ξ∈X∗

(xi, η ⊔⊔ ξ) η(−1)|ξ|ξ̃

= xi(−1)01 + 1(−1)1xi

= 0,

where ξ̃ denotes ξ with the letters written in reverse order. Now assume
the identity holds for all words up to some fixed length k ≥ 0. Then
for any xi ∈ X and ν ∈ Xk

(I ⋆ S)(xiν) =
∑

η,ξ∈X∗

(xiν, η ⊔⊔ ξ) η(−1)|ξ|ξ̃

=
∑

η,ξ∈X∗

(ν, x−1i (η ⊔⊔ ξ)) η(−1)|ξ|ξ̃

=
∑

η,ξ∈X∗

(ν, x−1i (η) ⊔⊔ ξ) η(−1)|ξ|ξ̃+

∑

η,ξ∈X∗

(ν, η ⊔⊔ x−1i (ξ)) η(−1)|ξ|ξ̃

= xi


 ∑

η,ξ∈X∗

(ν, η ⊔⊔ ξ) η(−1)|ξ|ξ̃


−


 ∑

η,ξ∈X∗

(ν, η ⊔⊔ ξ) η(−1)|ξ|ξ̃


xi

= xi (I ⋆ S)(ν) − (I ⋆ S)(ν)xi

= 0.

The claim regarding the second Hopf algebra is left to the reader. The
identity from Problem 2.4.3(d) is useful in this case.

The following lemma provides an interesting interpretation of the
antipode in the context of iterated integrals defined for m functions
which are absolutely integrable over [0, T ], denoted here by Lm1 [0, T ]
This identity will reappear later in Section 5.4 when Chen series are
introduced.
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Lemma 2.4 Let X = {x1, x2, . . . , xm}. For any given u ∈ Lm1 [0, T ]
and fixed t ∈ [0, T ] define the input function uS,i(τ) = −ui(t − τ) on
[0, t] for i = 1, 2, . . . ,m. Then for any η ∈ X∗ it follows that

ES(η)[u](t, 0) = Eη [uS ](t, 0).

Proof: The claim is trivial when η = ∅. In the case where η =
xikxik−1

· · · xi1 , observe:

ES(xikxik−1
···xi1)

[u](t, 0) = (−1)kExi1xi2 ···xik [u](t, 0)

= (−1)k
∫ t

0

∫ τ1

0
· · ·
∫ τk−1

0
ui1(τ1)ui2(τ2) · · ·

uik(τk) dτkdτk−1 · · · dτ1

= (−1)k
∫ t

0
· · ·
∫ t

0
ui1(τ1) · · · uik(τk)

U(τ1 − τ2) · · ·U(τk−1 − τk) dτk · · · dτ1,

where U denotes the unit step function

U(t) =

{
1 : t ≥ 0
0 : t < 0.

Interchanging the order of integration gives

ES(η)[u](t, 0) = (−1)k
∫ t

0

∫ t

τk

· · ·
∫ t

τ2

ui1(τ1)ui2(τ2) · · ·

uik(τk) dτ1dτ2 · · · dτk.

Finally, substituting t− τ1 for τ1 followed by t− τ2 for τ2, etc., yields
the desired result, namely,

ES(η)[u](t, 0) =

∫ t

0

∫ τk

0
· · ·
∫ τ2

0
(−ui1(t− τ1))(−ui2(t− τ2)) · · ·

(−uik(t− τk)) dτ1dτ2 · · · dτk
= Eη[uS ](t, 0).

In some cases it is possible to introduce additional structure on a
bialgebra A to guarantee that it has a well-defined antipode, and thus
is a Hopf algebra. The following definitions are essential in this regard.
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Definition 2.16 An R-bialgebra (A,µ, σ,∆, ǫ) is filtered if there ex-
ists a nested sequence of R-vector subspaces of A, say A(0)  A(1)  

· · · , such that A = ∪n≥0A(n) and

∆A(n) ⊆
n∑

i=0

A(i) ⊗A(n−i).

The collection {A(n)}n≥0 is called a filtration of A.

Definition 2.17 An R-bialgebra that is filtered such that A(0) = σ(R)
is said to be connected.

Definition 2.18 An R-bialgebra is graded if there exists a set of R-
vector subspaces of A, say {An}n≥0, such that A = ⊕n≥0An with

AiAj ⊆ Ai+j, ∆An ⊆
n⊕

i=0

Ai ⊗An−i,

and ǫ(An) = 0, n > 0.

Definition 2.19 Let A be an R-bialgebra. An element g ∈ A is
group-like if ǫ(g) = 1 and ∆g = g⊗g. If A has only one group-like el-
ement, then any other element a ∈ A is primitive if ∆a = a⊗g+g⊗a.

A number of useful results follow from these definitions. For ex-
ample, if A has a grading {An}n≥0, then a natural filtration of A is
{A(n)}n≥0, where

A(n) =

n⊕

i=0

Ai.

Furthermore, if A0 = σ(R) then A has only one group-like element.
Perhaps the most important aspect concerning a connected bialgebra
is a key property of its coalgebra. If

A+ := ker ǫ, A+
(n) := A+ ∩A(n) (2.27)

then for any a ∈ A+
(n) it follows that

∆a = a⊗ 1 + 1⊗ a+∆′a, (2.28)

where the reduced coproduct ∆′a ∈ A+
(n−1) ⊗ A+

(n−1) (see Prob-

lem 2.6.4). This leads to the following central result.
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Theorem 2.10 Let (A,µ, σ,∆, ǫ) be a connected R-bialgebra. Then
(A,µ, σ,∆, ǫ, S) is an R-Hopf algebra, where the antipode is given on
A+ by

Sa = −a−
∑

(Sa′(1))a
′
(2), (2.29)

or alternatively,

Sa = −a−
∑

a′(1)Sa
′
(2) (2.30)

with ∆′a =
∑
a′(1) ⊗ a′(2) being the reduced coproduct in Sweedler’s

notation.

Proof: It is first shown by induction that if a ∈ A+
(n) then the series

representation (2.25) for Sa is finite, specifically,

Sa =

[
ϑ+

n∑

k=1

(ϑ− id)⋆k

]
(a).

Therefore, since antipodes are unique, this must be the antipode for
all of A. The claim clearly holds when a ∈ A(0) since (ϑ− id)1 = 0. If

a ∈ A+
1 observe that for any k ≥ 2

(ϑ− id)⋆k(a) = [(ϑ− id) ⋆ (ϑ − id)⋆k−1](a)

= µ[(ϑ− id) ⊗ (ϑ − id)⋆k−1]∆a

= µ[(ϑ− id) ⊗ (ϑ − id)⋆k−1](a⊗ 1 + 1⊗ a)

= 0

since again (ϑ − id)1 = 0. Now assume the claim holds up to some
fixed n ≥ 1. If a ∈ A+

(n+1) then

(ϑ− id)⋆n+1(a) = µ[(ϑ− id) ⊗ (ϑ − id)⋆n](a⊗ 1 + 1⊗ a+∆′a)

= µ[(ϑ− id) ⊗ (ϑ − id)⋆n]∆′a

= 0,

where the induction hypothesis was used to arrive at the final equality.
Therefore, the result holds for all n ≥ 0.

Having established that the bialgebra is a Hopf algebra, it is shown
next that S has the recursive forms given in (2.29) and (2.30). The
focus will be on the first formula, the other one follows similarly. The
case where a ∈ A+

(1) is trivial. Assume the identity in question hold up

to some fixed n ≥ 1. Then for a ∈ A+
n+1 observe
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Sa = (ϑ− id)a+

n∑

k=1

(ϑ− id)⋆k ⋆ (ϑ− id)a

= −a+ µ

(
n∑

k=1

(ϑ− id)⋆k ⊗ (ϑ − id)

)
∆a

= −a+ µ

(
n∑

k=1

(ϑ− id)⋆k ⊗ (ϑ − id)

)
∑

a′(1) ⊗ a′(2)

= −a+
∑

[
n∑

k=1

(ϑ− id)⋆ka′(1)

]
(ϑ − id)a′(2)

= −a−
∑

[
n∑

k=1

(ϑ− id)⋆ka′(1)

]
a′(2)

= −a−
∑

S(a′(1))a
′
(2),

where the induction hypothesis is employed to get the last equality.
This proves the final part of the theorem.

One way that Hopf algebras naturally arise is in the context of
groups. Suppose V is a finite dimensional vector space over R. Let
GL(V ) denote the general linear group on V , namely, the group of all
invertible R-linear maps taking V back to itself. A group G with unit
1G is said to have a representation if there exists a group homomor-
phism π : G→ GL(V ), that is,

π(gg′) = π(g)π(g′), ∀g, g′ ∈ G. (2.31)

The representation is faithful if π is injective. Given some fixed basis
for V , A = π(g) is an invertible matrix with real coefficients. In which
case, there exists a set of coordinate functions of the form aij : G→ R.
This collection of functions, R(G), forms a commutative algebra under
pointwise defined operation

(aijakl)(g) := aij(g)akl(g), ∀g ∈ G.

From (2.31) and the definition of matrix multiplication there is a well
defined coproduct

∆ : R(G) → R(G) ⊗R(G), aij 7→
∑

k

aik ⊗ akj.
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It can be shown that R(G) constitutes a commutative R-Hopf algebra,
H, where the unit, counit, and antipode maps are given, respectively,
by σ(1) = 1 with 1(g) = 1, ∀g ∈ G, ǫ(aij) = aij(1G), and

(Saij)(g) = aij(g
−1), ∀g ∈ G. (2.32)

For any g ∈ G one can define an R-linear map Φg : H → R via

Φg : aij 7→ aij(g),

and Φg(1) = 1 so that

Φg(aijakl) = aij(g)akl(g) = Φg(aij)Φg(akl).

These are usually called the characters of the Hopf algebra, and they
form a group under the Hopf convolution product. Specifically, the
group product satisfies

(Φg1 ⋆ Φg2)(aij) = µ ◦ (Φg1 ⊗ Φg2) ◦∆aij
=
∑

k

Φg1 (aik)Φg2 (akj)

=
∑

k

aik(g1)akj(g2)

= aij(g1g2)

= Φg1g2(aij). (2.33)

The identity element of the group is Φ1G . In addition, from (2.32)

Φg−1(aij) = aij(g
−1) = (Saij)(g)

= (Φg ◦ S)(aij) =: Φ⋆−1g (aij). (2.34)

In which case, the bijective map ψ : g 7→ Φg is a group isomorphism
between G and the character group.

A specific example of this construction is the Faà di Bruno Hopf
algebra. The name refers to the well known Faà di Bruno formula from
calculus which describes the composition of two functions in terms of
their Taylor series. Let fc and fd be two functions with convergent
Taylor series about the point z = 0 having the property that fc(0) = 0
and fd(0) = 0. In which case,

fc(z) =

n∑

n=1

c(n)
zn

n!
, fd(z) =

n∑

n=1

d(n)
zn

n!
. (2.35)
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It is further assumed that these functions are normalized in the sense
that c(1) = d(1) = 1. It is easy to show that the composition fc◦d :=
fc ◦ fd has the same nature as fc and fd, namely, it has a convergent
Taylor series representation

fc◦d(z) =
∞∑

n=1

(c ◦ d)(n)
zn

n!

for some set of coefficients (c ◦ d)(n) ∈ R, n ≥ 1 with (c ◦ d)(1) = 1, as
does the composition inverse of any such function, for example, f−1c ,
where f−1c ◦ fc = fc ◦ f−1c = I with I(z) := z. In which case, this class
of functions forms a group GFdB under composition. The well known
Faà di Bruno formula provides the Taylor series coefficients of fc◦d,
specifically,

(c ◦ d)(n) =
n∑

k=1

c(k)

k!

∑

j

n!k!

j1!j2! · · · jn!

d(1)j1d(2)j2 · · · d(n)jn

(1!)j1(2!)j2 · · · (n!)jn
, (2.36)

where the second sum is over all j1, j2, . . . , jn ≥ 0 such that j1 + j2 +
· · · + jn = k and j1 + 2j2 + · · · + njn = n.

To construct the underlying Hopf algebra, first let Rp [[X]] be the
set of all proper series over the alphabet X = {x}. Now identify a
given Taylor series fc(z) =

∑
n≥1 c(n)zn/n! with its corresponding

formal power series c ∈ Rp [[X]]. Let c ◦ d denote the formal power
series corresponding to the function fc ◦ fd, where fc and fd are given
in (2.35). For any n ≥ 1 define the coordinate function

an : Rp [[X]] → R, c 7→ (c, xn) = c(n).

As described above, the set of these real-valued mappings defines an
R-vector space, H, and a commutative algebra where the product is
given by

µ : an ⊗ am 7→ anam

with unit a1 ∼ 1.8 Given that the underlying group representation
of GFdB associated with this Hopf algebra is not finite dimensional
(see Problem 2.6.5), Theorem 2.10 will be utilized to ensure that the
construction is successful. The degree of an is defined to be deg(an) =
n − 1, n ≥ 1, and deg(anam) = deg(an) + deg(am). Therefore, H =

8 Here 1 is the unit of a new algebra and should not be confused with the monomial
1∅ by the same name, which was the unit for the catenation and shuffle algebras.
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⊕n≥0Hn, where Hn denotes all elements of degree n, constitutes a
grading of H. Since H0 = R1, this grading is connected. The key idea
is that (2.36) can be used to define a coproduct on H:

∆an(c, d) = an(c ◦ d) = (c ◦ d, xn)

=
n∑

k=1

ak(c)

k!

∑

j

n!k!

j1!j2! · · · jn!

aj11 (d)aj22 (d) · · · ajnn (d)

(1!)j1(2!)j2 · · · (n!)jn

=

n∑

k=1

1

k!

∑

j

n!k!

j1!j2! · · · jn!

ak ⊗ aj11 a
j2
2 · · · ajnn

(1!)j1(2!)j2 · · · (n!)jn
(c, d).

For example, the first few coproducts ordered by degree are:

∆a1 = a1 ⊗ a1

∆a2 = a1 ⊗ a2 + a2 ⊗ a21

∆a3 = a1 ⊗ a3 + a2 ⊗ 3a1a2 + a3 ⊗ a31

∆a4 = a1 ⊗ a4 + a2 ⊗ (4a1a3 + 3a22) + a3 ⊗ 6a21a2 + a4 ⊗ a41
...

Thus, (H,µ, σ,∆, ǫ) forms a connected graded commutative noncocom-
mutiative bialgebra with σ(1) = 1, ǫ(an) = 0 for n > 1, and ǫ(1) = 1.
From Theorem 2.10 it follows that this bialgebra is a Hopf algebra. In
this case, the reduced coproduct is

∆′a2 = 0 ⊗ 0

∆′a3 = a2 ⊗ 3a2

∆′a4 = a2 ⊗ (4a3 + 3a22) + a3 ⊗ 6a2
...

and the antipode computed using (2.29) is:

Sa1 = a1 (2.37a)

Sa2 = −a2 (2.37b)

Sa3 = −a3 − S(a2)3a2 = −a3 + 3a22 (2.37c)

Sa4 = −a4 − S(a2)(4a3 + 3a22) − S(a3)6a2

= −a4 − (−a2)(4a3 + 3a22) − (−a3 + 3a22)6a2

= −a4 + 4a2a3 + 3a32 + 6a2a3 − 18a32
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= −a4 + 10a2a3 − 15a32 (2.37d)

...

Note, in particular, that in the Sa4 calculation above there is some
inter-term cancellation involving the monomial a32. If this calculation
is repeated using instead (2.30), one will observe that there is no such
cancellations ever (see Problem 2.6.6). In fact, it is known that the
number of inter-term cancellations increases dramatically with degree,
which from a computational point of view is wasteful. The cancella-
tion free right antipode formula (2.30) is known in the literature as a
Zimmermann formula. In addition, observe from (2.32) that

(San)(c) = an(c−1), n ≥ 1,

where c−1 ∈ R [[X]] denotes the generating series for f−1c , that is,
fc−1 = f−1c . In which case, the antipode of this Hopf algebra in affect
yields a recursive form of the Lagrange series inversion formula.

Example 2.23 Consider the function fc(z) = log(1 + z), where
fc(0) = 0 and f ′c(0) = 1. Then f−1c (z) = ez − 1 so that

fc(z) = z − z2

2!
+ 2

z3

3!
− 6

z4

4!
+ 24

z5

5!
+ · · ·

and

fc−1(z) = z +
z2

2!
+
z3

3!
+
z4

4!
+
z5

5!
+ · · ·

Observe that

a1(c−1) = a1(c) = 1

a2(c−1) = −a2(c) = −(−1) = 1

a3(c−1) = −a3(c) + 3a22(c) = −(2) + 3(−1)2 = 1

a4(c−1) = −a4(c) − 15a32(c) + 10a2(c)a3(c)

= −(−6) + 10(−1)(2) − 15(−1)3 = 1

...

as expected.
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Finally, recall that the set of characters {Φc : H → R : c ∈ Rp [[X]],
(c, x) = 1} forms a group under convolution. From (2.33)-(2.34) it
follows for n ≥ 1 that

(Φc ⋆ Φd)(an) = an(c ◦ d) = (c ◦ d, xn)

Φ⋆−1c (an) = (San)(c) = (c−1, xn).

Therefore, GFdB is isomorphic to the character group associated with
the Hopf algebra H.

2.7 Composition Products

Motivated by the final example in the previous section, a class of
formal power series products known as composition products is con-
sidered in this section. They all come from the same basic con-
struction process. involving two alphabet X = {x0, x1, . . . , xm} and

X̃ = {x̃0, x̃1, . . . , x̃m̃} and two formal power series c ∈ Rℓ̃〈〈X̃〉〉 and
d ∈ Rℓ〈〈X〉〉. Mathematically there is no need for any type of compati-
bility between the parameters m, ℓ, m̃ and ℓ̃. But in many applications
there generally is some kind of natural matching requirement such as
ℓ = m̃.

Definition 2.20 Fix two alphabets, X = {x0, x1, . . . , xm} and X̃ =
{x̃0, x̃1, . . . , x̃m̃}, and assume that R〈〈X〉〉 is an associative R-algebra
with product ✷ and multiplicative identity element 1. The associated
composition product is the binary operation

Rℓ̃〈〈X̃〉〉 × Rℓ〈〈X〉〉 → Rℓ̃〈〈X〉〉
(c, d) 7→ c ◦ d =

∑

η̃∈X̃∗

(c, η̃) η̃ ◦ d,

where η̃ ◦ d is the unique extension of

x̃i ◦ d = ρi(d), i = 0, 1, . . . , m̃

to X̃∗ given by

(x̃ik x̃ik−1
· · · x̃i1) ◦ d = ρik(d)✷ρik−1

(d)✷ · · ·✷ρi1(d)

with ρi : Rℓ〈〈X〉〉 → R〈〈X〉〉 such that ρi(∅) = 1, i = 0, 1, . . . , m̃ and
∅ ◦ d = 1.
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Composition products arise in many forms when systems are inter-
connected to produce new systems. Their particular form depends on
the nature of the systems involved. Whenever possible, the same no-
tation will be used, and the specific definition will be evident from the
context. It is easily verified that any composition product is R-linear
in its left argument, that is, for any real numbers α and β

(αc+ βd) ◦ e = α(c ◦ e) + β(d ◦ e),

but in general c ◦ (αd + βe) 6= α(c ◦ d) + β(c ◦ e) (see Problem 2.7.1).
Before tackling the more technical issues, such as the conditions under
which a composition product is well defined, some important examples
are introduced. These examples will appear frequently in later chapters
as they are all inspired by system interconnections.

Example 2.24 Suppose X = {x1, x2, . . . , xm}, X̃ = {x̃1, x̃2, . . . , x̃m̃},

c ∈ Rℓ̃〈〈X̃〉〉 and d ∈ Rm̃〈〈X〉〉. Note that number of components
series in d, namely m̃, is equal to the number of letters in X̃. Let
di denote the i-th component series of d, that is, (di, ξ) = (d, ξ)i for
every ξ ∈ X∗. Consider the composition product defined by letting
ρi(d) = di, i = 1, . . . , m̃, and

(x̃i1 x̃i2 · · · x̃ik︸ ︷︷ ︸
η̃

) ◦ d = di1di2 · · · dik =: dη̃.

In which case,

c ◦ d =
∑

η̃∈X̃∗

(c, η̃) dη̃ .

If the letters in X̃ commute, then the composition product is written
in the exponential form

c ◦ d =
∑

η̃∈X̃∗

(c, η̃)
dη̃

η̃!

(review Example 2.7). If, in addition, the letters in the alphabet X also
commute, then the power dη̃ is taken to be the multinomial catenation
power having coefficients

(dη̃ , η) =
∑

η1···ηk=η

(di1 , η1) · · · (dik , ηk)
η!

η1! · · · ηk!
, η ∈ X∗.
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This type of composition product describes function composition in
the sense described in the previous section, but in the multivariable
setting. That is, suppose U and V are two neighborhoods of the origin.
Let fc : U ⊂ Rm̃ → Rℓ̃ and fd : V ⊂ Rm → Rm̃ be real analytic
functions with fd(V ) ⊂ U and having Taylor series about z̃ = 0 and
z = 0,

fc(z̃1, z̃2, . . . , z̃m̃) =
∑

η̃∈X̃∗

(c, η̃)
z̃η̃

η̃!

fd(z1, z2, . . . , zm) =
∑

η∈X∗

(d, η)
zη

η!
,

respectively. Here c ∈ Rℓ̃ [[X̃ ]], and d ∈ Rm̃ [[X]] is assumed to be
proper, i.e., fd(0) = 0.9 The composite function fc ◦ fd corresponds to
setting z̃i = fd,i(z), i = 1, 2, . . . , m̃. By direct substitution observe

fc ◦ fd (z)

=
∑

η̃∈X̃∗

(c, η̃)
z̃η̃

η̃!

∣∣∣∣∣∣
z̃=fd(z)

=
∑

η̃∈X̃∗

(c, η̃)
fd,i1(z) · · · fd,ik(z)

η̃!

=
∑

η̃∈X̃∗

(c, η̃)
1

η̃!


 ∑

η1∈X∗

(di1 , η1)
zη1

η1!


 · · ·


 ∑

ηk∈X∗

(dik , ηk)
zηk

ηk!




=
∑

η̃∈X̃∗

(c, η̃)
1

η̃!


 ∑

η1,...,ηk∈X∗

(di1 , η1) · · · (dik , ηk)
zη1 · · · zηk
η1! · · · ηk!




=
∑

η̃∈X̃∗

(c, η̃)
1

η̃!


∑

η∈X∗

[
∑

η1···ηk=η

(di1 , η1) · · · (dik , ηk)
η!

η1! · · · ηk!

]
zη

η!




=
∑

η̃∈X̃∗

(c, η̃)
1

η̃!


∑

η∈X∗

(dη̃ , η)
zη

η!




9 Otherwise, it is more natural to write fc as a Taylor series about z̃0 = (d, ∅) so
that fc(z̃0) = (c, ∅), i.e., this value is not determined by an infinite sum.
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=
∑

η∈X∗


∑

η̃∈X̃∗

(c, η̃) (dη̃ , η)
1

η̃!


 z

η

η!

=
∑

η∈X∗

(c ◦ d, η)
zη

η!

= fc◦d(z).

In which case, fc ◦ fd = fc◦d. So the underlying composition product
for the commutative alphabets X and X̃ is that induced by function
composition.

Example 2.25 In this example, the situation is mixed. One alphabet
is commutative, while the other is not. Let X = {x0, x1, . . . , xm},
X̃ = {x̃1, x̃2, . . . , x̃m̃}, c ∈ Rℓ [[X̃ ]] and d ∈ Rm̃〈〈X〉〉. If ρi(d) = di,
i = 1, . . . , m̃, and

(x̃i1 x̃i2 · · · x̃ik︸ ︷︷ ︸
η̃

) ◦ d = di1 ⊔⊔ di2 ⊔⊔ · · · ⊔⊔ dik = d ⊔⊔ η̃

then

c ◦ d =
∑

η̃∈X̃∗

(c, η̃)
d ⊔⊔ η̃

η̃!
.

This type of composition product describes the interconnection of an
integral operator Ep ∈ E(R〈X〉), as described in Section 2.4, followed
by a function fc, specifically, fc ◦ Ep = Ec◦p. The composite system
will be called a Wiener-Fliess system in Chapter 3, where in general
the polynomial p can be replaced with a formal power series d to
produce a well defined map Fd. A special case of such compositions is
the class of state space systems considered in Chapter 6. In this case,
Fd will represent the solution to the state equation, and fc will be the
output function. So the mapping from input to output is given by the
composition fc ◦ Fd = Fc◦d.

Example 2.26 This example describes a type of composition product
involving only a single noncommutative alphabet, X = {x0, x1, . . . ,
xm}. Suppose c ∈ Rℓ〈〈X〉〉 and d ∈ Rm〈〈X〉〉. Define the family of
linear operators
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ψd(xi) : R〈〈X〉〉 → R〈〈X〉〉, e 7→ x0(di ⊔⊔ e), (2.38)

i = 0, 1, . . . ,m with d0 := 1. Extend the definition inductively to words
by letting

ψd(xixj) = ψd(xi) • ψd(xj),
where ‘•’ above denotes operator composition, and ψd(∅) := id. Since
this product is associative and R-bilinear, in effect ψd is a continu-
ous (in the ultrametric sense) algebra homomorphism mapping the
associative algebra (R〈〈X〉〉, cat,1) to the associative operator alge-
bra (End(R〈〈X〉〉), •, id). In this setting, define a formal power series
composition product by setting ρi(d) = ψd(xi)(1), i = 0, 1, . . . ,m, and

(xikxik−1
· · · xi1) ◦ d = ψd(xik) • ψd(xik−1

) • · · · • ψd(xi1)(1)

= ψd(xikxik−1
· · · xi1)(1).

Therefore,

c ◦ d =
∑

η∈X∗

(c, η) η ◦ d

=
∑

η∈X∗

(c, η)ψd(η)(1).

This type of composition product describes the composition of two
integral operators in the class E(R〈X〉). Namely, if Ep, Eq ∈ E(R〈X〉)
then Ep ◦ Eq = Ep◦q. For example,

(Ex1 ◦ Ex1)[u] = Ex1 [Ex1 [u]] = Ex0x1 [u],

and in fact

x1 ◦ x1 = ψx1(x1)(1) = x0(x1 ⊔⊔ 1) = x0x1.

A variation of this product, say c◦̃ d, uses the following linear operators

φd(xi) : R〈〈X〉〉 → R〈〈X〉〉, e 7→ xie+ x0(di ⊔⊔ e) (2.39)

for i = 0, 1, 2, . . . ,m with d0 := 0. For example, x1 ◦̃x1 = x1 + x0x1.
This product can be used to describe the feedback connection of two
integral operators. Both of these composition products will be further
developed and applied in Chapter 3.
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The well definedness of a composition product is considered next.
The following two theorems will cover all the examples described
above. The only difference in their assumptions is the inequalities in
their first item. If the inequality is the strict sense, then the composi-
tion product is always well defined. If not, then an additional condition
involving properness is needed.

Theorem 2.11 Consider a composition product defined by (ρ,✷,1),
where

1. ord(ρi(d)) > ord(d), i = 0, 1, . . . , m̃, d ∈ Rℓ〈〈X〉〉
2. ord(d✷d′) = ord(d) + ord(d′), d, d′ ∈ R〈〈X〉〉.
For any c ∈ Rℓ̃〈〈X̃〉〉 and d ∈ Rℓ〈〈X〉〉 the composition c ◦ d is a well

defined series in Rℓ̃〈〈X〉〉.

Proof: It suffices to show that the family of formal power series {η̃ ◦
d}η̃∈X̃∗ is locally finite, and hence, summable. For a fixed d ∈ Rℓ〈〈X〉〉
defined the integers ri = ord(ρi(d)) − ord(d) > 0, i = 0, 1, . . . , m̃, and
r = mini ri > 0. Then given any word η̃ ∈ X̃+:

ord(η̃ ◦ d) = ord(x̃ik x̃ik−1
· · · x̃i1︸ ︷︷ ︸

η̃

◦d)

= ord(ρik(d)✷ρik−1
(d)✷ · · ·✷ρi1(d))

=
k∑

j=1

ord(ρij (d))

=
k∑

j=1

ord(d) + rij

≥ |η̃| (ord(d) + r).

Since ord(d) + r ≥ 1, ord(η̃ ◦d) increases at least proportionally as the
length of η̃ is increased. So for a fixed ξ ∈ X∗ the set

Id(ξ) := {η̃ ∈ X̃∗ : (η̃ ◦ d, ξ) 6= 0}

must be finite since (η̃ ◦ d, ξ) = 0 when the length of η̃ is such that

|η̃| (ord(d) + r) > |ξ| .
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In which case, the family in question is locally finite.

Theorem 2.12 Consider a composition product defined by (ρ,✷,1),
where

1. ord(ρi(d)) ≥ ord(d), i = 0, 1, . . . , m̃, d ∈ Rℓ〈〈X〉〉
2. ord(d✷d′) = ord(d) + ord(d′), d, d′ ∈ R〈〈X〉〉.
For any c ∈ Rℓ̃〈〈X̃〉〉 and a proper d ∈ Rℓ〈〈X〉〉 the composition c ◦ d
is a well defined series in Rℓ̃〈〈X〉〉.

Proof: Following the same logic as in the proof of the previous theo-
rem, one can conclude here that

ord(η̃ ◦ d) ≥ |η̃| ord(d).

Since d is proper, ord(d) ≥ 1. In which case,

Id(ξ) = {η̃ ∈ X̃∗ : (η̃ ◦ d, ξ) 6= 0}

is finite since (η̃ ◦ d, ξ) = 0 when the length of η̃ is such that

|η̃| ord(d) > |ξ| .

This proves the theorem.

Example 2.27 Suppose ρi(d) = di, i = 1, 2, . . . , m̃ as in Exam-
ples 2.24 and 2.25. Clearly, ord(ρi(d)) = ord(di) ≥ ord(d) as required
by Theorem 2.12. Furthermore, the catenation product and shuffle
product both satisfy item 2 in Theorem 2.12 (see Lemma 2.2 in the
latter case). Therefore, the corresponding composition products are
well defined if d is proper.

Example 2.28 Consider the first composition product defined in Ex-
ample 2.26. From Lemma 2.2 it follows that for any e ∈ R〈〈X〉〉

ord(ψd(xi)(e)) = ord(di) + ord(e) + 1.

Therefore,

ord(ρi(d)) = ord(ψd(xi)(1)) = ord(di) + 1 > ord(d), i = 0, 1, . . . ,m.
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Furthermore,

ord(ψd(xi) • ψd(xj)(1)) = ord(x0(di ⊔⊔ (x0(dj ⊔⊔ 1))))

= ord(di) + 1 + ord(dj) + 1

= ord(ψd(xi)(1)) + ord(ψd(xj)(1)).

In which case, Theorem 2.11 applies, and the composition product c◦d
is well defined everywhere on Rℓ〈〈X〉〉 ×Rm〈〈X〉〉.

The next theorem gives conditions under which a composition prod-
uct is associative. Of course, this only makes sense if the composition
is defined for two series coming from the same underlying set. The
theorem is stated here under the simplifying assumption that all the
series are coming from R〈〈X〉〉 with X = {x0, x1}. It can be stated and
proved in a much more general setting, like that of Definition 2.20, but
this only complicates the notation while obscuring the fundamental
idea.

Theorem 2.13 Consider a composition product defined by (ρ,✷,1)
on R〈〈X〉〉 × R〈〈X〉〉 with X = {x0, x1}. If for every c, d, e ∈ R〈〈X〉〉

(c✷d) ◦ e = (c ◦ e)✷(d ◦ e), (2.40)

then the composition product is associative.

Proof: It is first shown by induction that for any word η ∈ X∗ and
series d, e ∈ R〈〈X〉〉

(η ◦ d) ◦ e = η ◦ (d ◦ e).

If η = ∅ then directly

(∅ ◦ d) ◦ e = 1 ◦ e = 1 = ∅ ◦ (d ◦ e).

Now suppose the claim holds for words up to some fixed length k ≥ 0.
Select any xi ∈ X, η ∈ Xk and observe from Definition 2.20 and (2.40)
that

((xiη) ◦ d) ◦ e = ((xi ◦ d)✷(η ◦ d)) ◦ e
= ((xi ◦ d) ◦ e)✷((η ◦ d) ◦ e).
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Applying the induction hypothesis and Definition 2.20 one more time
gives

((xiη) ◦ d) ◦ e = (xi ◦ (d ◦ e))✷(η ◦ (d ◦ e))
= (xiη) ◦ (d ◦ e).

Hence, the proposed identity holds for all η ∈ X∗. Finally, for any
c ∈ R〈〈X〉〉 it follows that

(c ◦ d) ◦ e =


∑

η∈X∗

(c, η) η ◦ d


 ◦ e =

∑

η∈X∗

(c, η)(η ◦ d) ◦ e

=
∑

η∈X∗

(c, η) η ◦ (d ◦ e) = c ◦ (d ◦ e).

Therefore, the composition product on R〈〈X〉〉 is associative.

Example 2.29 Consider the composition product defined in Exam-
ple 2.24. In this case, the product ✷ corresponds to the catenation
product, which is bilinear, and ρi(d) = di. Therefore, it is sufficient to
check a reduced version (2.40), namely,

(η✷ξ) ◦ e = (η ◦ e)✷(ξ ◦ e), η, ξ ∈ X∗. (2.41)

Observe that if η = xik · · · xi1 and ξ = xjℓ · · · xj1 , then

(ηξ) ◦ e = ((xik · · · xi1)(xjℓ · · · xj1)) ◦ e
= ρik(e) · · · ρi1(e)ρjℓ(e) · · · ρj1(e)

= eik · · · ei1ejℓ · · · ej1
= (ρik(e) · · · ρi1(e))(ρjℓ(e) · · · ρj1(e))

= (η ◦ e)(ξ ◦ e).

Hence, this composition product is associative, which comes as no sur-
prise since it is induced by function composition, which is well known
to be associative.

Example 2.30 Consider the first composition product defined in Ex-
ample 2.26. Here ✷ is effectively operator composition on End(R〈〈X〉〉),
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which is R-bilinear, and ρi(d) = ψd(xi)(1), i = 0, 1. So again it is suf-
ficient to check (2.41), which in this case is

(ψd(η) • ψd(ξ)(1)) ◦ e = ψd◦e(η) • ψd◦e(ξ)(1). (2.42)

Suppose, for example, that η = ξ = x1. Then, using the identity in
Problem 2.7.7(d), it follows that

(ψd(x1) • ψd(x1)(1)) ◦ e = (x0(d1 ⊔⊔ (x0(d1 ⊔⊔ 1)) ◦ e
= x0((d1 ◦ e) ⊔⊔ (x0(d1 ◦ e))
= ψd◦e(x1) • ψd◦e(x1)(1),

which is in agreement with (2.42). The general case can be proved
by induction, and thus, this composition product is associative (see
Problem 2.7.4).

In contrast, the second composition product in Example 2.26 does
not satisfy the condition (2.41) and is in fact not associative. Contin-
uing the earlier example, it is evident that

(x1 ◦̃x1) ◦̃x1 = x1 + 2x0x1 + x20x1,

while
x1 ◦̃ (x1 ◦̃x1) = x1 + x0x1 + x20x1.

The section is concluded by developing a bit further the first com-
position product described in Example 2.26. As indicated earlier, it
will appear shortly in the context of system interconnections. In the
analysis that follows, it is useful to write an arbitrary η ∈ X∗ in the
form

η = xnk
0 xikx

nk−1

0 xik−1
· · · xn1

0 xi1x
n0
0 , (2.43)

where ij 6= 0 for j = 1, . . . , k. In which case,

η ◦ d = ψd(x
nk
0 ) • ψd(xik) • ψd(xnk−1

0 ) • ψd(xik−1
) • · · ·

• ψd(xn1
0 ) • ψd(xi1) • ψd(xn0

0 )

= xnk+1
0 [dik ⊔⊔ x

nk−1+1
0 [dik−1

⊔⊔ · · · xn1+1
0 [di1 ⊔⊔ xn0

0 ] · · · ]].

It is easily verified that
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ord(η ◦ d) = n0 + k +

k∑

j=1

nj + ord(dij )

= |η| +

|η|−|η|x0∑

j=1

ord(dij ) (2.44)

≥ |η| + (|η| − |η|x0) ord(d). (2.45)

Alternatively, for any η ∈ X∗, one can uniquely associate a set of right
factors {η0, η1, . . . , ηk} by the iteration

ηj+1 = x
nj+1

0 xij+1ηj , η0 = xn0
0 , ij+1 6= 0, (2.46)

so that η = ηk with k = |η| − |η|x0 . In which case, η ◦ d = ηk ◦ d, where

ηj+1 ◦ d = x
nj+1+1
0 [dij+1 ⊔⊔ (ηj ◦ d)]

and η0 ◦ d = xn0
0 . Then for any c ∈ Rℓ〈〈X〉〉 and d ∈ Rm〈〈X〉〉, the

composition product can be written using the set of all right factors
as described by (2.46). For each word η ∈ Xi, the j-th right factor, ηj ,
has exactly j letters not equal to x0. Therefore, given any ν ∈ X∗:

(c ◦ d, ν) =

|ν|∑

i=0

i∑

j=0

∑

ηj∈Xi

(c, ηj)(ηj ◦ d, ν). (2.47)

The third summation is understood to be the sum over the set of all
possible j-th right factors of words of length i. This set has a familiar
combinatoric interpretation. A composition of a positive integer N is
an ordered set of positive integers {a1, a2, . . . , aK} such that N =
a1 + a2 + · · · + aK . (For example, the integer 3 has the compositions
1 + 1 + 1, 1 + 2, 2 + 1 and 3). For a given N and K, it is well known
that there are CK(N) =

(N−1
K−1

)
possible compositions. Now each factor

ηj ∈ Xi, when written in the form

ηj = x
nj

0 xijx
nj−1

0 xij−1 · · · xn1
0 xi1x

n0
0 ,

maps to a unique composition of i+ 1 with j + 1 elements:

i+ 1 = (n0 + 1) + (n1 + 1) + · · · + (nj + 1).

Thus, there are exactly Cj+1(i + 1)mj =
(
i
j

)
mj possible factors ηj in

Xi, and the total number of terms in the summations appearing in
(2.47) is
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((m + 1)|ν|+1 − 1)

m
≤ m+ 1

m
(m+ 1)|ν|.

This provides in general a very conservative estimate on the growth
rate of the coefficients of c ◦ d.

Example 2.31 A series c ∈ Rℓ〈〈X〉〉 is called linear if

supp(c) ⊆ {η ∈ X∗ : η = xn1
0 xix

n0
0 , i ∈ {1, 2, . . . ,m}, n1, n0 ≥ 0}.

(2.48)
Since the shuffle product is R-bilinear on the vector space Rℓ〈〈X〉〉, it
follows for any η = xn1

0 xix
n0
0 that

η ◦ (αd+ βe) = xn1+1
0 [(αd + βe)i ⊔⊔ xn0

0 ]

= αxn1+1
0 (di ⊔⊔ xn0

0 ) + βxn1+1
0 (ei ⊔⊔ xn0

0 )

= α(η ◦ d) + β(η ◦ e).

Therefore, if c is a linear series then

c ◦ (αd+ βe) =
∑

η∈X∗

(c, η) η ◦ (αd+ βe)

=
∑

η∈X∗

α(c, η) η ◦ d+ β(c, η) η ◦ e

= α(c ◦ d) + β(c ◦ e).

In other words, the composition product (2.47) in this special situation
is linear in its right argument as well as its left.

Additional observations regarding the composition product (2.47)
include the fact it is neither commutative nor has an identity element.
Therefore, (Rℓ〈〈X〉〉, ◦) and (Rℓ〈X〉, ◦) form only semigroups. A sum-
mary of other useful elementary properties is given below.

Lemma 2.5 The following identities hold for the composition product
defined in (2.47):

1. 0 ◦ d = 0, ∀d ∈ Rm〈〈X〉〉.
2. c ◦ 0 = c0 :=

∑
n≥0(c, x

n
0 ) xn0 . (Therefore, c ◦ 0 = 0 if and only if

c0 = 0.)
3. c0 ◦ d = c0, ∀d ∈ Rm〈〈X〉〉. (In particular, 1 ◦ d = 1.)

4. c ◦ ll = c ll :=
∑

η∈X∗(c, η) x
|η|
0 . (Therefore, c ◦ ll = c if and only if

c = c0.)
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Here ll denotes a column vector where all m component series are 1.

Example 2.32 Suppose c = 1
2x0x1x0 − 1

3x1x
2
0 and d = x0. Observe

ψx0(x0)(e) = x0(1 ⊔⊔ e) = x0e and ψx0(x1)(e) = x0(x0 ⊔⊔ e) so that

1

2
x0x1x0 ◦ x0 =

1

2
ψx0(x0) • ψx0(x1) • ψx0(x0)(1)

=
1

2
x20(x0 ⊔⊔ x0)

= x40

and

1

3
x1x

2
0 ◦ x0 =

1

3
ψx0(x1) • ψx0(x0) • ψx0(x0)(1)

=
1

3
x0(x0 ⊔⊔ x20)

=
1

3
x0(3x

3
0)

= x40.

Therefore, c ◦ d = 0. That is, it is possible to have c ◦ d = 0 when both
c and d are not zero.

Example 2.33 Let X = {x0, x1} and consider the two linear series c
and d with (c, xn1

0 x1x
n0
0 ) = (d, xn1

0 x1x
n0
0 ) = 0 for all n0 > 0. Then

c ◦ d =
∑

η∈X∗

(c, η) η ◦ d

=

∞∑

i=0

(c, xi0x1) x
i+1
0 d

=

∞∑

i,j=0

(c, xi0x1)(d, x
j
0x1) x

i+j+1
0 x1.

For any k ≥ 1 observe

(c ◦ d, xk0x1) =

∞∑

i,j=0

(c, xi0x1)(d, xj0x1) (xi+j+1
0 x1, x

k
0x1)

=

k−1∑

j=0

(c, xk−j−10 x1)(d, x
j
0x1).
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This last expression is the familiar convolution sum (see (1.29)) and is
similar to what appears for single letter alphabets under the Cauchy
product in Example 2.5.

Finally, some more advanced properties of the composition product
(2.47) are considered. The first theorem states that this composition
product on Rm〈〈X〉〉 × Rm〈〈X〉〉 is continuous in its left argument.
(Right argument continuity will be addressed shortly.)

Theorem 2.14 Let {ci}i≥1 be a sequence in Rm〈〈X〉〉 with limi→∞ ci =
c in the ultrametric sense. Then limi→∞(ci ◦ d) = c ◦ d for any
d ∈ Rm〈〈X〉〉.

Proof: Define the sequence of non-negative integers ki = ord(ci − c)
for i ≥ 1. Since c is the limit of the sequence {ci}i≥1, the sequence
{ki}i≥1 can have no upper bound. Observe that

dist(ci ◦ d, c ◦ d) = σord((ci−c) ◦d)

and, in light of (2.45),

ord((ci − c) ◦ d) = ord


 ∑

η∈supp(ci−c)

(ci − c, η) η ◦ d




≥ min
η∈supp(ci−c)

ord(η ◦ d)

≥ min
η∈supp(ci−c)

|η| + (|η| − |η|x0) ord(d)

≥ ki.

Thus, dist(ci ◦ d, c ◦ d) ≤ σki for all i ≥ 1, and limi→∞(ci ◦ d) = c ◦ d.

The next theorem describes an ultrametric contraction induced on
R〈〈X〉〉 by this composition product.

Theorem 2.15 For any c ∈ Rm〈〈X〉〉, the mapping d 7→ c ◦ d is an
ultrametric contraction on Rm〈〈X〉〉. Specifically,

dist(c ◦ d, c ◦ e) ≤ σ dist(d, e), ∀d, e ∈ Rm〈〈X〉〉.

Proof: First observe that the claim is exactly equivalent to the in-
equality
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ord(c ◦ d− c ◦ e) ≥ 1 + ord(d− e), (2.49)

which is trivially true when c = 0 since c ◦ d − c ◦ e = 0. So assume
c 6= 0 such that supp(c) is nonempty. Now if all the words in supp(c)
have the form η = xk0, k ≥ 0, then the claim is also trivially true since
η◦d−η◦e = 0 for all η ∈ supp(c) giving again that c◦d−c◦e = 0. Thus,
further assume that supp(c) contains at least one word η utilizing one
or more letters from the subalphabet {x1, x2, . . . , xm}. In which case,

ord(c ◦ d− c ◦ e) = ord


∑

η∈X∗

(c, η)(η ◦ d− η ◦ e)




≥ min
η∈supp(c)

ord(η ◦ d− η ◦ e).

From the definition of the composition product, it is clear that the
shorted possible word generated by a series of the form η ◦ d − η ◦ e
has length ord(xi ◦ d− xi ◦ e) = ord(x0(di − ei)) = 1 + ord(di − ei) for
some i 6= 0. This would directly establish the equality in (2.49) if this
xi ∈ supp(c). But if xi 6∈ supp(c), then this simply means that

min
η∈supp(c)

ord(η ◦ d− η ◦ e) > 1 + ord(d− e).

Thus, either way, the theorem is proved.

An immediate result of this theorem is the right argument continuity
property alluded to earlier.

Theorem 2.16 Let {di}i≥1 be a sequence in Rm〈〈X〉〉 with limi→∞ di =
d in the ultrametric sense. Then limi→∞(c ◦ di) = c ◦ d for all
c ∈ Rm〈〈X〉〉.

Proof: Observe

lim
i→∞

dist(c ◦ di, c ◦ d) ≤ σ lim
i→∞

dist(di, d) = 0.

Problems

Section 2.1
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ρ ρ̄
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Fig. 2.10. The mapping ρ : X → M and its associated monoid homomorphism
ρ̄ : X∗ → M .

Problem 2.1.1 Suppose M is the set of real-valued functions which
have a well defined one-sided Laplace transformation H(s) = L {h(t)}.
Let M ′ = L (M).

(a) Describe specifically how M and M ′ can be given the structure of
a monoid.

(b) Is L : M → M ′ a monoid homomorphism, a coding, an isomor-
phism? Explain.

Problem 2.1.2 In the definition for a monoid homomorphism ρ :
M →M ′, the second of two requirements is that the units e and e′ of
monoids M and M ′, respectively, must be related by ρ(e) = e′. Can
this identity be deduced from the first requirement in the definition,
i.e., is the definition redundant? If true, prove it. If false, provide a
specific counterexample.

Problem 2.1.3 Given an alphabetX = {x0, x1, . . . , xm} and a monoid
M , show that any mapping ρ : X → M can be uniquely extended to
produce a monoid homomorphism ρ̄ : X∗ →M . That is, if i : X → X∗

denotes the natural injection of X into X∗, then there exists a unique
monoid homomorphism ρ̄ such that ρ = ρ̄ ◦ i (see Figure 2.10).

Section 2.2

Problem 2.2.1 Verify that R〈〈X〉〉 and R〈X〉 with the usual notions
of addition, scalar multiplication, and the catenation product each
constitute:

(a) a ring,
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(b) a module over R〈X〉,
(c) an associative R-algebra.

Problem 2.2.2 Let X = {x} and assume fc and fd are real analytic
functions with generating series c, d ∈ R [[X]], respectively.

(a) Verify that for the pointwise product fcfd = fcd, where cd is the
binomial convolution product defined in (2.2).

(b) Show that x−1(cd) = x−1(c)d + cx−1(d).
(c) Is this identity above consistent with Lemma 2.1? Explain.

Problem 2.2.3 Prove the following propositions for an arbitrary non-
commutative alphabet X = {x0, x1, . . . , xm}:

(a) The left-shift operator ξ−1(·) is a linear operator on the R-vector
space Rℓ〈〈X〉〉 for any ξ ∈ X∗.

(b) If p ∈ R〈X〉 then x−1k (p) = 0 for all xk ∈ X if and only if p =
(p, ∅)∅.

Section 2.3
yyy: Section number is

an absolute reference.
Problem 2.3.1 An ultrametric space (S, δ) is bounded if there exists
a real number B ≥ 0 such that δ(s, s′) ≤ B for all s, s′ ∈ S. Show that
(Rℓ〈〈X〉〉,dist) is a bounded ultrametric space.

Problem 2.3.2 Let {s1, s2, . . .} be a convergent sequence in a metric
space (S, δ).

(a) Show that its limit point s is unique.
(b) Prove that it is a Cauchy sequence.

Problem 2.3.3 Let {s1, s2, . . .} be a sequence in an ultrametric space
(S, δ). Show that the sequence is a Cauchy sequence if and only if for
every ǫ > 0 there exists a natural number Nǫ such that δ(si, si+1) < ǫ
when i ≥ Nǫ.

Problem 2.3.4 Let c, d, e, f ∈ R〈〈X〉〉 and consider the ultrametric
dist defined on R〈〈X〉〉. Show that in general:

(a) dist(c+ e, c+ f) = dist(e, f)
(b) dist(c+ e, d+ f) ≤ max{dist(c, d),dist(e, f)}
(c) dist is continuous in both arguments, for example, limi→∞ dist(ci, d)

= dist(c, d), where c = limi→∞ ci.
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Problem 2.3.5 Solutions of an equation g(z) = 0, where z ∈ R, can
often be computed numerically by converting the equation into the
form z = f(z), selecting an initial condition z0, and then iterating as
follows:

zi+1 = f(zi), i = 0, 1, . . . .

(a) Assume g(z) = 0 has the unique solution z∗. Use Theorem 2.4 to
show that a sufficient condition for convergence of this iteration to
z∗ is having f differentiable and |f ′(z)| ≤ α < 1 everywhere on R.

(b) A simple geometric argument can be used to show that the tran-
scendental equation 4z + 2 sin(z) + 1 = 0 has a unique solution.
Devise an iterative method to compute it and determine the first
five iterates after z0 = 0.

Remark: In the event that g(x) = 0 has more than one solution, a
local version of Theorem 2.4 exists. It provides for convergence of the
iterates {z0, z1, . . .} to a solution when z0 is selected in an interval
containing a solution and on which f is (locally) a contraction. See,
for example, [145].

Problem 2.3.6 Let (S, δ) be a complete nonempty metric space and
T : S → S be a mapping such that δ(T (z),T (z′)) < δ(z, z′) for all
distinct z, z′ ∈ S. Show that if T has a fixed point, it must be unique.

Problem 2.3.7 Reconsider Problem 2.3.6, where δ is now an ultra-
metric. Is the given condition enough to guarantee that T always has
a fixed point? Explain.

Problem 2.3.8 A normed R-vector space V is one where there is a
real-valued function ‖ · ‖ : V → R satisfying the properties:

i. ‖x‖ ≥ 0

ii. ‖x‖ = 0 if and only if x = 0

iii. ‖αx‖ = |α| ‖x‖
iv. ‖x+ y‖ ≤ ‖x‖ + ‖y‖

for any x, y ∈ V and α ∈ R. For a fixed R > 0 define the following
subsets of R〈〈X〉〉:

Sp(R) = {c ∈ R〈〈X〉〉 : ‖c‖p <∞},

where
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‖c‖1 =
∑

η∈X∗

|(c, η)| |η|!
R|η|

‖c‖∞ = sup
η∈X∗

{
|(c, η)| R

|η|

|η|!

}
.

(a) Verify that each space Sp(R) is a normed R-vector space.
(b) Give some explicit examples of series that are in and not in S1(R)

and S∞(R).
(c) Explain in what sense these spaces are duals of each other.
(d) A sequence {c1, c2, . . .} in Sp(R) is said to converge to c ∈ Sp(R)

if ‖ci − c‖p → 0 as i → ∞. Explain any differences between con-
vergence in the ultrametric sense and convergence as defined here.

Section 2.4

Problem 2.4.1 Consider an arbitrary alphabet X. Verify the follow-
ing propositions:

(a) R〈X〉 with the shuffle product forms an associative R-algebra.
(b) The shuffle product is commutative on R〈X〉.
(c) The shuffle algebra on R〈X〉 is an integral domain, that is, p ⊔⊔ q =

0 if and only if at least one polynomial is zero.
(d) The shuffle product on R〈〈X〉〉 is (ultrametric) continuous in both

arguments, for example, limi→∞(ci ⊔⊔ d) = (limi→∞ ci) ⊔⊔ d.

Problem 2.4.2 The shuffle product defined inductively by (2.5) could
also be called the left shuffle product because at each iteration a left-
most letter is extracted from a word and moved to the far left position.
Analogously, one could define a right shuffle product via

(ηxi) ⊓⊓ (ξxj) = (η ⊓⊓ (ξxj))xi + ((ηxi) ⊓⊓ ξ)xj ,

where xi, xj ∈ X, η, ξ ∈ X∗ and with η ⊓⊓ ∅ = ∅ ⊓⊓ η = η. Is it true that
η ⊔⊔ ξ = η ⊓⊓ ξ? If so, prove this conjecture. If not, provide a simple
counterexample.

Problem 2.4.3 Verify the following relations for arbitrary c, d ∈
R〈〈X〉〉 and ν ∈ X∗:
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(a) (c ⊔⊔ d, ν) =

|ν|∑

i=0

∑

η∈Xi

ξ∈X|ν|−i

(c, η)(d, ξ)(η ⊔⊔ ξ, ν)

(b)
∑

η∈Xi

ξ∈X|ν|−i

(η ⊔⊔ ξ, ν) =

(|ν|
i

)
, 0 ≤ i ≤ |ν|

(c)
∑

η,ξ∈X∗

(−1)|ξ| (η ⊔⊔ ξ, ν) ηξ̃ =

{
1 : |ν| = 0
0 : |ν| > 0

(d)
∑

η,ξ∈X∗

(−1)|ξ| (ηξ, ν) η ⊔⊔ ξ̃ =

{
1 : |ν| = 0
0 : |ν| > 0.

Remark: Part (b) can be proved using the left-shift operator and the
derivation property described in Theorem 2.5. The word ξ̃ denotes ξ
with the letters written in the reverse order.

Problem 2.4.4 Suppose the binomial coefficient for two words ν, η ∈
X∗ is defined as (

ν

η

)
=

∑

ξ∈X|ν|−|η|

(η ⊔⊔ ξ, ν)

when |η| ≤ |ν| and zero otherwise.

(a) Show that
∑

η∈Xi

(
ν

η

)
=

(|ν|
i

)
, i ≥ 0.

(b) Show for any word η ∈ X∗ that

(η ⊔⊔ char(X∗), ν) =

(
ν

η

)
.

Remark: A word η = xi1xi2 · · · xik with xij ∈ X is a subword of
ν ∈ X∗ if there exists words ξ0, ξ1, . . . , ξk ∈ X∗ such that ν =
ξ0xi1ξ1xi2 · · · xikξk. The integer

(ν
η

)
is equivalent to the number of times

the word η appears as a subword of ν. For example, if ν = x0x1x0x1
and η = x0x1 then

(ν
η

)
= 3.

Problem 2.4.5 Let X be an arbitrary alphabet. Define the shuffle
power of a series c ∈ R〈〈X〉〉 to be



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

Problems 105

c ⊔⊔ k = c ⊔⊔ c ⊔⊔ · · · ⊔⊔ c︸ ︷︷ ︸
c appears k times

, k > 0

and c ⊔⊔ 0 = 1. Verify the following identities for an arbitrary letter
x ∈ X and c, d ∈ R〈〈X〉〉:
(a) x ⊔⊔ k = k! xk, k ≥ 0

(b) xk ⊔⊔ xn−k =

(
n

k

)
xn, 0 ≤ k ≤ n

(c) x ⊔⊔ kx ⊔⊔ (n−k) =

(
n

k

)−1
x ⊔⊔ n, 0 ≤ k ≤ n

(d) (xj) ⊔⊔ k =
(jk)!

(j!)k
xjk, j, k ≥ 0

(e) (x ⊔⊔ j)k =
(j!)k

(jk)!
x ⊔⊔ jk, j, k ≥ 0

(f)



∞∑

j=0

xj




⊔⊔ k

=
∞∑

j=0

(kx)j

(g)



∞∑

j=0

x ⊔⊔ j




⊔⊔ k

=

∞∑

j=0

(
k + j − 1

j

)
x ⊔⊔ j

(h) x−1(c ⊔⊔ k) = kc ⊔⊔ (k−1)
⊔⊔ x−1(c), k ≥ 1

(i) x−n(c ⊔⊔ d) =

n∑

k=0

(
n

k

)
x−k(c) ⊔⊔ x−(n−k)(d), n ≥ 0

(j) x−1(e ⊔⊔ d) = x−1(d) ⊔⊔ e ⊔⊔ d, where e ⊔⊔ d :=

∞∑

n=0

d ⊔⊔ k

k!
.

Problem 2.4.6 Let X be an arbitrary alphabet.

(a) Verify the identity (2.6).
(b) Show that char(Xk) = (char(X))k = (char(X)) ⊔⊔ k/k!.

Problem 2.4.7 Let X = {x0, x1}. Verify the following identities:

(a) (αx0 + βx1)
⊔⊔ k = k! (αx0 + βx1)k, α, β ∈ R, k ≥ 0

(b) (c+ d) ⊔⊔ n =

n∑

k=0

(
n

k

)
c ⊔⊔ k

⊔⊔ d ⊔⊔ (n−k), n ≥ 0, c, d ∈ R〈〈X〉〉
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(c) (x1x
i
0 ⊔⊔ xj0, x

k
0x1x

i+j−k
0 ) =

(
i+ j − k

i

)
, i, j ≥ 0, 0 ≤ k ≤ j.

Problem 2.4.8 Suppose K and M are fixed real numbers. Consider
a series d ∈ R〈〈X〉〉 with coefficients (d, ν) = KM |ν||ν|! for all ν ∈ X∗.
Show that for any n ≥ 1

(d ⊔⊔ n, ν) = KnM |ν|
(

(n− 1) + |ν|
n− 1

)
|ν|!, ∀ν ∈ X∗.

Problem 2.4.9 Let x be an arbitrary letter in an alphabet X and
k1, k2, . . . , kℓ a finite sequence of nonnegative integers. Verify the fol-
lowing shuffle product identity:

ℓ∐∐

i=1

xki = xSℓ

ℓ∏

i=1

(
Si
ki

)
,

where Si :=
∑i

j=1 kj . Note here that
∐∐

and
∏

denote the shuffle
product on X and scalar product on R, respectively.

Problem 2.4.10 LetX be an arbitrary alphabet. Suppose c ∈ R〈〈X〉〉
is proper.

(a) Verify that limi→∞ c
⊔⊔ i = 0.

(b) Show that the summation
∑∞

i=0 αic
⊔⊔ i is well defined for any se-

quence of scalars {αi}i∈N0 .

Problem 2.4.11 Show that the set of non proper series in R〈〈X〉〉
is a group under the shuffle product, where the shuffle inverse of any
such series c is

c ⊔⊔ −1 = ((c, ∅)(1 − c′)) ⊔⊔ −1 = (c, ∅)−1(c′) ⊔⊔ ∗

with c′ = 1 − c/(c, ∅) proper, and (c′) ⊔⊔ ∗ :=
∑

k≥0(c
′) ⊔⊔ k.

Problem 2.4.12 LetX = {x0, x1, . . . , xm}. A mapping T : Rℓ〈〈X〉〉 →
Rℓ〈〈X〉〉 is said to have an eigen-series cλ ∈ R〈〈X〉〉 if there exists a
nonzero series cp ∈ Rℓ〈〈X〉〉 such that T (cp) = cλcp. For a fixed n ≥ 0
consider the mapping

Tn : Rℓ〈〈X〉〉 → Rℓ〈〈X〉〉, c 7→ xn0 ⊔⊔ c,

where the shuffle product is defined componentwise. For simplicity
assume ℓ = 1 and m = 0. Determine whether the following series have
a corresponding eigen-series for any n ≥ 0:



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

Problems 107

(a) cp = (1 − x0)
−1

(b) cp = exp(x0).

Section 2.5

Problem 2.5.1 Consider the vector space V = R2 ⊗ R2 in Exam-
ple 2.19.

(a) Explicitly define vector addition and scalar multiplication on V .
(b) Verify that L : V → R as defined in (2.13) is an R-linear map.

Problem 2.5.2 For any finite alphabet X and xi ∈ X verify the
following identities:

(a) cat∗(xiη) = (xi ⊗ 1)cat∗(η) + 1 ⊗ xiη

(b) sh∗(char(Xk+1)) = sh∗(char(X))sh∗(char(Xk))

(c) (k + 1) cat∗(char(Xk+1)) = cat∗(char(X)) ⊔⊔ cat∗(char(Xk)).

Section 2.6

Problem 2.6.1 In the context of Definition 2.14, verify that

µA⊗A ◦ (∆⊗∆) = (µ⊗ µ) ◦ (id ⊗ τ ⊗ id) ◦ (∆ ⊗∆)

σA⊗A = σ ⊗ σ

defines an R-algebra homomorphism.

Problem 2.6.2 Let (A,µ, σ,∆, ǫ) denote an arbitrary R-bialgebra
with unit 1.

(a) Show that ǫ(1) = 1.
(b) Prove that ∆(1) = 1⊗ 1.
(c) Verify the identities in parts (a)-(b) in the context of Theorem 2.8.

Problem 2.6.3 Let (A,µ, σ,∆, ǫ, S) denote an arbitrary R-Hopf al-
gebra with unit 1.

(a) Verify that S(1) = 1.
(b) Show that if a ∈ A has the coproduct ∆(a) = 1 ⊗ a+ a⊗ 1 then

S(a) = −a.
(c) Prove that S(aa′) = S(a′)S(a) for all a, a′ ∈ A.
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(d) Verify the identities in parts (a)-(c) in the context of Theorem 2.9.

Problem 2.6.4 Let (A,µ, σ,∆, ǫ) be a connected bialgebra with unit
1. The proposition is that every element a ∈ A+

(n) must have a coprod-
uct of the form

∆a = a⊗ 1 + 1⊗ a+∆′a

with a⊗1+1⊗ a being the primitive part and ∆′a ∈ A+
(n−1)⊗A+

(n−1)
the reduced coproduct.

(a) Show that (R〈X〉, cat, σ, sh∗, ǫ) and (R〈X〉, sh, σ, cat∗, ǫ) are both
connected bialgebras using word length to define degree and thus
a filtration.

(b) Verify the proposition above for the coproducts sh∗ and cat∗ of
words up to degree (length) two.

(c) Prove the proposition holds in general.

Remark: The counit property is very useful in part (c).

Problem 2.6.5 Let V = R∞ be the vector space of infinite sequences
of real numbers. Show that GFdB has a faithful representation π :
GFdB → GL(R∞) given by

π(fc) :=

[
k!

j!
Bj,k(c1, 2!c2, . . . , (j − k + 1)!cj−k+1)

]

=




c1 c2 c3 c4 c5 · · ·
0 c21 2c1c2 c22 + 2c1c3 2c2c3 + 2c1c4 · · ·
0 0 c31 3c21c2 3c1c

2
2 + 3c21c3 · · ·

0 0 0 c41 4c31c2 · · ·
0 0 0 0 c51 · · ·
...

...
...

...
...




,

where fc =
∑

n≥0 cnt
n/n!, c1 = 1, and

Bj,k(t1, . . . , tl) :=
∑

k1+k2+···+kl=k
k1+2k2+···+lkl=j

j!

k1! · · · kl!

(
t1
1!

)k1
· · ·
(
tl
l!

)kl

are the (partial exponential) Bell polynomials with l = j − k + 1.

Remark: By definition, the product of two such matrices produces an-
other matrix whose coefficients are that of fc ◦fd in the first row. Like-
wise, the coefficients of f−1c must appear in the first row of (π(fc))

−1.
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With the structure of the representation matrix A = π(fc) fixed, it is
fully specified by cn = a1n(c), n ≥ 1. Therefore, one can drop the first
subscript and write A in terms of an, where cn = an(c).

Problem 2.6.6
In the context of the Faà di Bruno Hopf algebra:

(a) Compute the antipodes Sai, a = 2, 3, 4 using (2.30) and determine
whether the calculation is consistent with (2.37) and is cancellation
free as claimed in the text.

(b) Compute the coproduct ∆a5 and reduced coproduct ∆′a5.
(c) Compute the antipode Sa5 by any method.
(d) Compute the first five terms of the Taylor series expansion of

tan−1(z) about z = 0 using the antipode.
(e) Compare the result in part (d) against a direct calculation of the

Taylor series of tan−1(z).

Section 2.7

Problem 2.7.1 Consider an arbitrary composition product defined
by (ρ,✷,1). Show that the composition product is R-linear in its left
argument.

Problem 2.7.2 Consider the series

c = 1 + x+
x2

2!
+
x3

3!
+ · · ·

d = x+ x2 + x3 + x4 + · · ·

as elements of R [[X]], where X = {x}. Compute the first few terms of
the compositions:

(a) c ◦ d
(b) d ◦ d
(c) d ◦ c.

Problem 2.7.3 Consider the noncommutative polynomials p = 1+x21
and q = x1x0 over the alphabet X = {x0, x1}. Compute the composi-
tions:

(a) p ◦ q
(b) q ◦ p
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(c) p ◦ p.
Remark: This and subsequent problems are referring to the first com-
position product described in Example 2.26.

Problem 2.7.4 Prove the identity (2.42).

Problem 2.7.5 Verify the elementary properties of the composition
product given in Lemma 2.5.

Problem 2.7.6 Let c, d, e ∈ Rm〈〈X〉〉, where X = {x0, x1, . . . , xm}.
Either verify that each of the propositions below is true or provide a
counterexample.

(a) If c is proper then c ◦ d is proper.
(b) For fixed d, the mapping c 7→ c ◦ d is an ultrametric contraction

on Rm〈〈X〉〉.
Problem 2.7.7 Let c, d, e ∈ Rm〈〈X〉〉, where X = {x0, x1, . . . , xm}.
Verify the following identities:

(a) xji ◦ d =
1

j!
(x0di)

⊔⊔ j, j ≥ 0 assuming d0 := 1

(b) p ◦ d =
n∑

j=0

(p, xji )
1

j!
(x0di)

⊔⊔ j , where p =
n∑

j=0

(p, xji )x
j
i

(c) (xj0c) ◦ d = xj0(c ◦ d), j ≥ 0
(d) (c ⊔⊔ d) ◦ e = (c ◦ e) ⊔⊔ (d ◦ e)
(e) c ⊔⊔ j ◦ d = (c ◦ d) ⊔⊔ j , j ≥ 0

(f) x−10 (c ◦ d) = x−10 (c) ◦ d+

m∑

i=1

di ⊔⊔ (x−1i (c) ◦ d)

x−1i (c ◦ d) = 0, i = 1, 2, . . . ,m.

Problem 2.7.8 Let X = {x0, x1} and c = x0x1. Determine the fixed
point of the mapping d 7→ c ◦ d.

Problem 2.7.9 A series c ∈ Rℓ〈〈X〉〉 is said to be exchangeable if

|η|xi = |ξ|xi , i = 0, 1, . . . ,m ⇒ (c, η) = (c, ξ).

Show that if c is an exchangeable series then the composition product
can be written in the form

c ◦ d =
∞∑

k=0

∑

r0,...,rm≥0
r0+···+rm=k

(c, xr00 · · · xrmm )ψd(x
r0
0 )(1) ⊔⊔ · · · ⊔⊔ψd(x

rm
m )(1).
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Section 2.1 The following books provide a comprehensive introduc-
tion to the theory of formal languages and related topics: Berstel
[7], Gross and Lentin [108], Harrison [114], Kuich and Salomaa [146],
Rèvèsz [170], Rozenberg and Salomaa [173], and Salomaa [178]. It also
worth mentioning the series of books by Lothaire addressing combina-
torics on words [153, 154, 155].

Section 2.2 In addition to the books mentioned above, most of which
treat formal power series to varying degrees, the books by Conway
[51], Berstel and Reutenauer [8, 9], and Salomaa and Soittola [179], in
particular, provide excellent introductions to this subject with much
the same flavor as this section.

Section 2.3 The first part of this section addressing the ultrametric yyy: Section number is

an absolute reference.space Rℓ〈〈X〉〉 is based on the treatment of the subject by Berstel and
Reutenauer [8, 9]. The material concerning contractive mappings on
metric spaces appears in most texts on functional analysis and linear
operators, e.g., [145]. Example 2.14, a well known example introducing
a weaker type of contraction, appears in many places, e.g., [206]. More
specialized treatments of contractions on ultrametric spaces can be
found in the work by Heckmanns [202], Priess et al. [166], and Schorner
[183]. These did not influence the presentation in the section, but some
of the problems at the end of the chapter were motivated by this
material, e.g., Problem 2.3.7.

Section 2.4 The shuffle product as defined in this section first ap-
peared in a paper by Ree [168]. A proof of the integral domain prop-
erty of the shuffle algebra, for example, appears in this paper. His
motivation was clearly the seminal work of K.-T. Chen on iterated in-
tegrals of paths, in particular [37]. Some other forms of the definition
appeared earlier, as, for example, in the work of Hurwitz, who was
effectively considering power series in a single letter [120]. Hence, the
shuffle product is sometimes referred to as the Hurwitz product. (See
[66] for additional details on this point.) It should also be noted that
around the same time that Ree’s paper appeared, Chen et al. utilized
the shuffle product in the context of free differential calculus, see [49],
largely inspired by Lyndon’s use of the concept in [156]. The now stan-
dard treatment of shuffles and the shuffle product appears in the book
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by Lothaire [153]. Useful results related to these concepts can be found
in [57, 71, 169, 171]. The important identity (2.6) can be found in the
Ph.D. dissertation of Duffaut Espinosa [57, Lemma IV.2.2]. This result
is directly related to Proposition 2.2.8 of Fliess in [65].

Section 2.5 The catenation-shuffle product duality is best understood
in the context of combinatorial bialgebras and Hopf algebras. This was
observed by K.-T. Chen in [43, Theorem 1.8]. Thus, the full treatment
of this topic is deferred to the next section after the notion of a Hopf
algebra is developed. The duality theory as described in Theorem 2.6
follows the treatment by Reutenauer in [169].

Section 2.6 Standard references on Hopf algebras include the books
by Abe [1], Dăscălescu et al. [56], and Sweedler [197]. The classical
paper on structural theorems for Hopf algebras by Milnor and Moore
provides a full and rigorous view of the subject [162]. The papers by
Cartier [31], Figueroa and Gracia-Bond́ıa [64], Grinberg and Reiner
[106], and Manchon [161] give very readable comprehensive introduc-
tions to the subject. The treatment of the topic in this section was
heavily influenced by all of these works. The remaining material on
the catenation-shuffle product duality in Theorems 2.8 and 2.9 fol-
lows Reutenauer in [169]. Lemma 2.4 is based on the work of Chen
in [44] and Sussmann in [195]. The Faà di Bruno Hopf algebra was
first introduced by Joni and Rota in [132, 133]. The treatment in this
chapter follows from the presentation in [64]. Finally, Hopf algebras
have appeared in system theory prior to their use in this book. See,
for example, [82, 109, 110, 111, 172].

Section 2.7 The composition product induced by real analytic func-
tion composition is a classic topic in analysis. See, for example, the
book by Knopp [144] concerning the single variable case and the book
by Rudin [175] for the multivariable case. The composition of a Fliess
operator followed by a memoryless function, i.e., a Wiener-Fliess sys-
tem, was first described in a state space setting via the fundamental
formula of Fliess in [71, 76]. See also [122]. A more general treatment is
presented by Gray and Thitsa in [101], and additional results regard-
ing convergence and applications are given by Venkatesh in [204]. The
composition product induced by Fliess operator composition is due to
Ferfera [62, 63]. The idea was further developed by Gray and Li in
[98] and [152], which is the source for most of the advanced material
in this section. However, Definition 2.20 and the generic treatment of
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composition products first appeared in [101]. In addition, the proof of
Theorem 2.15 is significantly simpler than the approach taken in [98].
Finally, many any other types of noncommutative compositions appear
in the literature, for example, see the work by Brouder et al. [26] and
Foissy [77]. These concepts are all distinct from the notions utilized
through this book as they are induced by compositions of other types
of mathematical objects.
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3. Fliess Operators

In this chapter, a general class of nonlinear input-output operators is
considered with the key property that each member is uniquely speci-
fied in terms of a formal power series in Rℓ〈〈X〉〉. Such operators are
called Fliess operators. They can be viewed as a kind of noncommu-
tative Taylor series. The first section introduces the basic definitions
and some terminology. The next two sections furnish input sets on
which Fliess operators are well defined and describe various properties
like continuity and differentiability of the output function and oper-
ator continuity. Fliess operators are then compared against the more
classical Volterra operator in the subsequent section. In particular, it
is shown that a Volterra operator has a Fliess operator representation
when each of its kernel functions is real analytic. Hence, all the theory
developed for Fliess operators applies directly to this class of Volterra
operators. In applications, it is common to construct models of com-
plex systems by interconnecting simpler subsystems. So the next three
sections are devoted to the interconnection of Fliess operators, specifi-
cally, the parallel, cascade, and feedback connections. The final section
describes the notion of a formal Fliess operator. In this case, no con-
vergence properties are assumed a priori, and thus, inputs, outputs,
and systems are treated as purely algebraic objects.

3.1 Fliess Operators on Lp Spaces

The goal of this section is to describe a general class of causal input-
output operators having m inputs and ℓ outputs. Consider an alphabet
X = {x0, x1, . . . , xm}. In this chapter, X is viewed as a set of noncom-
mutative indeterminates which is always in one-to-one correspondence
with a set of integrable real-valued functions {u0, u1, . . . , um} defined
over an interval [t0, t1]. The parameter t1 may or may not be finite.
For any word η ∈ X+, one can associate an iterated integral by the
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iterative calculation

Eη[u](t, t0) = Exiη′ [u](t, t0) =

∫ t

t0

ui(τ)Eη′ [u](τ, t0) dτ,

where E∅[u](t, t0) := 1 for all t ∈ [t0, t1]. It will be assumed through-
out that u0(t) = 1 on this interval. This fictitious input u0 is useful,
for example, in representing systems that have some kind of stored
energy and thus generate a nonzero output even when the input
u := [u1 · · · um]T is exactly zero on [t0, t1]. Given any formal power
series over X,

c =
∑

η∈X∗

(c, η) η,

where each (c, η) ∈ Rℓ, one can uniquely specify an input-output op-
erator as described below.

Definition 3.1 The Chen-Fliess series associated with any c ∈
Rℓ〈〈X〉〉 is

y = Fc[u] =
∑

η∈X∗

(c, η)Eη [u]. (3.1)

In the event the series converges on some set of inputs U , the mapping
Fc : U → Y is called a Fliess operator.

Series c is usually referred to as the generating series for Fc. A
specific input u ∈ U is called an admissible input. In many applications,
a natural class of admissible inputs is the set of Lebesgue measurable
functions Lmp [t0, t1].1

Definition 3.2 For a fixed p ∈ [1,∞], a measurable function u :
[t0, t1] → Rm is in the Lebesgue space Lmp [t0, t1] if its norm

‖u‖
p

= max
1≤i≤m

‖ui‖p

is finite, where

‖ui‖p =

(∫ t1

t0

|ui(t)|p dt
) 1

p

, p ∈ [1,∞)

‖ui‖∞ = ess sup
t∈[t0,t1]

|ui(t)|.
1 The superscript m will be suppressed when m = 1.
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L1 [t0,t1]L
m [m

L2 [t0,t1]L
m

L [t0,t1]L
m

Fig. 3.1. For a finite interval [t0, t1], the spaces Lm
p [t0, t1] for integers p ∈ [1,∞)

and p = ∞ are nested.

In general, u ∈ Lmp [t0, t1] if and only if ui ∈ Lp[t0, t1] for all i =
1, . . . ,m, and clearly ‖u‖p ≥ ‖ui‖p. The set Lm2 [t0, t1], for example, is
the class of inputs with finite energy over [t0, t1], while Lm∞[t0, t1] is
the class of inputs that are bounded in magnitude almost everywhere
(a.e.) on [t0, t1]. A closed ball in Lmp [t0, t1] of radius R > 0 and centered
at the origin is defined as

Bm
p (R)[t0, t1] = {u ∈ Lmp [t0, t1] : ‖u‖

p
≤ R}.

A particularly useful fact illustrated in Figure 3.1 is that this collection
of spaces is nested when the interval [t0, t1] is finite, i.e., Lm∞[t0, t1] ⊂
Lmp+1[t0, t1] ⊂ Lmp [t0, t1] for all integers p ∈ [1,∞) (see Problem 3.1.1).
As demonstrated in the next example, however, this property does not
hold for infinite intervals.

Example 3.1 Consider the function u(t) = 1/(1 + t), which is well
defined over the interval [0,∞). Let u[0,t1] denote its restriction to the

interval [0, t1]. Observe that
∥∥u[0,1]

∥∥
1

= log(2) and
∥∥u[0,1]

∥∥
2

= 1/
√

2.
Thus, u[0,1] belongs to both L1[0, 1] and L2[0, 1]. On the other hand,
one can check that ‖u‖2 = 1, but u does not have a well defined L1

norm. Therefore, L2[0,∞) is not a subset of L1[0,∞).



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

118 3. Fliess Operators

Lp [t0,t1]L
m

Lp,e (t0)L
m

L [t0, )L
m

p

Fig. 3.2. Extended space Lm
p,e(t0) lies in between Lm

p [t0, t1] with t1 finite and
Lm

p [t0,∞).

Also useful in this chapter is the notion of an extended Lp space.
In a certain sense, this function space lies in between Lmp [t0, t1] with
t1 finite and Lmp [t0,∞).

Definition 3.3 For any fixed t0 ∈ R and any p ∈ [1,∞] define the
extended Lebesgue space as

Lmp,e(t0) = {u : [t0,∞) → Rm : u[t0,t1] ∈ Lmp [t0, t1] ∀t1 ∈ (t0,∞)}.

Clearly, Lmp,e(t0) is a proper subset of Lmp [t0, t1] for any specific t1 when
its elements are restricted to [t0, t1]. In addition, the extended spaces
are also nested with respect to p, that is, Lm∞,e(t0) ⊂ Lmp+1,e(t0) ⊂
Lmp,e(t0) for all integers p ∈ [1,∞). Less obvious is the fact that
Lmp [t0,∞) is a subset of Lmp,e(t0) (see Problem 3.1.2).

Example 3.2 Again consider the function u(t) = 1/(1+t) over [0,∞).
For every finite t1 > 0, u[0,t1] ∈ L1[0, t1] since

∥∥u[0,t1]
∥∥
1

= log(1 + t1).
Thus, u ∈ L1,e(0). But as noted in the previous example, u6∈L1[0,∞).
So if L1[0,∞) is a subset of L1,e(0), it must be a proper subset. The
exact situation is shown in Figure 3.2.
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3.2 Local Input-Output Properties

The first goal of this section is to describe a sufficient condition for a
generating series c which ensures that functions within some closed ball
Bm

p (R)[t0, t1] are admissible inputs for the operator Fc. Specifically, it
will be shown that Fc defines a mapping from Bm

p (R)[t0, t0 + T ] into

Bℓ
q(S)[t0, t0 +T ] provided that R,T > 0 are sufficiently small, and p, q

are conjugate exponents. That is, p, q ∈ [1,∞] such that 1/p+ 1/q = 1
with 1 and ∞ being conjugate exponents by convention.2 In this case
the operator Fc will be called locally convergent since it is locally well
defined in both a temporal sense (finite T ) and a spatial sense (finite
R). A class of generating series ensuring this property will be given the
same name. In the subsequent section, a more restrictive condition is
described for c under which Fc maps all of Lmp,e(t0) into C[t0, t0 + T ],
where C[t0, t0 +T ] denotes the set of functions that are continuous on
[t0, t0 + T ], and in this case T > 0 is arbitrary. The operator Fc will
be called global convergent as will any generating series c which yields
this property.

The first theorem states that if a formal power series c has coef-
ficients that satisfy a Cauchy type growth condition then the corre-
sponding operator Fc will converge on Bm

1 (R)[t0, t0 +T ] provided that
R,T > 0 are small enough.

Theorem 3.1 Suppose c ∈ Rℓ〈〈X〉〉 is a series with coefficients that
satisfy

|(c, η)| ≤ KM |η||η|!, ∀η ∈ X∗ (3.2)

for some real numbers K,M > 0. (Here |z| := max1≤i≤ℓ |zi| when
z ∈ Rℓ.) Then there exists real numbers R,T > 0 such that for each
u ∈ Bm

1 (R)[t0, t0 + T ], the series

y(t) = Fc[u](t) =
∑

η∈X∗

(c, η)Eη [u](t, t0) (3.3)

converges absolutely and uniformly on [t0, t0 + T ].

The set of all c ∈ Rℓ〈〈X〉〉 which satisfy a local growth condition of
the form (3.2) will be denoted by RℓLC〈〈X〉〉. For any p ∈ (1,∞] and
on any finite interval [t0, t0 + T ] it can be shown that

2 The spaces Lm
p [t0, t1] and Lm

q [t0, t1] are said to be duals of each other.
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‖u‖1 ≤ ‖u‖
p
T 1/q,

when u ∈ Lmp [t0, t0 + T ], and p and q are conjugate exponents (see
Problem 3.2.1). In which case, the following corollary of Theorem 3.1
is immediate and describes other input spaces on which Fliess opera-
tors are locally convergent. However, because these spaces are nested
for finite T , it is usually most natural to work on the largest space,
Lm1 [t0, t0 + T ].

Corollary 3.1 Suppose c ∈ RℓLC〈〈X〉〉 and p ∈ [1,∞]. Then there
exists real numbers R,T > 0 such that for each u ∈ Bm

p (R)[t0, t0 + T ],
the series

y(t) = Fc[u](t) =
∑

η∈X∗

(c, η)Eη [u](t, t0)

converges absolutely and uniformly on [t0, t0 + T ].

To prove Theorem 3.1, two upper bounds are needed for iterated
integrals over X∗. Both are described in the following lemma. With-
out loss of generality, it is assumed that t0 = 0, and Eη[u](t, 0) is
abbreviated in this case as Eη[u](t).

Lemma 3.1 For any u ∈ Lm1 [0, T ] and η ∈ X∗,

|Eη[u](t)| ≤ Eη[ū](t), 0 ≤ t ≤ T,

where ū ∈ Lm1 [0, T ] has components ūj := |uj |, j = 1, 2, . . . ,m. Fur-
thermore, for any integers rj ≥ 0 it follows that

∣∣∣Exr00 ⊔⊔ x
r1
1 ⊔⊔ ··· ⊔⊔ xrmm

[u](t)
∣∣∣ ≤

m∏

j=0

U
rj
j (t)

rj !
, 0 ≤ t ≤ T,

where Uj(t) :=
∫ t
0 |uj(τ)| dτ .3 In particular, if on [0, T ] it is assumed

that max{‖u‖1 , T} ≤ R then

∣∣∣Exr00 ⊔⊔ x
r1
1 ⊔⊔ ··· ⊔⊔ xrmm

[u](t)
∣∣∣ ≤ Rk

r0! r1! · · · rm!
, 0 ≤ t ≤ T,

where k =
∑

j rj.

3 For notational convenience, occasionally Fp will be denoted as in the previous
chapter by Ep when p ∈ R〈X〉.
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Proof: The first inequality is trivial in the case of the empty word.
Suppose it holds for all words up to length k ≥ 0. Then for any xj ∈ X
and η ∈ Xk observe that

∣∣Exjη[u](t)
∣∣ ≤

∫ t

0
|uj(τ)| |Eη[u](τ)| dτ

≤
∫ t

0
ūj(τ)Eη [ū](τ) dτ

= Exjη[ū](t).

Hence, the claim holds for all η ∈ X∗.
Concerning the second inequality, note that

∣∣∣Exr00 ⊔⊔ x
r1
1 ⊔⊔ ··· ⊔⊔ xrmm

[u](t)
∣∣∣ =

m∏

j=0

∣∣∣∣Exrjj [u](t)

∣∣∣∣

(see Lemma 2.3). Thus, it is sufficient to show that

∣∣∣∣Exrjj [u](t)

∣∣∣∣ ≤
U
rj
j (t)

rj !
. (3.4)

This claim is clearly true when rj = 0. If it holds up to some fixed
integer rj ≥ 0 then

∣∣∣∣Exrj+1

j

[u](t)

∣∣∣∣ ≤
∫ t

0
|uj(τ)|

∣∣∣∣Exrjj [u](τ)

∣∣∣∣ dτ

≤
∫ t

0
|uj(τ)|

U
rj
j (τ)

rj !
dτ

=
U
rj+1
j (t)

(rj + 1)!
.

Thus, the inequality (3.4) holds for all rj ≥ 0, and the lemma is proved.

Proof of Theorem 3.1: Suppose the coefficients of c satisfy the local
growth condition (3.2). Fix some T > 0. Pick any u ∈ Lm1 [0, T ] and let
R = max{‖u‖1 , ‖u0‖1} = max{‖u‖1 , T}. Observe that with the help
of identity (2.6)

∑

η∈X∗

|(c, η)Eη [u](t)|
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≤
∞∑

k=0

∑

η∈Xk

|(c, η)|Eη[ū](t)

≤
∞∑

k=0

KMkk!
∑

r0,r1,...,rm≥0
r0+r1+···+rm=k

Exr00 ⊔⊔ x
r1
1 ⊔⊔ ··· ⊔⊔ xrmm

[ū](t)

≤
∞∑

k=0

KMkk!
∑

r0,r1,...,rm≥0
r0+r1+···+rm=k

Rk

r0!r1! · · · rm!

= K

∞∑

k=0

(MR)k
∑

r0,r1,...,rm≥0
r0+r1+···+rm=k

k!

r0!r1! · · · rm!

= K

∞∑

k=0

(MR(m+ 1))k. (3.5)

Therefore, if R < 1/M(m + 1), i.e., if

max{‖u‖1 , T} <
1

M(m+ 1)
, (3.6)

then the series (3.3) converges absolutely and uniformly on [0, T ] for
each u ∈ B1(R)[0, T ].4

The above proof demonstrates in conjunction with Corollary 3.1
that if c ∈ RℓLC〈〈X〉〉 then the series (3.3) defines a Fliess operator
from Bm

p (R)[t0, t0 + T ] to a bounded subset of C[t0, t0 + T ] for every
p ∈ [1,∞], provided that R and T are sufficiently small. The following
theorem provides an even more precise description of Fc.

Theorem 3.2 Suppose c ∈ RℓLC〈〈X〉〉 with growth constants K,M >
0. Select any pair of conjugate exponents p, q ∈ [1,∞] and real numbers
R,T > 0 such that R1 := max{RT 1/q, T} < 1/M(m+1). (Let T 1/q = 1
when p = 1.) Then

Fc : Bm
p (R)[t0, t0 + T ] → Bℓ

q(S)[t0, t0 + T ],

where S = KT 1/q/(1 −MR1(m+ 1)).

Proof: For any u ∈ Bm
p (R)[t0, t0 + T ] observe that

4 See the Weierstrass M-test.
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yu
z

h 

Fig. 3.3. Wiener system in Example 3.3.

‖u‖1 ≤ ‖u‖
p
T 1/q ≤ RT 1/q.

Therefore, under the stated assumptions,

max{‖u‖1 , T} ≤ max{RT 1/q, T} = R1

<
1

M(m + 1)
.

In which case, (3.5) produces the upper bound

|y(t)| ≤ K

1 −MR1(m+ 1)
, t0 ≤ t ≤ t0 + T.

Thus, ‖y‖
q
≤ KT 1/q/(1−MR1(m+ 1)), or equivalently, y ∈ Bℓ

q(S)[t0,
t0 + T ].

Example 3.3 A Wiener system is an input-output system consisting
of a linear operator whose output is filtered by a function h. This class
of systems arises naturally, for example, in control systems where the
control law is realized by a linear state space model, and the actuators,
which are driven by the controller, exhibit saturation or some other
type of static nonlinearity. Certain classes of neural networks also ex-
hibit this type of structure. As an example, consider the single-input,
single-output Wiener system shown in Figure 3.3, where the dynam-
ical system is simply an integrator initialized so that z(0) = 0 and
h(z) = 1/(1 − z). Direct substitution for z in h gives

y(t) = h(z(t)) =

∞∑

k=0

(z(t))k

=

∞∑

k=0

(∫ t

0
u(τ) dτ

)k
=

∞∑

k=0

(Ex1 [u](t))k

=

∞∑

k=0

Ex ⊔⊔ k
1

[u](t) =

∞∑

k=0

Ek!xk1
[u](t)
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=

∞∑

k=0

k!Exk1
[u](t)

= Fc[u](t)

for all t ≥ 0 provided that |z(t)| < 1 (see Problem 2.4.5(a)). Note here
that the generating series c =

∑
k≥0 k!xk1 is locally convergent with

growth constants K = M = 1. Thus, for any p ∈ [1,∞] there must
exist R,T > 0 such that if ‖u‖p ≤ R then Fc[u] is well defined on
[0, T ]. For example, when p = 1 it follows from (3.6) that a sufficient
condition for convergence is

max{R,T} < 1

M(m+ 1)
=

1

2
. (3.7)

However, this bound on R and T is conservative because not every
coefficient of c is growing at the maximum rate KM |η| |η|!. Observe
that the de facto alphabet in this case has only a single letter, x1, so one
should really set m+1 = 1 in (3.7). For an even less conservative bound
select a fixed T ′ > 0 and consider all inputs satisfying

∥∥u[0,T ′]

∥∥
1
< 1.

It follows then that

|Fc[u](t)| =

∣∣∣∣∣

∞∑

k=0

(∫ t

0
u(τ) dτ

)k∣∣∣∣∣

≤
∞∑

k=0

(∫ t

0
|u(τ)| dτ

)k

≤
∞∑

k=0

∥∥u[0,T ′]

∥∥k
1

=
1

1 −
∥∥u[0,T ′]

∥∥
1

.

Thus, Fc is well defined on B1(R)[0, T ′] for any finite T ′ > 0 and R < 1.
But this more detailed type of analysis is often not possible when c
has a complex structure. Under such conditions, a simple condition
like (3.6) is useful and easy to estimate.

Example 3.4 An important observation is that the set of locally con-
vergent formal power series, RLC〈〈X〉〉, is not a closed subset of R〈〈X〉〉
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in the ultrametric topology. For example, let X = {x0, x1} and con-
sider the sequence of polynomials

ci = x1 + (2!)2 x21 + (3!)2 x31 + · · · + (i!)2 xi1, i ≥ 1.

Clearly, each polynomial ci is locally convergent, but the series c =
limi→∞ ci is not. Furthermore, each Fliess operator Fci is well defined
on some closed ball of input functions, but the present theory does not
guarantee that the operator Fc is well defined in any sense.

Theorem 3.1 established that the generating series defining y =
Fc[u] converges on Bm

1 (R)[t0, t0 + T ] provided R and T satisfy

max{R,T} < 1

M(m + 1)
. (3.8)

Clearly, the smaller the geometric growth constant M , the larger R
and T can be while maintaining a well defined output function y. Let
π : RℓLC〈〈X〉〉 → R+ ∪ {0} be the mapping which takes each series c
to the smallest geometric growth constants satisfying (3.2), namely,

M∗ = lim sup
|η|→∞

( |(c, η)|
|η|!

) 1
|η|

. (3.9)

It is possible that π(c) = 0 if, for example, c satisfies a more restrictive
bound like

|(c, η)| ≤ KM |η|, ∀η ∈ X∗

(the topic of the next section). Using π to partition RℓLC〈〈X〉〉 into
equivalence classes, define 1/(M(m + 1)) to be the radius of conver-
gence for the class of generating series π−1(M). This is in contrast to
the usual situation where a radius of convergence is assigned to an
individual series. For the case of the zero-input response, y0, one can
set R = 0 and m = 0 in (3.8) and get a lower bound on the length of
the convergence interval [t0, t0 +T ) for y0. The following theorem from
complex analysis is useful for better understanding the situation.

Theorem 3.3 Let f(z) =
∑

n≥0 anz
n/n! be an analytic function on

some neighborhood of the origin in the complex plane. Suppose z0 6= 0 is
a singularity of f of smallest modulus. Then for any ǫ > 0 there exists
an integer N ≥ 0 such that for all n > N , |an| < ((1/|z0|) + ǫ)n n!.
Furthermore, for infinitely many n, |an| > ((1/|z0|) − ǫ)n n!.
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n 

0 1 2 3 4 5 6 7 

log(|an|/n!) 

log(K) 

>0 

=0 

N=3 

slope=log(1/|z0|)>0 

Fig. 3.4. A typical growth bound for the coefficients of an exponential generating
series of a function which is real analytic at z = 0 as described in Theorem 3.3.

The essence of this theorem is that the real number 1/ |z0| de-
fined by the smallest singularity of f determines the minimal geometric
growth constant M∗. That is, select any ǫ > 0 and as shown in Fig-
ure 3.4, the coefficients will eventually be bounded by ((1/ |z0|)+ǫ)nn!
when n is sufficiently large. Furthermore, no number smaller than
1/ |z0| will have this property. No claim is made regarding the case
when ǫ = 0. One can always introduce a K > 1, if necessary, so that
|an| ≤ K((1/ |z0|) + ǫ)nn!, n ≥ 0. In the special case where an ≥ 0,
Pringsheim’s Theorem says that the function’s singularity z0 must be
real-valued. Thus, one will observe a finite escape time when y0 is
computed by simulation (cf. Problem 1.1.1). The following class of
generating series constitutes one such case in which all the series coef-
ficients are nonnegative and growing at the maximum admissible rate.
So by default, M∗ = M .5

Definition 3.4 Given an alphabet X and a fixed s ∈ R, the maximal

series having growth constants K,M > 0 is the element in Rℓ〈〈X〉〉
5 Henceforth, M∗ will be called the minimum geometric growth constant and the
star superscript will be dropped.
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where each component series has the form ci =
∑

η∈X∗ KM |η|(|η|!)s η.
When s = 1 the series is called locally maximal.6

Theorem 3.4 If c ∈ RLC〈〈X〉〉 is a locally maximal series with growth
constants K,M > 0, then for u ∈ Bp(R)[0, T ]

y(t) = Fc[u](t) =
K

1 −MFchar(X)[u](t)
.

In addition, the zero-input response has an interval of convergence
exactly equal to [0, T ), where T = 1/M .

Proof: Using the identity char(Xk) = (char(X)) ⊔⊔ k/k! from Prob-
lem 2.4.6(b) and Lemma 2.3, observe

y(t) =
∑

η∈X∗

KM |η| |η|!Eη[u]

= K
∞∑

k=0

Mk
∑

η∈Xk

k!Eη [u]

= K

∞∑

k=0

MkFk! char(Xk)[u]

= K
∞∑

k=0

MkFchar(X) ⊔⊔ k [u]

= K
∞∑

k=0

MkF kchar(X)[u]

=
K

1 −MFchar(X)[u]
.

Clearly, if u = 0, then y0(t) = K/(1 −Mt) so that interval of conver-
gence is determined by the singularity at t = 1/M . In particular, y0
has a finite escape time at t = 1/M .

Example 3.5 Consider the generating series

c =
∞∑

k=0

Mk
0 k!xk0 +M1k!xk0x1

6 See Appendix B for additional information regarding maximal series.
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with M0 < M1. In this case, c ∈ π−1(M1), so the radius of conver-
gence for the series c is 1/2M1. Membership in this equivalence class
implies that a lower bound on the radius of convergence for the zero-
input response is 1/M1, while the actual radius of convergence for y0
is 1/M0 > 1/M1.

Now that conditions have been established under which Fc is well
defined, several fundamental properties of this class of operators are
considered: absolute continuity and differentiability of the output func-
tion, uniqueness of the generating series, and preservation of analyt-
icity from input to output. Recall that in general differentiability of a
function at a point implies continuity at that same point, but not con-
versely. The usual counterexample of the latter is the absolute value
function f(z) = |z|. It is continuous at z = 0 but not differentiable
there. A more dramatic example is the function defined by the series

f(z) =
∞∑

n=0

1

2n
cos(3nz).

Weierstrass demonstrated in 1872 that this function is continuous at
every point but nowhere differentiable. To more precisely describe dif-
ferentiability properties, the following stronger notion of continuity is
useful.

Definition 3.5 Let J be a compact interval of R.7 A function f : R→
R is called absolutely continuous on J if for every ǫ > 0 there exists
a δ > 0 such that whenever Ji = [ai, bi] are nonoverlapping subintervals
of J with

∑n
i=1 |bi − ai| ≤ δ, it follows that

∑n
i=1 |f(bi) − f(ai)| ≤ ǫ. If

I is an arbitrary interval of R then f is said to be absolutely contin-

uous on I if it is absolutely continuous on every compact subinterval
of I.

It is easily shown that absolute continuity implies continuity in the
usual sense (see Problem 3.2.3), but more importantly, consider the
following theorem from real analysis.

Theorem 3.5 If f : R → R is absolutely continuous on the interval
I, then it is differentiable a.e. on I.

7 This is equivalent to requiring J to be closed and bounded.
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The proof of this theorem will not be pursued here, but the result will
be utilized momentarily to prove the next theorem concerning differ-
entiability of the output function of a Fliess operator. It is noted in
passing, however, that it can be shown that a function f is absolutely
continuous on J = [a, b] if and only if there exists a function g ∈ L1[a, b]
such that f(z) = f(a) +

∫ z
a g(τ) dτ everywhere on J . Readers familiar

with measure theory will recognize this result as a special case of the
Radon-Nikodym Theorem. Thus, g, which is equivalent to df/dt a.e.,
is usually called the Radon-Nikodym derivative. On the other hand,
if g happens to be continuous, then all this analysis reduces to the
Fundamental Theorem of Integral Calculus, namely, g = df/dt every-
where on J . Now consider the differentiability of the output function
of a Fliess operator.

Theorem 3.6 If c ∈ RℓLC〈〈X〉〉 and u ∈ Bm
p (R)[t0, t0 + T ], then

y = Fc[u] is differentiable a.e. on [t0, t0 + T ] provided R,T > 0 are
sufficiently small. In particular,

d

dt
Fc[u] =

m∑

i=0

ui Fx−1
i (c)[u]. (3.10)

Proof: In light of Theorem 3.5, it is sufficient to show that y = Fc[u]
is absolutely continuous. This is accomplished by first showing that
Eη[u] is absolutely continuous on [t0, t0 + T ] for any η ∈ X∗ and u ∈
B1(R)[t0, t0 + T ] with R,T satisfying (3.8). The proof is by induction
on the length of η. The first nontrivial case is when η = xj. Suppose
uj is bounded (a.e.) on every compact interval Ji = [ai, bi] ⊂ [t0, t0 +
T ]. (Note u0 always satisfies this property.) Then there exists a real
number Bi > 0 such that

∣∣Exj [u](bi, t0) − Exj [u](ai, t0)
∣∣ ≤

∫ bi

ai

|uj(t)| dt ≤ Bi |bi − ai| .

Given any set of n such nonoverlapping intervals, it follows that

n∑

i=1

∣∣Exj [u](bi, t0) −Exj [u](ai, t0)
∣∣ ≤ B

n∑

i=1

|bi − ai| ,

where B = maxiBi. Therefore, given any ǫ > 0, set δ = ǫ/B. In which
case, if

∑n
i=1 |bi − ai| ≤ δ, then
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n∑

i=1

∣∣Exj [u](bi, t0) −Exj [u](ai, t0)
∣∣ ≤ B

n∑

i=1

|bi − ai| ≤ Bδ = ǫ.

Therefore, Exj is absolutely continuous on [t0, t0+T ]. Now in the event
that uj is not bounded on Ji, it is necessary to use the fact that the
set of bounded functions on [a, b] is dense in L1[t0, t0 + T ]. That is,

uj = fj + gj , where |fj| ≤ Bi (a.e.) on Ji and
∫ bi
ai

|gj | dt can be made
arbitrarily small by a suitable choice of gj . Hence,

∣∣Exj [u](bi, t0) − Exj [u](ai, t0)
∣∣ ≤

∫ bi

ai

|fj(t) + gj(t)| dt

≤ Bi |bi − ai| +

∫ bi

ai

|gj(t)| dt.

Given any ǫ > 0, select each gj such that
∫ bi
ai

|gj(t)| dt < ǫ/(2n) and
set δ = ǫ/2B, where again B = maxiBi. Then if

∑n
i=1 |bi − ai| ≤ δ, it

follows that

n∑

i=1

∣∣Exj [u](bi, t0) − Exj [u](ai, t0)
∣∣ ≤ B

n∑

i=1

|bi − ai| +

n∑

i=1

∫ bi

ai

|gj(t)| dt

≤ B
( ǫ

2B

)
+ n

( ǫ

2n

)
= ǫ.

Therefore, Exj is absolutely continuous on [t0, t0 + T ]
Now assume that for every word η up to length k that Eη[u] is

absolutely continuous on [t0, t0+T ] when u ∈ Lm1 [t0, t0+T ]. Therefore,
Eη[u] is continuous on [t0, t0 + T ] and ūj := ujEη[u] ∈ L1[t0, t0 + T ].
Repeating the argument above using ūj instead of uj gives that Exjη
must be absolutely continuous on [t0, t0 + T ]. Hence, by induction the
absolute continuity of Eη[u] for all η ∈ X∗ is established.

To show that Fc[u] is absolutely continuous, fix n, select an ǫ > 0
and choose an integer N > 0 such that

∞∑

k=N

K(MR(m + 1))k ≤ ǫ

4n
.

This is always possible since M,R > 0 satisfy MR(m + 1) < 1. Now
because each Eη[u] is absolutely continuous, there exists a δ > 0 such
that
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n∑

i=1

N−1∑

k=0

∑

η∈Xk

|(c, η)| |Eη[u](bi, t0) − Eη[u](ai, t0)| ≤ ǫ

2

when
∑n

i=1 |bi − ai| ≤ δ. Hence, for this choice of δ,

n∑

i=1

|Fc[u](bi) − Fc[u](ai)|

≤
n∑

i=1

∞∑

k=0

∑

η∈Xk

|(c, η)| |Eη[u](bi, t0) − Eη[u](ai, t0)|

≤
n∑

i=1

N−1∑

k=0

∑

η∈Xk

|(c, η)| |Eη[u](bi, t0) − Eη[u](ai, t0)|+

n∑

i=1

∞∑

k=N

∑

η∈Xk

|(c, η)| (|Eη[u](bi, t0)| + |Eη[u](ai, t0)|)

≤ ǫ

2
+ 2n

∞∑

k=N

K(MR(m+ 1))k

≤ ǫ

2
+ 2n

( ǫ

4n

)

= ǫ,

and the differentiability claim is proved for the p = 1 case. But the
claim in fact holds for any p ∈ [1,∞] since the Lp spaces under con-
sideration are nested.

To verify the formula for d
dtFc[u] observe that

Fc[u](t) =
∑

η∈X∗

(c, η)Eη [u](t)

=
m∑

i=0

∑

η∈X∗

(c, xiη)Exiη[u](t)

=
m∑

i=0

∑

η∈X∗

(x−1i (c), η)

∫ t

0
ui(τ)Eη [u](τ) dτ.

Hence,

Fc[u](t +∆t) − Fc[u](t)

∆t
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=

m∑

i=0

∑

η∈X∗

(x−1i (c), η)
1

∆t

∫ t+∆t

t
ui(τ)Eη [u](τ) dτ.

Again |Eη[u](τ)| ≤ R|η|/ |η|! for all τ ∈ [0, T ] and η ∈ X∗ when u ∈
B1(R)[0, T ]. So the series above will converge when ∆t and R are small
enough. Taking the limit ∆t→ 0 gives almost everywhere that

d

dt
Fc[u](t) =

m∑

i=0

∑

η∈X∗

(x−1i (c), η)ui(t)Eη[u](t)

=

m∑

i=0

ui(t)Fx−1
i (c)[u](t).

If it is assumed that u has k continuous derivatives on [t0, t0 +
T ], i.e., u ∈ Ck[t0, t0 + T ], then it can be shown that y = Fc[u] ∈
Ck+1[t0, t0 + T ], k ≥ 0 (including the smooth case, k = ∞). This
is useful for computing higher-order derivatives that appear in the
context of differential equations. If u is smooth almost everywhere on
[t0, t0 + T ], then the same is true of y = Fc[u]. This fact is used in the
following theorem addressing the uniqueness of generating series.

Theorem 3.7 Suppose c, d ∈ RℓLC〈〈X〉〉. If Fc = Fd on B
m
∞(R)[t0, t0+

T ] for some real numbers R,T > 0, then c = d.

Proof: In light of the fact that Fc −Fd = Fc−d, it is sufficient to show
that if Fc = 0 on some Bm

∞(R)[t0, t0 + T ] then c = 0. The approach is
based on the following simple observation. Suppose the step function
input ū = αU is applied to an integrator multiplied by a constant
(c, x1), i.e.,

Fc[ū](t) = (c, x1)

∫ t

0
αU(τ) dτ

=

{
αt(c, x1) : t ≥ 0+

0 : otherwise,

where c = (c, x1)x1. Then clearly the only nonzero coefficient of
the generating series c can be extracted from the output y = Fc[ū]
by computing ∂2y(t)/∂α∂t = (c, x1) (see Problem 3.2.6 for another
simple example). The idea is to extend this approach to the case



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

3.2 Local Input-Output Properties 133

t0 t0+ t1 t0+ t1+ t2 t0+ t1+t 2+ t3 t0+ t1+ t2+ t3+ t4

t

α
i1

α
i2

α
i3

α
i4

α
i5

u
i
(tt )

Fig. 3.5. The i-th component of the input function ū utilized in the proof of
Theorem 3.7 (i 6= 0).

where c is arbitrary. Consider applying a piecewise constant input in
Bm
∞(R)[t0, t0 + T ] defined by

ū(t) = αj ≤ R, t ∈
[
j−1∑

l=0

tl,

j∑

l=0

tl

)

with αj = [α1j α2j · · ·αmj ]T ∈ Rm and tl > 0, j, l = 1, 2, . . . , k; and∑k
l=1 tl < T (see Figure 3.5). Since ū0 = 1, define α0j = 1. The claim

to be verified inductively is that for any k ≥ 1

∂k

∂t1∂t2 · · · ∂tk
Fc[ū](t0 + t1 + · · · + tk)

∣∣∣∣ tj=0+,

j=1,2,...,k

=
∑

ξ∈Xk

αξk (c, ξ),

(3.11)
where

αξk := αikkαik−1k−1 · · ·αi11
when ξ = xikxik−1

· · · xi1 ∈ Xk. Observe that when k = 1

∂

∂t1
Fc[ū](t0 + t1)

∣∣∣∣
t1=0+

=
m∑

i=0

ūi(t0 + t1)Fx−1
i (c)[ū](t0 + t1)

∣∣∣∣∣
t1=0+

=
∑

xi∈X
ξ∈X∗

ūi(t
+
0 ) (c, xiξ)Eξ[ū](t0)
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=
∑

xi∈X

αxi1 (c, xi).

Note that in the last step, the identity

Eξ[ū](t0) =

{
1 : ξ = ∅
0 : ξ 6= ∅

was employed. Now assume that the identity (3.11) holds up to some
fixed k ≥ 1. Then

∂k+1

∂t1∂t2 · · · ∂tk+1
Fc[ū](t0 + t1 + · · · + tk+1)

∣∣∣∣ tj=0+,

j=1,2,...,k+1

=
∂k

∂t1∂t2 · · · ∂tk

[
∂

∂tk+1
Fc[ū](t0 + t1 + · · · + tk+1)

∣∣∣∣
tk+1=0+

]∣∣∣∣∣ tj=0+,

j=1,2,...,k

=
∂k

∂t1∂t2 · · · ∂tk




m∑

ik+1=0

ūik+1
(t0 + t1 + · · · + tk+1) ·

Fx−1
ik+1

(c)[ū](t0 + t1 + · · · + tk+1)

∣∣∣∣
tk+1=0+

]∣∣∣∣∣ tj=0+,

j=1,2,...,k

=
∑

xik+1
∈X

αxik+1
k+1

∂k

∂t1∂t2 · · · ∂tk
·

Fx−1
ik+1

(c)[ū](t0 + t1 + · · · + tk)

∣∣∣∣ tj=0+,

j=1,2,...,k

.

The key fact used above is that ūik+1
(t0 + t1 + · · · + t+k ) = αik+1k+1.

Now use the induction hypothesis by applying (3.11):

∂k+1

∂t1∂t2 · · · ∂tk+1
Fc[ū](t0 + t1 + · · · + tk+1)

∣∣∣∣ tj=0+,

j=1,2,...,k+1

=
∑

xik+1
∈X

αxik+1
k+1


∑

ξ∈Xk

αξk (x−1ik+1
(c), ξ)




=
∑

ξ∈Xk+1

αξk+1 (c, ξ).
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Hence, by induction (3.11) holds for all k ≥ 1. (See Example 5.15 for
an alternative approach to this identity.)

Now by assumption Fc[ū] = 0 on [t0, t0 + T ]. Therefore,

∑

ξ∈Xk

αξk (c, ξ) = 0, k ≥ 1. (3.12)

Furthermore, observe that the left-hand side of the above expression
is a polynomial function of the input parameters αij . Thus, one can
compute partial derivatives of this expression with respect to αij. Let
l1, l2, . . . , lk be any k-tuple where lr ∈ {0, 1, . . . ,m}. Then

∂k

∂αlkk∂αlk−1k−1 · · · ∂αl11
αikkαik−1k−1 · · ·αi11

=

{
1 : lj = ij, j = 1, 2, . . . , k
0 : otherwise.

Taking such partial derivatives of both sides of equation (3.12) yields

∂k

∂αlkk∂αlk−1k−1 · · · ∂αl11
·

∑

xikxik−1
···xi1∈X

k

αikkαik−1k−1 · · ·αi11 (c, xikxik−1
· · · xi1)

= (c, xlkxlk−1
· · · xl1)

= 0.

That is, for any η = xlkxlk−1
· · · xl1 ∈ Xk, k ≥ 1, it follows that

(c, η) = 0. One caveat in this argument, however, is the case where
one or more ij = 0. Recall that α0j has been fixed to one, so it is
not really a free variable in the setup. A straightforward check shows
that the above argument will give the desired result when all partials
of the form ∂/∂α0,j are simply omitted. Finally, setting u = 0 gives
(c, ∅) = 0. Thus, c = 0 as desired.

Next, the main analyticity theorem is given. The basic claim is
that real analytic inputs produce real analytic outputs. The proof is
accomplished by extending the setup to the complex field, using tools
from the theory of complex variables, and then restricting the results
back to the real field.
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Theorem 3.8 If c ∈ RℓLC〈〈X〉〉 and u ∈ Bm
p (R)[t0, t0 + T ] is real

analytic on [t0, t0 + T ], then y = Fc[u] is real analytic on [t0, t0 + T ]
provided that R,T > 0 are sufficiently small.

Proof: Assume t0 = 0 and R,T > 0 are selected so that a given u ∈
Bm

p (R)[0, T ] is real analytic on [0, T ] and y = Fc[u] is well defined. Let
ũ be the complex extension of u which is analytic on a neighborhood
WC of [0, T ] in the complex plane. Without loss of generality, one can
assume that WC is simply connected, that the closure WC of WC is
compact, and that ũ is analytic on WC. Thus, for any fixed path in
WC there exists some R̃ > 0 such that ‖ũ‖

p
≤ R̃. Here the norm

is extended in a natural way using the moduli of the components of
ũ(w) as w follows the given path. Now for such a ũ define the iterated
integrals Eη[ũ] : WC → C by

Exiη[ũ](w) =

∫ w

0
ũi(ζ)Eη[ũ](ζ) dζ, xi ∈ X, η ∈ X∗,

where E∅ = 1 and ũ0 = 1. By induction, the integrand is analytic on
WC , so the value of the integral is independent of the path (chosen
inside WC), and the resulting function is analytic on WC as well. As in
the proof of Theorem 3.1, it can be shown from the assumed growth
condition that the series

ỹ(w) =
∑

η∈X∗

(c, η)Eη [ũ](w)

converges uniformly on WC. Since each Eη[ũ](w) is analytic on WC, it
follows that ỹ(w) is also analytic on WC (see Problem 3.2.7). Clearly
ỹ(w) is an analytic complex extension of the real-valued function

y(t) =
∑

η∈X∗

(c, η)Eη [u](t).

In which case, the restriction of ỹ to [0, T ], namely y, is real analytic
on [0, T ].

It is important to point out what is not being claimed in the the-
orem above. Namely, that if u can be represented by a single power
series over [0, T ] then so can y = Fc[u]. This claim is generally false as
shown in the next example.
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Example 3.6 Reconsider the Wiener system in Example 3.3 with p =
1. Take the input to be the entire function u(t) = − sinπt. Then clearly∥∥u[0,T ]

∥∥
1
≤ T so that Fc[u] converges at least on [0, T ] for any T < 1.

However, observe more specifically that

z(t) =

∫ t

0
u(τ) dτ =

1

π
cos(πt) − 1

π

= − 2

π
sin2

(π
2
t
)
,

and hence,

y(t) =
1

1 − z(t)
=

π
2

π
2 + sin2

(
π
2 t
)

for any t ∈ [0,∞). So while u has a Taylor series at t = 0 which
converges everywhere on [0,∞), it will be shown that y does not.
Define the function

f(w) =
π

2
+ sin2

(π
2
w
)
,

where w = a+ ib. It is easy to verify, using the identity

sin θ =
eiθ − e−iθ

2i
,

that

Re(f(w)) =
1

2
(1 + π − cos(πa) cosh(πb))

Im(f(w)) =
1

2
sin(πa) sinh(πb).

In which case, Im(f(w)) = 0 within the unit circle only along both the
real and imaginary axes. The values of w for which Re(f(w)) = 0 are
shown in Figure 3.6. Thus, inside the unit circle, f(w) = 0 only when
w = ±iw0, where

w0 =
1

π
cosh−1(π + 1) = 0.6682353705.

So while y is real analytic at every point within [0,∞), the series
representation of y at t = 0 only converges on [0, w0). Any shift of this
representation to another point within [0,∞) has similar limitations.
Thus, at least two series are needed to represent y on [0,∞). With the
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Fig. 3.6. Values of w for which Re(f(w)) = 0 (dashed lines), Im(f(w)) = 0 (real
and imaginary axes), and the region of convergence for the Taylor series of y at
t = 0 in Example 3.6 (inside inner circle).

help of symbol manipulation software, the first ten terms of the Taylor
series at w = 0 are found to be

y(w) =1 − 1

2
π w2 +

1

24
π2 (π + 6)w4 − 1

720
π3
(
30π + π2 + 90

)
w6+

1

40320
π4
(
126π2 + π3 + 1260π + 2520

)
w8 − 1

3628800
π5

(
510π3 + π4 + 13230π2 + 75600π + 113400

)
w10 +O

(
w12
)

=1 − 1.570796327w2 + 3.759329296w4 − 8.359524051w6+

18.73043265w8 − 41.94529728w10 +O
(
w12
)
.

The square root of the ratio of the magnitudes of the last two nonzero
coefficients of this series,

√
18.73043265/41.94529728 = 0.668239688,

must give an estimate of w0 since the radius of convergence of such a
series, T , and the smallest geometric growth constant, M , are related
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as T = 1/M . It is worth restating the subtle point that while this series
representation of y diverges at t = w0, the function y is perfectly well
defined at t = w0, namely y(w0) = 0.676214167 (cf. Problem 1.1.1).

As Theorem 3.2 demonstrated, the input-output system Fc can be
viewed as a mapping between to closed balls in the normed linear
spaces Lmp [t0, t0 + T ] and Lℓq[t0, t0 + T ] when its generating series is
locally convergent. Thus, it makes sense to consider whether the map-
ping is continuous as an operator between these spaces. The following
theorem answers this question to the affirmative.

Theorem 3.9 Suppose c ∈ RℓLC〈〈X〉〉 and select any pair of conjugate
exponents p, q ∈ [0,∞]. If the real numbers R,T > 0 are sufficiently
small, then the operator

Fc : Bm
p (R)[t0, t0 + T ] → Bℓ

q(S)[t0, t0 + T ]

for some S > 0 is continuous with respect to the Lp and Lq norms.
That is, for any ǫ > 0 there exists a δ > 0 such that for any
u, v ∈ Bm

p (R)[t0, t0 + T ] satisfying ‖v − u‖
p
< δ it follows that

‖Fc[v] − Fc[u]‖
q
< ǫ.

Proof: It is first proved by induction on the length of the word η ∈ X∗

that the mapping

Eη : Bm
p (R)[t0, t0 + T ] → Bℓ

q(S)[t0, t0 + T ]

has the desired continuity property. The focus is on the case where
p, q ∈ (1,∞) (the remaining case is handled similarly and left to the
reader). Without loss of generality, assume t0 = 0. The claim is trivial
when η is the empty word. If η = xi, then

‖Exi [v] − Exi [u]‖
q

=

(∫ T

0
|Exi [v](t) − Exi [u](t)|q dt

) 1
q

≤
(∫ T

0

(∫ T

0
|vi(τ) − ui(τ)| dτ

)q

dt

) 1
q

=

∫ T

0
|vi(τ) − ui(τ)| dτ T

1
q

≤ ‖vi − ui‖p T
2
q
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≤ ‖v − u‖p T
2
q ,

where Hölder’s inequality has been used in the second to the last step
above. Thus, if ‖v − u‖p < δ := ǫ/T 2/q, then clearly

‖Exi [v] − Exi [u]‖
q
< ǫ.

Now suppose the claim holds for all words up to some fixed length
k ≥ 0. Then for any xi ∈ X and η ∈ Xk observe

‖Exiη[v] − Exiη[u]‖
q

=

∥∥∥∥
(
Exiη[v] −

∫ ·

0
ui(τ)Eη [v](τ) dτ

)
+

(∫ ·

0
ui(τ)Eη [v](τ) dτ − Exiη[u]

)∥∥∥∥
q

≤
∥∥∥∥Exiη[v] −

∫ ·

0
ui(τ)Eη [v](τ) dτ

∥∥∥∥
q

+

∥∥∥∥
∫ ·

0
ui(τ)Eη [v](τ) dτ − Exiη[u]

∥∥∥∥
q

≤
(∫ T

0

(∫ T

0
|vi(τ) − ui(τ)| |Eη[v](τ)| dτ

)q

dt

) 1
q

+

(∫ T

0

(∫ T

0
|ui(τ)| |Eη[v](τ) − Eη[u](τ)| dτ

)q

dt

) 1
q

≤
∫ T

0
|vi(τ) − ui(τ)| |Eη [v](τ)| dτ T

1
q +

∫ T

0
|ui(τ)| |Eη[v](τ) − Eη[u](τ)| dτ T

1
q

≤ ‖v − u‖
p
‖Eη[v]‖

q
T

1
q + ‖u‖

p
‖Eη[v] − Eη[u]‖

q
T

1
q .

From the induction hypothesis Eη is continuous in the desired sense.
Thus, it follows that for any ǫ > 0, there exists a δ′ > 0 such that

‖Eη[v]‖
q
≤ ‖Eη[u]‖

q
+ 1

and
‖u‖

p
‖Eη[v] − Eη[u]‖

q
T

1
q < ǫ/2
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for all v in a ball centered at u of radius δ′ > 0.8 In which case, choose

δ = min



δ
′,

ǫ/2

(‖Eη[u]‖
q

+ 1)T
1
q





so that if ‖u− v‖
p
< δ, then

‖Exiη[v] − Exiη[u]‖
q
< ǫ.

Hence, by induction, Eη is continuous with respect to the Lp and Lq

norms for every η ∈ X∗.
To show that Fc is also continuous in the desired sense, observe

that for any integer N > 0

‖Fc[v] − Fc[u]‖
q

=

∥∥∥∥∥∥

∞∑

k=0

∑

η∈Xk

(c, η)(Eη [v] − Eη[u])

∥∥∥∥∥∥
q

≤

∥∥∥∥∥∥

N−1∑

k=0

∑

η∈Xk

(c, η)(Eη [v] − Eη[u])

∥∥∥∥∥∥
q

+

∥∥∥∥∥∥

∞∑

k=N

∑

η∈Xk

(c, η)(Eη [v] − Eη[u])

∥∥∥∥∥∥
q

≤

∥∥∥∥∥∥

N−1∑

k=0

∑

η∈Xk

(c, η)(Eη [v] − Eη[u])

∥∥∥∥∥∥
q

+

2

∞∑

k=N

K(MR(m+ 1))k,

where K,M > 0 are defined as in the proof of the previous theorem.
Clearly, the second term above can be bounded by ǫ/2 by selecting N
to be sufficiently large. For this fixed N , it is now possible to bound
the first term by ǫ/2 since each Eη in this finite sum is continuous as
shown above. This proves the theorem.

8 Of course, δ′ must be selected so that this ball is contained inside Bm
p (R)[0, T ].

It is also being tacitly assumed that u is not on the boundary of Bm
p (R)[0, T ].

Otherwise, this argument needs a few minor adjustments.
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3.3 Global Input-Output Properties

In this section, a sufficient condition is described under which a Fliess
operator is globally convergent. In addition, a global counterpart for
the analyticity of the output function is presented. The first theorem
introduces a growth condition for the coefficients of c under which Fc
is well defined for every input function from Lm1,e(t0).

Theorem 3.10 Suppose c ∈ Rℓ〈〈X〉〉 is a series with coefficients that
satisfy

|(c, η)| ≤ KM |η|(|η|!)s, ∀η ∈ X∗ (3.13)

for some real numbers K,M > 0 and s ∈ [0, 1). Then for any u ∈
Lm1,e(t0), the series

y(t) = Fc[u](t) =
∑

η∈X∗

(c, η)Eη [u](t) (3.14)

converges absolutely and uniformly on [t0, t0 + T ] for any T > 0.

Proof: Without loss of generality assume that t0 = 0. Choose any
T > 0 and pick any u ∈ Lm1,e(0). Let

R = max
{∥∥u[0,T ]

∥∥
1
, T
}
.

If the coefficients of c satisfy the global growth condition (3.13) then
the upper bound (3.5) in the proof of Theorem 3.1 can be strengthened
to

∑

η∈X∗

|(c, η)Eη [u](t)| ≤ K

∞∑

k=0

(MR(m + 1))k

(k!)1−s
.

Defining the sequence ak := (MR(m+ 1))k/(k!)1−s, it is clear that

lim
k→∞

ak+1

ak
= (MR(m + 1)) lim

k→∞

1

(k + 1)1−s
= 0.

Thus, from the ratio test the series in (3.14) must converge absolutely
and uniformly on [0, T ].

The set of all c ∈ Rℓ〈〈X〉〉 which satisfy the global growth condi-
tion (3.13) will be denoted by RℓGC〈〈X〉〉. For any given c, a constant
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yu
z

ezEx1

Fig. 3.7. The Wiener system in Example 3.8.

s for which there exists K,M > 0 satisfying (3.13) is called a Gevrey
order. Clearly if s′ > s then c will also have Gevrey order s′. The infi-
mum of all Gevrey orders of c is written as s∗. The following corollary
is a direct consequence of the fact that the extended spaces Lmp,e(t0),
p ∈ [1,∞] are nested.

Corollary 3.2 If c ∈ RℓGC〈〈X〉〉 and u ∈ Lmp,e(t0) with p ∈ [1,∞], then
the series (3.14) converges on [t0, t0 + T ) for any T > 0.

Example 3.7 Let X = {x0, x1} and consider a linear series

c =

∞∑

k=0

CAkB xk0x1

with A ∈ Rn×n nonzero and B,CT ∈ Rn×1. Observe that

|(c, xk0x1)| ≤ ‖C‖ ‖A‖k ‖B‖ = (‖C‖ ‖B‖ ‖A‖−1) ‖A‖|xk0x1| , k ≥ 0,

where ‖·‖ denotes any (sub-multiplicative) matrix/vector norm. In
which case, c ∈ RGC〈〈X〉〉 with global growth constants K = ‖C‖ ‖B‖ ·
‖A‖−1, M = ‖A‖ and s∗ = 0.

Example 3.8 Consider the single-input, single-output Wiener system
as shown in Figure 3.7. Observe

y(t) = ez(t) =

∞∑

k=0

(z(t))k

k!

=

∞∑

k=0

1

k!
Ekx1 [u](t) =

∞∑

k=0

E 1
k!
x ⊔⊔ k
1

[u](t)

=

∞∑

k=0

Exk1
[u](t)
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= Fc[u](t),

where c =
∑

k≥0 x
k
1 . Clearly, |(c, η)| ≤ 1 for all η ∈ X∗ with X =

{x0, x1}. So c is globally convergent with K = M = 1 and s∗ = 0.

The previous example suggests the following global analogue of
Theorem 3.4 when s∗ = 0. Its proof is just a minor variation of the
earlier proof.9 As expected from Theorem 3.3, the corresponding out-
put functions have no finite singularities.

Theorem 3.11 If c ∈ RGC〈〈X〉〉 is a maximal series with growth con-
stants K,M > 0 and s∗ = 0, then for u ∈ Lmp,e(t0)

y(t) = Fc[u](t) = K exp(MFchar(X)[u](t)).

In addition, the zero-input response has an infinite of convergence.

Example 3.9 This example suggests that the growth condition (3.13)
may only be a sufficient condition for global convergence, i.e., it is not
necessary. Suppose the system in the previous example is cascaded
with a copy of itself to produce the new system

y(t) = exp(Ex1 [exp(Ex1 [u(t)])].

It is not immediately evident that this new system has a Fliess operator
representation, this fact will be established in Section 3.6. But observe
that for any u ∈ L1,e(0), the output is well defined for every finite
t. Thus, any corresponding Fliess operator would have to be globally
convergent. However, consider the special case where u(t) = 1 on any
finite interval [0, T ] so that

y(t) = ee
t−1 =

∞∑

n=0

Bn
tn

n!
, t ≥ 0

as shown in Figure 3.8, where Bn, n ≥ 0 is the integer sequence known
as the Bell numbers. The first few Bell numbers are: 1, 2, 5, 15, 52,
203, 877, 4140. Their asymptotic behavior is known to simultaneously
satisfy the following three limits:

9 The case where 0 < s∗ < 1 is requires tools from fractional calculus that are
beyond the scope of the current presentation. See the references at the end of
the chapter for information about this case.
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Fig. 3.8. The function y(t) = ee
t−1 in Example 3.9 plotted on a double logarithmic

scale (solid line) and the function ỹ(t) = t (dashed line).

lim
n→∞

Bn
Mn

= ∞, ∀M > 0

lim
n→∞

Bn
(n!)s

= ∞, 0 ≤ s < 1

lim
n→∞

Bn
n!

= 0.

The first two limits imply that the Bell numbers are growing faster
than the global growth rate (3.13), where it is always assumed that
s ∈ [0, 1). The third limit indicates a growth rate corresponding to s∗ =
1 and 0 < M < 1. In which case, there exist globally convergent Fliess
operators which do not satisfy global growth condition (3.13). This
issue will be revisited in Section 3.6 where cascade interconnections
are considered in detail. It is in this context that such systems can
naturally appear.

Finally, the global analogue of Theorem 3.8 is considered. This
result will be used in Chapter 6, where state space realizations of Fc
are considered. The proof is very similar to its local counterpart except
that the global growth condition now permits an arbitrary T > 0 to
be handled in much the same way as it was in the previous theorem.
The details are thus left to the reader.
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Theorem 3.12 If c ∈ RℓGC〈〈X〉〉 and u ∈ Lmp,e(t0) with p ∈ [1,∞] is
real analytic, then y = Fc[u] is real analytic on [t0, t0 + T ] for any
T > 0.

3.4 Volterra Operators

Volterra operators date back to as early as the 1880s and are arguably
the most widely used class of nonlinear operators in science and en-
gineering. They can be viewed as a natural generalization of a linear
integral operator. Recall from Chapter 1 that a causal linear input-
output system taking m inputs to ℓ outputs can be expressed in terms
of the linear integral operator

y1(t) =

∫ t

t0

w(t, τ)u(τ) dτ

=
m∑

i=1

∫ t

t0

wi(t, τ)ui(τ) dτ, t ≥ t0.

One could define a second-order integral operator as

y2(t) =
m∑

i1,i2=1

∫ t

t0

∫ τ2

t0

wi2i1(t, τ2, τ1)ui2(τ2)ui1(τ1) dτ1 dτ2

or a k-th order integral operator as

yk(t) =

m∑

i1,...,ik=1

∫ t

t0

∫ τk

t0

· · ·
∫ τ2

t0

wik ···i1(t, τk, . . . , τ1)·

uik(τk) · · · ui1(τ1) dτ1 · · · dτk.

This motivates the following definition.10

Definition 3.6 A Volterra operator is any mapping of the form

V : u 7→ y(t) =
∞∑

k=0

yk(t),

where the zero-order (nonhomogeneous) term is formally defined as
y0(t) = w∅(t).

10 Caution, the subscripts on output y are not indicating component functions in
this section
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Now in the event that the kernel functions wik ···i1 are real analytic
over a common domain, the following theorem states that V can have
a Fliess operator representation.

Theorem 3.13 Suppose V is a Volterra operator, where each kernel
function has a series representation

wik···i1(t, τk, . . . , τ1) =

∞∑

n0,...,nk=0

(c, xnk
0 xikx

nk−1

0 . . . xi1x
n0
0 )·

(t− τk)
nk(τk − τk−1)

nk−1 · · · (τ1 − t0)
n0

nk! nk−1! · · · n0!

on some domain

Dk = {(t, τk, . . . , τ1) ∈ Rk+1 : t0 + T0 ≥ t ≥ τk ≥ · · · ≥ τ1 ≥ t0}.

If c ∈ RℓLC〈〈X〉〉 and p ∈ [1,∞], then there exists R,T > 0 such that
V = Fc on Bm

p (R)[t0, t0 + T ]. If c ∈ RℓGC〈〈X〉〉, then V = Fc on
Lmp,e(t0).

Proof: For k ≥ 1 observe

yk(t) =
m∑

i1,...,ik=1

∞∑

n0,...,nk=0

(c, xnk
0 xikx

nk−1

0 . . . xi1x
n0
0 )·

∫ t

t0

∫ τk

t0

· · ·
∫ τ2

t0

(t− τk)
nk

nk!
uik(τk)

(τk − τk−1)
nk−1

nk−1!
· · ·

ui1(τ1)
(τ1 − t0)n0

n0!
dτ1 · · · dτk

=

m∑

i1,...,ik=1

∞∑

n0,...,nk=0

(c, xnk
0 xikx

nk−1

0 · · · xi1xn0
0 )·

E
x
nk
0 xikx

nk−1
0 ···xi1x

n0
0

[u](t, t0).

When k = 0

y0(t) = (c, ∅) + (c, x0)
t− t0

1!
+ (c, x20)

(t− t0)
2

2!
+ · · ·

=

∞∑

n0=0

(c, xn0
0 )Exn0

0
[u](t, t0).
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Therefore,

V [u] =

∞∑

k=0

yk =
∑

η∈X∗

(c, η)Eη [u] = Fc[u],

which is well defined for every u on some closed-ball Bm
p (R)[t0, t0 +

T ] if c ∈ RℓLC〈〈X〉〉 (Theorem 3.1) and on Lmp,e(t0) if c ∈ RℓGC〈〈X〉〉
(Theorem 3.10).

Example 3.10 Reconsider the Wiener system in Example 3.3. It was
shown earlier that

y(t) =

∞∑

k=0

k!Exk1
[u](t, t0)

= 1 +

∞∑

k=1

∫ t

t0

∫ τk

t0

· · ·
∫ τ2

t0

k! u1(τk) · · · u1(τ1) dτ1 · · · dτk.

Thus, by direct observation, the kernel functions of the corresponding
Volterra operator are

w11···1︸ ︷︷ ︸
k times

(t, τk, . . . , τ1) = k!, k ≥ 1

w∅(t) = 1.

It is clear that the generating series c is locally convergent with growth
constants K = M = 1. So the Volterra operator with t0 = 0 is well
defined on B1(R)[0, T ] for sufficiently small R,T > 0.

Example 3.11 Consider a series

c =

∞∑

k=0

m∑

i1,...,ik=0

(λNik · · ·Ni1γ) xik · · · xi1 ,

where Nij ∈ Rn×n, ij ∈ {0, 1, . . . ,m} and γ, λT ∈ Rn×1. Each word
xik · · · xi1 can be rewritten uniquely in the form

xnk
0 xikx

nk−1

0 xik−1
· · · xn1

0 xi1x
n0
0 ,
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where now ij ∈ {1, 2, . . . ,m} (see equation (2.43)). In which case, c
has the equivalent form

c =

∞∑

k=0

m∑

i1,...,ik=1

∞∑

n0,...,nk=0

(λNnk
0 NikN

nk−1

0 · · ·Ni1N
n0
0 γ)·

xnk
0 xikx

nk−1

0 · · · xi1xn0
0 .

By inspection, the corresponding Volterra kernel function for any k ≥ 1
is

wik···i1(t, τk, . . . , τ1) =

∞∑

n0,...,nk=0

(λNnk
0 NikN

nk−1

0 · · ·Ni1N
n0
0 γ)·

(t− τk)nk(τk − τk−1)
nk−1 · · · (τ1 − t0)

n0

nk! nk−1! · · ·n0!
= λeN0(t−τk)NikeN0(τk−τk−1) · · ·Ni1eN0(τ1−t0)γ,

and similarly,
w∅(t) = λeN0(t−t0)γ.

Therefore, the associated Volterra operator is

y(t) = λeN0(t−t0)γ+
∞∑

k=1

m∑

i1,...,ik=1

∫ t

t0

∫ τk

t0

· · ·
∫ τ2

t0

λeN0(t−τk)NikeN0(τk−τk−1) · · ·

Ni1eN0(τ1−t0)γ uik(τk) · · · ui1(τ1) dτ1 · · · dτk.

It is easily verified that c ∈ RGC〈〈X〉〉 (see Theorem 4.1), hence the
operator is well defined on any Lmp,e(t0) space. Truncating this series
to first order gives the linear input-output mapping

ŷ(t) = y0(t) + y1(t)

= λeN0(t−t0)γ +

m∑

i=1

∫ t

t0

λeN0(t−τ)Nie
N0(τ−t0)γ ui(τ) dτ.

If, in addition, N0 and Ni commute for each i = 1, 2, . . . ,m then a
corresponding linear state space system is

ż = N0z +

m∑

i=1

Niγ ui, z(t0) = γ
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ŷ = λz.

3.5 Parallel Connections

Given two input-output systems with Fliess operator representations
Fc and Fd, it is natural in applications to interconnect them to form
new and more complex systems. In this section and the two subsequent
sections, three elementary types of connections are analyzed in detail:
the parallel connection, the cascade connection, and the feedback con-
nection. In each case, the following questions need to be addressed:

1. Is the composite system well-posed? That is, are the applied inputs
to each subsystem well defined and admissible?

2. Does the composite system have a Chen-Fliess series representa-
tion?

3. If so, how exactly is the generating series of the composite system
computed?

4. What is the nature of the convergence of the Chen-Fliess series rep-
resenting the composite system? Is it divergent, locally convergent,
globally convergent?

5. Finally, what can be said about the radius of convergence of the
composite system if it is known to be only locally convergent?

The starting point is the two parallel connections shown in Fig-
ure 3.9. Both Fc and Fd are driven with the same input function,
u, and their respective outputs are either added or multiplied point-
wise in time. In each case, the outputs are also combined component-
wise, therefore, it is assumed throughout that both systems have the
same number of outputs. These interconnections are clearly well-posed
when both generating series are locally convergent in light of apply-
ing Theorem 3.1 using the growth constants K = max(Kc,Kd) and
M = max(Mc,Md). The first theorem states that both parallel con-
nections have Chen-Fliess series representations, and the generating
series is provided in each case.

Theorem 3.14 Given Fliess operators Fc and Fd, where c, d ∈ RℓLC〈〈X〉〉,
the parallel connections Fc +Fd and FcFd have generating series c+ d
and c ⊔⊔ d, respectively. That is, Fc + Fd = Fc+d and FcFd = Fc ⊔⊔ d.
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yu

Fd

Fc

+

(a) parallel connection with an adder (parallel sum)

yu

Fd

Fc

×

(b) parallel connection with a multiplier (parallel product)

Fig. 3.9. Parallel system connections under consideration

Proof: For the parallel sum connection, observe that

Fc[u] + Fd[u] =
∑

η∈X∗

(c, η)Eη [u] +
∑

η∈X∗

(d, η)Eη [u]

=
∑

η∈X∗

(c+ d, η)Eη [u]

= Fc+d[u].

For the parallel product connection, in light of the componentwise
definition of the shuffle product and Lemma 2.3, it follows that

Fc[u](t)Fd[u] =
∑

η∈X∗

(c, η)Eη [u]
∑

ξ∈X∗

(d, ξ)Eξ [u]

=
∑

η,ξ∈X∗

(c, η)(d, ξ) Eη ⊔⊔ ξ[u]

= Fc ⊔⊔ d[u].
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Example 3.12 Reconsider Example 3.3, where

z(t) =

∫ t

0
u(τ) dτ, y(t) =

1

1 − z(t)
.

The corresponding input-output equation can be shown by direct dif-
ferentiation of y to be

ẏ − y2u = 0, y(0) = 1.

But since y = Fc[u] with

c =

∞∑

k=0

k! xk1,

this equation can also be verified starting with Fc by computing its
square, which can be viewed as a parallel product connection, and
then comparing the result against the time derivative Fc found via
Theorem 3.6. Specifically, y2 = (Fc)

2 = Fc ⊔⊔ c, where

c ⊔⊔ c =

∞∑

k,l=0

k! l!xk1 ⊔⊔ xl1

=
∞∑

k,l=0

k! l!

(
k + l

k

)
xl+l1

=
∞∑

k,l=0

(k + l)!xk+l1

=

∞∑

k=0

k∑

l=0

k!xk1

=
∞∑

k=0

(k + 1)!xk1 .

In which case,

uy2 = u
∞∑

k=0

(k + 1)!Exk1

= uFx−1
1 (c)[u]

=
d

dt
Fc[u]
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= ẏ

as expected.

The next two theorems show that both RℓLC〈〈X〉〉 and RℓGC〈〈X〉〉
are closed under addition and the shuffle product.

Theorem 3.15 Suppose c, d ∈ RℓLC〈〈X〉〉 with growth constants Kc,
Mc > 0 and Kd,Md > 0, respectively. Then c + d ∈ RℓLC〈〈X〉〉 and
c ⊔⊔ d ∈ RℓLC〈〈X〉〉. Specifically,

|(c+ d, ν)| ≤ (Kc +Kd)M
|ν||ν|!, ∀ν ∈ X∗, (3.15)

and
|(c ⊔⊔ d, ν)| ≤ KcKdM

|ν|(|ν| + 1)!, ∀ν ∈ X∗, (3.16)

where M = max{Mc,Md}.
Note that since n + 1 ≤ 2n for all n ≥ 0, equation (3.16) implies

the more conventional local convergence upper bound

|(c ⊔⊔ d, ν)| ≤ KcKd(2M)|ν||ν|!, ∀ν ∈ X∗.

Proof: The upper bound regarding c+ d is trivial to produce. For the
shuffle product, observe that

|(c ⊔⊔ d, ν)| =

∣∣∣∣∣∣∣∣

|ν|∑

k=0

∑

η∈Xk

ξ∈X|ν|−k

(c, η)(d, ξ)(η ⊔⊔ ξ, ν)

∣∣∣∣∣∣∣∣

≤
|ν|∑

k=0

∑

η∈Xk

ξ∈X|ν|−k

KcM
k
c k! KdM

|ν|−k
d (|ν| − k)! (η ⊔⊔ ξ, ν)

≤ KcKdM
|ν|
|ν|∑

k=0

k! (|ν| − k)!

(|ν|
k

)

= KcKdM
|ν|
|ν|∑

k=0

|ν|!

= KcKdM
|ν|(|ν| + 1)!

(see Problem 2.4.3).
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Theorem 3.16 Let c, d ∈ RℓGC〈〈X〉〉 with the infimum of their Gevrey
orders being s∗c and s∗d, respectively. Then c + d ∈ RℓGC〈〈X〉〉 and
c ⊔⊔ d ∈ RℓGC〈〈X〉〉, and in particular, s∗c+d ≤ max(s∗c , s

∗
d) and s∗c ⊔⊔ d ≤

max(s∗c , s
∗
d).

The proof for the theorem above and various generalizations can
be found in the literature (see the bibliographic notes at the end of
the chapter). A special case is addressed in Problem 3.5.1.

Example 3.13 Let X = {x0, x1} and consider two linear series c, d ∈
RGC〈〈X〉〉 with corresponding coefficients

(c, xk0x1) = CcA
k
cBc, (d, xk0x1) = CdA

k
dBd, k ≥ 0

(see Example 3.7). Then the generating series for the parallel sum
connection has coefficients

(c+ d, xk0x1) = CcA
k
cBc + CdA

k
dBd

= [Cc Cd](diag(Ac, Ad))
k[BT

c BT
d ]T , k ≥ 0.

Since this connection produces another linear series in the same class as
c and d, the composite system is also globally convergent with s∗c+d = 0.

Example 3.14 Let X0 = {x0} and consider two series c, d ∈ R[[X0]]
with coefficients

(c, xk0) = CcA
k
czc, (d, xk0) = CdA

k
dzd, k ≥ 0,

where Ac ∈ Rnc×nc, Ad ∈ Rnd×nd , CTc , zc ∈ Rnc×1. CTd , zd ∈ Rnd×1.
Then

(c ⊔⊔ d, xk0) =

∞∑

i,j=0

(CcA
i
czc)(CdA

j
dzd)(x

i
0 ⊔⊔ xj0, x

k
0)

=

k∑

j=0

(CcA
k−j
c zc)(CdA

j
dzd)

(
k

j

)

= (Cc ⊗ Cd)




k∑

j=0

(Ak−jc ⊗Ajd)

(
k

j

)
 (zc ⊗ zd),
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using Problem 2.4.5(b) and Kronecker product identity

(A⊗B)(C ⊗D) = AB ⊗ CD.

From the definition of the Kronecker sum,

A⊕B = (A⊗ Ind
) + (Inc ⊗B),

it follows that

(A⊕B)k =
k∑

j=0

(Ak−j ⊗Bj)

(
k

j

)

(see Problem 3.5.2). Therefore, the series c ⊔⊔ d has coefficients

(c ⊔⊔ d, xk0) = (Cc ⊗ Cd)(Ac ⊕Ad)
k(zc ⊗ zd), k ≥ 0,

which is clearly globally convergent. The series c and d are associ-
ated with autonomous linear state space realizations (Ac, Cc, zc) and
(Ad, Cd, zd), respectively. In which case, the triple (Ac ⊕ Ad, Cc ⊗
Cd, zc⊗zd) is a linear state space realization of the input-output system
Fc ⊔⊔ d[u] when u = 0.

Now that it has been shown that local and global convergence are
preserved for parallel connections, a finer analysis of the local case is
pursued. Specifically, the goal is to determine the radii of convergence
for the generating series of these interconnected systems. The main
insight follows from Theorem 3.4, namely, that if c is a locally maximal
series, then the smallest geometric growth constant can be determined
from the system’s zero-input response.

Lemma 3.2 Suppose X = {x0, x1, . . . , xm}. Let c̄ and d̄ be locally
maximal series with growth constants Kc,Mc > 0 and Kd,Md > 0,
respectively. If b̄ = c̄ + d̄, then the sequence (b̄i, x

k
0), k ≥ 0 has the

exponential generating function

f(x0) :=

∞∑

k=0

(b̄i, x
k
0)
xk0
k!

=
Kc

1 −Mcx0
+

Kd

1 −Mdx0

for every i = 1, 2, . . . , ℓ. Moreover, the minimal geometric growth con-
stants for b̄ is

Mb = max{Mc,Md}.



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

156 3. Fliess Operators

Proof: There is no loss of generality in assuming ℓ = 1. Observe for
any ν ∈ Xn, n ≥ 0 that

(b̄, ν) = (c̄, ν) + (d̄, ν) = (KcM
n
c +KdM

n
d )n!.

Furthermore, (b̄, ν) = (b̄, xn0 ), n ≥ 0. The key idea is that f(t) is the
zero-input response of Fb̄. Specifically,

f(t) =

∞∑

k=0

(b̄, xk0)
tk

k!
= Fb̄[0] = Fc̄[0] + Fd̄[0]

=
∞∑

k=0

KcM
k
c t
k +

∞∑

k=0

KdM
k
d t
k =

Kc

1 −Mct
+

Kd

1 −Mdt
. (3.17)

Since f is analytic at the origin, by Theorem 3.3 the infimum of all
geometric growth constants for the sequence (b̄, xn0 ), n ≥ 0, and thus for
the full series b̄, is determined by the location of any singularity nearest
to the origin in the complex plane, say z0. Specifically, Mb = 1/|z0|,
where it is easily verified from (3.17) that z0 is the positive real number

z0 =
1

max{Mc,Md}
.

This proves the lemma.

Now the main result is given below. It confirms what was not ob-
vious in Theorem 3.15, i.e., that Mb = max{Mc,Md} is the minimum
geometric growth constant for all parallel sum connections.

Theorem 3.17 Suppose X = {x0, x1, . . . , xm}. Let c, d ∈ RℓLC〈〈X〉〉\
RℓGC〈〈X〉〉 with growth constants Kc,Mc > 0 and Kd,Md > 0, respec-
tively. If b = c+ d, then

|(b, ν)| ≤ KbM
|ν|
b |ν|!, ν ∈ X∗

for some Kb > 0, where Mb = max{Mc,Md}. Furthermore, if Mc and
Md are minimal, then no geometric growth constant smaller than Mb

exists. Thus, the radius of convergence for c+ d is

1

Mb(m+ 1)
.



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

3.5 Parallel Connections 157

Proof: First observe that for all ν ∈ X∗ and i = 1, 2, . . . , ℓ

|(c+ d, ν)| ≤ |(c, ν)| + |(d, ν)|
≤ (c̄i, ν) + (d̄i, ν)

= (b̄i, ν),

where c̄, d̄ and b̄ are defined as in Lemma 3.2. Applying this lemma, it
is clear that for any ǫ > 0 and some Kb > 0

(b̄i, ν) ≤ Kb(Mb + ǫ)|ν||ν|!, ν ∈ X∗.

Furthermore, there is no geometric growth constant smaller than Mb

since b and b̄ are in the same growth equivalence class. In this specific
case, it was shown in Theorem 3.15 that the bound does apply even
when ǫ = 0.

A similar analysis is now undertaken for the parallel product con-
nection. The following lemma is a prerequisite.

Lemma 3.3 Suppose X = {x0, x1, . . . , xm}. Let c̄, d̄ ∈ RℓLC〈〈X〉〉 be
locally maximal series with growth constants Kc,Mc > 0 and Kd,Md >
0, respectively. If b̄ = c̄ ⊔⊔ d̄, then the sequence (b̄i, x

k
0), k ≥ 0 has the

exponential generating function

f(x0) =
KcKd

(1 −Mcx0)(1 −Mdx0)

for every i = 1, 2, . . . , ℓ. Moreover, the minimal geometric growth con-
stants for b̄ is

Mb = max{Mc,Md}.

Proof: There is no loss of generality in assuming ℓ = 1. Observe for
any ν ∈ Xn, n ≥ 0 that

(b̄, ν) =
n∑

j=0

∑

η∈Xj

ξ∈Xn−j

(c̄, η)(d̄, ξ)(η ⊔⊔ ξ, ν)

=

n∑

j=0

KcM
j
c j!KdM

n−j
d (n− j)!

∑

η∈Xj

ξ∈Xn−j

(η ⊔⊔ ξ, ν)

=

n∑

j=0

KcM
j
c j!KdM

n−j
d (n− j)!

(
n

j

)
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= KcKd




n∑

j=0

M j
cM

n−j
d


n!. (3.18)

Therefore, b̄ and the sequence (b̄, xn0 ), n ≥ 0 will have the same infimum
of their geometric growth constants. Next note that f(t) is the zero-
input response of Fb̄. Specifically,

f(t) =
∞∑

k=0

(b̄i, x
k
0)
tk

k!
= Fb̄[0] = Fc̄[0]Fd̄[0]

=
∞∑

k=0

KcM
k
c t
k
∞∑

k=0

KdM
k
d t
k =

KcKd

(1 −Mct)(1 −Mdt)
.

Since f is analytic at the origin, Theorem 3.3 is applied to compute
the infimum of the geometric growth constants, namely, Mb = 1/|z0|,
where

z0 =
1

max{Mc,Md}
.

This proves the theorem.

Now the main convergence result for this interconnection is pre-
sented.

Theorem 3.18 Suppose X = {x0, x1, . . . , xm}. Let c, d ∈ RℓLC〈〈X〉〉\
RℓGC〈〈X〉〉 with growth constants Kc,Mc > 0 and Kd,Md > 0, respec-
tively. If b = c ⊔⊔ d, then for every ǫ > 0

|(b, ν)| ≤ Kb(Mb + ǫ)|ν||ν|!, ν ∈ X∗

for some Kb > 0, where Mb = max{Mc,Md}. Furthermore, if Mc and
Md are minimal, then no geometric growth constant smaller than Mb

exists. Thus, the radius of convergence for c ⊔⊔ d is

1

Mb(m+ 1)
.

Proof: Assume ℓ = 1 and observe for all ν ∈ X∗ that

|(c ⊔⊔ d, ν)| ≤
n∑

j=0

∑

η∈Xj

ξ∈Xn−j

|(c, η)||(d, ξ)|(η ⊔⊔ ξ, ν)
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≤
n∑

j=0

∑

η∈Xj

ξ∈Xn−j

(c̄, η)(d̄, ξ)(η ⊔⊔ ξ, ν)

= (b̄, ν),

where b̄, c̄ and d̄ are defined as in Lemma 3.3. A direct application of
this lemma gives for any ǫ > 0

(b̄, ν) ≤ Kb(Mb + ǫ)|ν||ν|!, ν ∈ X∗

for some Kb > 0. Furthermore, (b̄, xn0 ), n ≥ 0 can not be bounded by
any smaller geometric growth constant. Thus, the theorem is proved.

Since the exponential generating functions in Lemma 3.2 and
Lemma 3.3 have identical sets of singularities, the parallel sum and
parallel product connections must have the same radii of convergence.
However, their behavior exactly at the boundary of the region of con-
vergence is different. Specifically, the parallel sum connection is well
defined at the boundary, while the parallel product connection is not.
To see this, set M = Mc = Md in the proof of Lemma 3.3 and
define Mǫ = M(1 + ǫ) with ǫ > 0. If there exists a Kb such that
(b̄, ν) ≤ KbM

|ν| |ν|! for all ν ∈ X∗, then necessarily

sup
ν∈X∗

(b̄, ν)

M |ν|! ≤ Kb <∞.

From (3.18) it follows directly that

sup
ν∈X∗

(b̄, ν)

Mǫ |ν|!
= KcKd sup

ν∈X∗

|ν| + 1

(1 + ǫ)|ν|
= KcKǫ,

where Kǫ := supν∈X∗(|ν| + 1)/(1 + ǫ)|ν|. An upper bound for Kǫ is
found by showing that fǫ(x) = (x + 1)/(1 + ǫ)x has a single maximum
at x∗ǫ = (1/ log(1 + ǫ)) − 1 > 0 when 0 < ǫ ≤ e − 1. Therefore,

Kǫ ≤ K̂ǫ := fǫ(x
∗
ǫ ) = e−1

1 + ǫ

log(1 + ǫ)
.

In this case, the upper bound is tight (see Figure 3.10). For ǫ > e −
1, Kǫ = 1 and K̂ǫ > 1, and thus this upper bound is conservative.
In addition, since Kǫ becomes unbounded as ǫ vanishes, this parallel
product connection is not well defined directly on the boundary of the
region of convergence.
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Fig. 3.10. Sample plots of fǫ(x) and K̂ǫ.

yu
v

Fd fc

(a) Wiener-Fliess system

yu
v

Fd Fc

(b) cascade connection of two Fliess operators

Fig. 3.11. Cascade system connections

3.6 Cascade Connections

A cascade or series connection is an interconnection where the output
of one system is passed to the input of another system. Two examples
of cascade connections are shown in Figure 3.11. The Wiener-Fliess
system is a generalization of the classical Wiener system, where the
linear operator in the first (left-most) system is replaced by a Fliess
operator (see Example 3.3). The cascade of two Fliess operators is an
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interconnection of two dynamical systems. The Wiener-Fliess system
is not a special case of such an interconnection since in general Fliess
operators are not memoryless (Fc0 [u](t) = c0 ∈ R for all u and t be-
ing the only exception). Therefore, the underlying algebraic structures
describing these two types of cascade are distinct.

As with the parallel connections, the same set of five basic questions
needs to be addressed. Consider first, as an example, the well-posedness
of the cascade connection of two Fliess operators with m = ℓ. The main
issue is whether the output of the first system v is an admissible input
to the second system Fc. This is most easily handled by applying The-
orem 3.2 twice, once for v = Fd[u] and once for y = Fc[v]. Specifically,
set M = max{Mc,Md} and select Rc, Rd, and T such that

R1,c := max{RcT 1/p, T} < 1

(m+ 1)M

R1,d := max{RdT 1/q, T} < 1

(m+ 1)M
.

In which case, operators Fc and Fd converge on [0, T ] provided u ∈
Bp(Rd)[0, T ] and v ∈ Bq(Rc)[0, T ]. Their corresponding outputs must
reside in Bp(Sc)[0, T ] and Bq(Sd)[0, T ], respectively, where

Sc =
KcT

1/p

1 − (m+ 1)MR1,c

Sd =
KdT

1/q

1 − (m+ 1)MR1,d
.

Therefore, the output of Fd will be an admissible input for Fc whenever
Bq(Sd)[0, T ] ⊆ Bq(Rc)[0, T ]. That is, when

KdT
1/q

1 − (m+ 1)MR1,d
≤ Rc.

Observe that if this is not the case, then T can always be decreased
to produce this condition. Hence, this cascade connection can always
well-posed. A similar argument can be given for Wiener-Fliess systems.

Determining whether a cascade system has a Chen-Fliess series rep-
resentation and what are the convergence properties of the composite
system requires much more work. The first two theorems below state
that for each case shown in Figure 3.11 the cascade system does have
a Chen-Fliess series representation, and an explicit expression is given
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for its generating series using composition products as described in
Section 2.7.

Theorem 3.19 Let X = {x0, x1, . . . , xm} and X̃ = {x̃1, x̃2, . . . , x̃m̃}.
Given a Fliess operator Fd, d ∈ Rm̃LC〈〈X〉〉 and a function fc : Rm̃ →
Rℓ with generating series c ∈ RℓLC [[X̃ ]] at z = (d, ∅), namely,

fc(z) =
∑

η̃∈X̃∗

(c, η̃)
(z − (d, ∅))η̃

η̃!
,

the cascade connection fc ◦ Fd has the generating series in Rℓ〈〈X〉〉

c ◦ d :=
∑

η̃∈X̃∗

(c, η̃)
(d− (d, ∅)) ⊔⊔ η̃

η̃!
.

That is, fc ◦ Fd = Fc◦d.

Proof: The proof follows from elementary properties of the shuffle
product. Defining the proper series d̃ := d− (d, ∅), observe that

fc ◦ Fd[u] =
∑

η̃∈X̃∗

(c, η̃)
(z − (d, ∅))η̃

η̃!

∣∣∣∣
z=Fd[u]

=
∑

η̃∈X̃∗

(c, η̃)
(Fd[u] − F(d,∅)[u])η̃

η̃!

=
∑

η̃∈X̃∗

(c, η̃)

η̃!
(Fd̃[u])η̃ .

If η̃ = x̃ik · · · x̃i1 then

fc ◦ Fd[u] =
∑

η̃∈X̃∗

(c, η̃)

η̃!
Fd̃ik

[u]Fd̃ik−1
[u] · · ·Fd̃i1 [u]

=
∑

η̃∈X̃∗

(c, η̃)

η̃!
Fd̃ik ⊔⊔ d̃ik−1

··· ⊔⊔ d̃i1
[u]

=
∑

η̃∈X̃∗

(c, η̃)

η̃!
Fd̃ ⊔⊔ η̃ [u]

=
∑

η̃∈X̃∗

(c, η̃)

η̃!


∑

η∈X∗

(d̃ ⊔⊔ η̃, η)Eη [u]



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=
∑

η∈X∗


∑

η̃∈X̃∗

(c, η̃)
(d̃ ⊔⊔ η̃, η)

η̃!


Eη[u]

=
∑

η∈X∗

(c ◦ d, η)Eη [u]

= Fc◦d[u].

Recall that the properness of d̃ ensures that c◦d is a well defined series
in Rℓ〈〈X〉〉 (see Theorem 2.12).

Example 3.15 Consider a Wiener system where fc(z) = K/(1−Mz)
for some K,M > 0 and Fd[u] =

∑m
i=0Exi [u]. This is a modest

generalization of the system in Example 3.3. Here X̃ = {x̃1} and
X = {x0, x1, . . . , xm} such that c =

∑
k≥0KM

kk! x̃k1 , and d is the
proper polynomial char(X). Then fc ◦ Fd=Fc◦d with

c ◦ d =
∑

η̃∈X̃∗

(c, η̃)
d ⊔⊔ η̃

η̃!
=
∞∑

k=0

KMkk!
(char(X)) ⊔⊔ k

k!

=
∞∑

k=0

KMkk! char(Xk) =
∑

η∈X∗

KM |η| |η|! η,

where the identity in Problem 2.4.6(b) has been used. Therefore, a
locally maximal series is the generating series for the Wiener system
y = K/(1 −MFchar(X)[u]) (see Theorem 3.4).

Next, the generating series for the cascade connection of two Fliess
operators is described.

Theorem 3.20 Let X = {x0, x1, . . . , xm} and X̃ = {x̃0, x̃1, . . . , x̃m̃}.
Given Fliess operators Fc and Fd, where c ∈ Rℓ̃LC〈〈X̃〉〉 and d ∈
Rm̃LC〈〈X〉〉, the cascade connection Fc ◦ Fd has the generating series

in Rℓ̃〈〈X〉〉
c ◦ d =

∑

η̃∈X̃∗

(c, η̃)ψd(η̃)(1),

where ψd is the continuous (in the ultrametric sense) algebra homo-
morphism from R〈〈X̃〉〉 into End(R〈〈X〉〉) uniquely specified by

ψd(x̃iη̃) = ψd(x̃i) • ψd(η̃), x̃i ∈ X̃, η̃ ∈ X̃∗
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using the family of mappings

ψd(x̃i) : R〈〈X〉〉 → R〈〈X〉〉, e 7→ x0(di ⊔⊔ e),

i = 0, 1, . . . , m̃. Here d0 := 1, and ψd(∅) denotes the identity map on
R〈〈X〉〉. That is, Fc ◦ Fd = Fc◦d.

Proof: It is first shown by induction on the length of the word η̃ ∈ X̃∗

that Eη̃ ◦ Fd = Fη̃◦d for any d ∈ Rm̃〈〈X〉〉. Trivially,

(E∅ ◦ Fd)[u] = E∅[Fd[u]] = E∅[u] = Fψd(∅)(1)[u].

Now assume that the claim holds for words η̃ up to length k. Then for
any x̃i ∈ X̃ observe that

Ex̃iη̃[Fd[u]](t, t0) =

∫ t

t0

Fdi [u](τ)Eη̃ [Fd[u]](τ, t0) dτ

= Fx0(di ⊔⊔ ψd(η̃)(1))[u](t)

= Fψd(x̃iη̃)(1)[u](t).

Thus, the identity in question holds for every η̃ ∈ X̃∗. Finally,

(Fc ◦ Fd)[u] =
∑

η̃∈X̃∗

(c, η̃)Eη̃[Fd[u]] =
∑

η̃∈X̃∗

(c, η̃)Fψd(η̃)(1)[u]

=
∑

η̃∈X̃∗

(c, η̃)

[
∑

ν∈X∗

(ψd(η̃)(1), ν)Eν [u]

]

=
∑

ν∈X∗


∑

η̃∈X̃∗

(c, η̃)(ψd(η̃)(1), ν)


Eν [u]

=
∑

ν∈X∗

(c ◦ d, ν) Eν [u]

= Fc◦d[u].

Example 3.16 In the case of linear time-invariant systems, there are
two approaches to describing the cascade connection of Fc and Fd.
In the context of linear system theory, each system can be uniquely
identified in terms of its impulse response, hc(t) =

∑
i≥0(c, xi0x1)t

i/i!
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and hd(t) =
∑

i≥0(d, xi0x1)ti/i!, respectively. The cascade connection
is then characterized by the convolution product:

(hc ∗ hd)(t)

=

∫ t

0
hc(t− τ)hd(τ) dτ

=

∫ t

0

∞∑

i,j=0

(c, xi0x1)
(t− τ)i

i!
(d, xj0x1)

τ j

j!
dτ

=
∞∑

i,j=0

(c, xi0x1)(d, x
j
0x1)

1

i! j!

∫ t

0
(t− τ)iτ j dτ

=
∞∑

i,j=0

(c, xi0x1)(d, x
j
0x1)

1

i! j!

i∑

k=0

(
i

k

)
(−1)kti−k

∫ t

0
τk+j dτ

=
∞∑

i,j=0

(c, xi0x1)(d, x
j
0x1)

ti+j+1

i! j!

[
i∑

k=0

(
i

k

)
(−1)k

1

k + j + 1

]

=

∞∑

i,j=0

(c, xi0x1)(d, x
j
0x1)

ti+j+1

(i + j + 1)!

=
∞∑

k=1



k−1∑

j=0

(c, xk−j−10 x1)(d, x
j
0x1)


 t

k

k!

=

∞∑

k=1

(c ◦ d, xk0x1)
tk

k!

= hc◦d(t),

where the following identity for integer sequences has been used,

i∑

k=0

(
i

k

)
(−1)k

1

k + j + 1
=

i!j!

(i+ j + 1)!
, i ≥ 0 (3.19)

(see Problem 3.6.1), as well as the formula for the composition product
of two linear series as computed in Example 2.33.

A second approach is to use Theorem 3.20 directly. In which case
one first needs to determine the generating series for each subsystem.
Following the discussion in Section 1.3, recall that

Fc[u](t) =

∫ t

0
hc(t− τ)u(τ) dτ
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=

∞∑

k=0

(c, xk0x1)

∫ t

0

(t− τ)k

k!
u(τ) dτ

=

∞∑

k=0

(c, xk0x1)Exk0x1
[u](t),

and likewise for Fd. Thus, Fc ◦ Fd = Fc◦d, where the definition of the
composition product gives

(c ◦ d, xk0x1) =
k−1∑

j=0

(c, xk−j−10 x1)(d, x
j
0x1), k ≥ 0.

as the only nonzero coefficients of c ◦ d. Therefore, reversing the steps
above,

Fc◦d[u](t) =

∫ t

0
hc◦d(t− τ)u(τ) dτ

as expected.

Example 3.17 Consider the cascade of Fc and Fd, where c =
∑

k≥0 k!xk1
and d = x1. Using the identity in Problem 2.7.7(a), it follows that

c ◦ d =

∞∑

k=0

k!xk1 ◦ x1 =

∞∑

k=0

(x0x1) ⊔⊔ k.

Therefore,

Fc◦d[u] =

∞∑

k=0

E(x0x1) ⊔⊔ k [u] =

∞∑

k=0

Ekx0x1 [u]

=
1

1 − Ex0x1 [u]
.

This can be viewed as another generalization of the Wiener system
in Example 3.3, where the single integrator is replaced with a double
integrator. (See also Problem 3.6.4.)

Suppose the operator Fc is given with c ∈ RℓLC〈〈X〉〉, and one wants
to explicitly compute the output y = Fc[u] on some interval [t0, t0 +T ]
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corresponding to a specific input u which is real analytic at t = t0. In
light of Theorem 3.8, y must be real analytic at t = t0. So it suffices to
compute its generating series, cy ∈ RℓLC [[X0]], where X0 = {x0}. The
theorem below provides an explicit formula for this series.

Theorem 3.21 Consider an operator Fc with c ∈ RℓLC〈〈X〉〉. Select
any input u which is real analytic at t = t0 and has generating series
cu ∈ RmLC [[X0]]. Then the output function y = Fc[u] is also real analytic
at t = t0 and has the generating series cy = c ◦ cu ∈ RℓLC [[X0]].

Proof: Only the claim regarding the generating series for cy remains
to be shown. Observe that for any admissible v ∈ Bm

p (R)[t0, t0 + T ]

Fcy [v] = y = Fc[u] = Fc[Fcu [v]] = Fc◦cu [v].

Applying Theorem 3.7 gives directly that cy = c ◦ cu. Note, however,
that the input v is just a dummy argument since both generating series
cu and cy have no input letters xi, i 6= 0, and thus, their corresponding
Fliess operators do not depend on v.

In Section 3.8, the mapping cu 7→ c ◦ cu will serve as the defini-
tion of a formal Fliess operator with generating series c. Since it has
been established that this composition is always well defined (via The-
orem 2.11), convergence assumptions play no role in this setting. But
when they are available, the formal Fliess operator and the convergent
Fliess operator coincide, which explains why the convergence assump-
tions made at the beginning of this section did not play a direct role
in the algebraic analysis.

Example 3.18 Consider the casual linear integral operator

y(t) =

∫ t

0
h(t− τ)u(τ) dτ,

where the kernel function h is real analytic at t = 0. Then y = Fc[u]
with (c, xk0x1) = h(k)(0), k ≥ 0 and zero otherwise. If u(t) =∑

k≥0(cu, x
k
0) tk/k!, then it follows that y(t) =

∑
n≥0(cy, x

n
0 ) tn/n!,

where

cy = c ◦ cu =
∞∑

k=0

(c, xk0x1) xk0x1 ◦ cu
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=

∞∑

k=0

(c, xk0x1) xk+1
0 cu.

Therefore,

(cy, x
n
0 ) =

n−1∑

k=0

(c, xk0x1) (cu, x
n−1−k
0 ), n ≥ 1,

which is the same convolution sum produced in Examples 2.5, 2.33,
and 3.16.

Example 3.19 Reconsider the Wiener system in Example 3.3, where
it was shown that the input-output mapping u 7→ y = Fc[u] has the
generating series c =

∑
k≥0 k! xk1 . If u(t) = tn/n!, t ≥ 0 then clearly

cu = xn0 . From Theorem 3.21 and the identities in Problems 2.4.5(d)
and 2.7.7(a) it follows that

cy =

∞∑

k=0

k! xk1 ◦ xn0 =

∞∑

k=0

(xn+1
0 ) ⊔⊔ k =

∞∑

k=0

((n + 1)k)!

((n + 1)!)k
x
(n+1)k
0 .

Consequently, the output response is

y(t) =
∞∑

k=0

((n+ 1)k)!

((n+ 1)!)k
t(n+1)k

((n+ 1)k)!
=
∞∑

k=0

t(n+1)k

((n + 1)!)k
=

1

1 − tn+1

(n+1)!

on the interval [0, ((n + 1)!)1/n+1).

Next convergence properties are considered. For both cascade con-
nections, it is claimed that local and global convergence are preserved
in the sense that if each subsystem has a locally (globally) generating
series then the Fliess operator representation of the cascaded system
is locally (globally) convergent. The radius of convergence is also given
for the case where the generating series for the component systems are
only locally convergent. The proofs of these results are quite technical,
so they will be left to the literature. In the global case, no claim will
be made about the growth rate of the generating series of a compos-
ite system. It turns out that the composite system, as suggested by
Example 3.9, can be globally convergent without its generating series
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being globally convergent as currently defined. This is not entirely un-
expected as coefficient growth rates were never shown to be a necessary
condition for any notion of operator convergence.

The main results for the Wiener-Fliess system are given first. As
discussed in Section 1.1, for any analytic function f : Rm̃ → Rℓ̃ with
generating series c ∈ Rℓ̃ [[X̃ ]], the multivariable Cauchy integral for-
mula provides that there exist real numbers Kc,Mc > 0 such that

|(c, η̃)| ≤ KcM
|η̃|
c |η̃|!, η̃ ∈ X̃∗.

Analogous to the noncommutative case, the set of all locally convergent
series in Rℓ̃ [[X̃ ]] will be denoted by Rℓ̃LC [[X̃ ]] and likewise for globally
convergent series.

Theorem 3.22 Suppose c ∈ Rℓ̃LC [[X̃ ]]\Rℓ̃GC [[X̃ ]] and d ∈ Rm̃LC〈〈X〉〉\
Rm̃GC〈〈X〉〉 with growth constants Kc,Mc > 0 and Kd,Md > 0, respec-
tively. If b = c ◦ d, then for every ǫ > 0

|(b, ν)| ≤ Kb(Mb + ǫ)|ν||ν|!, ν ∈ X∗

for some Kb > 0, where

Mb = (1 + m̃McKd)Md.

Furthermore, ifMc, Kd andMd are minimal, then no geometric growth
constant smaller than Mb exists. Thus, the radius of convergence for
b = c ◦ d is

1

(1 + m̃McKd)Md(m+ 1)
.

Example 3.20 Reconsider a Wiener system in Example 3.15, where
fc(z) = 1/(1 − z) and Fd[u] =

∑m
i=0Exi [u]. Clearly, c is a locally

maximal series with Kc = Mc = 1. On the other hand, d is locally
convergent, but has no coefficient growth after a certain point. The
growth constants Kd,Md can therefore be selected in any manner such
that KdMd = 1. In this case, Theorem 3.22 gives Mb = 1 + ǫ, ǫ > 0,
which is consistent with the series c ◦ d computed in this example.

Example 3.21 Consider a Wiener-Fliess system where X̃ = {x̃1},
X = {x0, x1}, c =

∑
k≥0 k! x̃k1 , and d =

∑
η∈X∗ |η|! η. Then fc(z) =



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

170 3. Fliess Operators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

t

y
(t

)

Fig. 3.12. Zero-input response of the cascade system Fc◦d in Example 3.21.

1/(1 − (z − 1)) = 1/(2 − z) (since (d, ∅) = 1), and from Theorem 3.4
Fd[u] = 1/(1 − Ex0+x1 [u]). The composite system is therefore

Fc◦d = fc(Fd[u] − 1) =
1 −Ex0+x1 [u]

1 − 2Ex0+x1 [u]
.

The zero-input response is clearly y = (1 − t)/(1 − 2t) as shown in
Figure 3.12. The presence of a finite escape time at tesc = 0.5 implies
that Mb = 1/tesc = 2. This is consistent with the radius of convergence
given in Theorem 3.22 with m = 0 since both c and d are locally max-
imal series for the class of series with the growth rate corresponding
to Kc = Mc = Kd = Md = 1.

The Wiener-Fliess system comprised of two globally convergent
subsystems is considered next.

Theorem 3.23 A Wiener-Fliess system where each subsystem has a
generating series satisfying the global growth rate (3.13) has a radius
of convergence equal to infinity. Hence, the output of such a system
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is always well defined over any finite interval of time when its input
u ∈ Lm1,e(t0).

It was pointed out in Example 3.9 that the growth condition (3.13)
is not a necessary condition for a Fliess operator to converge globally.
The following example illustrates how this issue arises for a Wiener-
Fliess system.

Example 3.22 Consider a Wiener-Fliess system where X̃ = {x̃1},

X = {x0, x1}, c =
∑

k≥0KcM
k
c x̃k1, and d =

∑
η∈X∗ KdM

|η|
d η. A cal-

culation analogous to the one given in Theorem 3.4 yields fc(z) = Kc

exp(Mcz) and Fd[u] = Kd exp (MdEx0+x1 [u]) (see Problem 3.3.3).
Therefore, the cascaded system is

y = Fc◦d[u] = Kc exp(McKd exp(MdEx0+x1 [u])),

so that the zero-input response when Kc = e−1 and Mc = Kd = Md =
1 is y(t) = ee

t−1. That is, (c ◦ d, xn0 ) = Bn, n ≥ 0, where Bn, n ≥ 0,
are the Bell numbers as described in Example 3.9. Thus, c ◦ d can not
have Gevrey order less one, i.e., s∗ = 1, even though by Theorem 3.23
the operator Fc◦d must be globally convergent.

An interesting fact about the Bell numbers is that their asymptotic
behavior is described by

Bn ∼ n−
1
2 (λ(n))n+

1
2 eλ(n)−n−1,

where λ(n) = n/W (n), and W (n) denotes the Lambert W -function.
The Lambert W -function is a multivalued function defined by the
branches Wk, k ∈ Z of the inverse relation of the function

g(z) = z exp(z) z ∈ C.

Here W (x) := W0(x) denotes the principal branch as shown in Fig-
ure 3.13 along with the branch W−1(x). This function often appears
explicitly whenever cascade structures are present. This will be the
case, for example, when two Fliess operators are cascaded as addressed
next.

Consider next the interconnection of two Fliess operators whose
generating series are only locally convergent. The theorem below states
that the cascade system is also only locally convergent, and the radius
of convergence is given.
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Fig. 3.13. Branches W0(x) and W−1(x) of the Lambert W -function.

Theorem 3.24 Suppose c ∈ Rℓ̃LC〈〈X̃〉〉\Rℓ̃GC〈〈X̃〉〉 and d ∈ Rm̃LC〈〈X〉〉\
Rm̃GC〈〈X〉〉 with growth constants Kc,Mc > 0 and Kd,Md > 0, respec-
tively. If b = c ◦ d, then for every ǫ > 0

|(b, ν)| ≤ Kb(Mb + ǫ)|ν||ν|!, ν ∈ X∗

for some Kb > 0, where

Mb =
Md

1 − m̃KdW
(

1
m̃Kd

exp
(
Mc−Md
m̃McKd

)) .

Furthermore, ifMc, Kd andMd are minimal, then no geometric growth
constant smaller than Mb exists. Thus, the radius of convergence for
b = c ◦ d is

1

Md(m+ 1)

[
1 − m̃KdW

(
1

m̃Kd
exp

(
Mc −Md

m̃McKd

))]
.
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Example 3.23 Let X = {x0, x1} and c, d ∈ R〈〈X〉〉 such that M =
Mc = Md. Using a series expansion about Kd = ∞ it follows that

Mb =
M

1 −KdW (1/Kd)

=

(
3

2
+Kd +O

(
1

Kd

))
M

≈ KdM

when Kd ≫ 1. On the other hand, if Kd = 1 then Mb = (1 −
W (1))−1M = 2.3102M .

Example 3.24 Consider the linear series c =
∑

n≥0(c, x
n
0x1)x

n
0x1 and

d =
∑

n≥0(d, x
n
0x1)x

n
0x1 in RLC〈〈X〉〉 with growth constants Kc,Mc >

0 and Kd,Md > 0, respectively. From the calculation in Example 3.16,
it is apparent that

∣∣∣(c ◦ d, xk0x1)
∣∣∣ =

∣∣∣∣∣∣

k−1∑

j=0

(c, xk−1−j0 x1)(d, xj0x1)

∣∣∣∣∣∣

≤
k−1∑

j=0

(KcM
k−j
c (k − j)!)(KdM

j+1
d (j + 1)!)

= KcKdM
k+1



k−1∑

j=0

(
k + 1

j + 1

)−1

 (k + 1)!

= KcKdM
k+1




k∑

j=1

(
k + 1

j

)−1

 (k + 1)!,

where M = max{Mc,Md} and assuming the convention
∑k

i=j ai = 0

when k < j. Applying the combinatorial inequality
∑n−1

k=1

(n
k

)−1
< 1,

n ≥ 2 (see Problem 3.6.6), it follows directly that

|(c ◦ d, ν)| < KcKdM
|ν||ν|!, ν ∈ X∗.

For the case where Kc = Kd = 1 and Mc = Md, it evident that Mb =
M , which is an improvement over the more general case described in
the previous example. That is, using the specific structure of c and d,
a smaller geometric growth constant can be determined as compared
to the general case where only the growth constants are known.
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Example 3.25 Let X = {x0, x1}, and suppose c =
∑

n>0(n!)2 xn1 .
Then according to Lemma 2.5, c ◦ 0 = 0 and 1 ◦ c = 1. That is, it is
possible that c ◦ d can be locally convergent even when c or d is not.

It was shown in Theorem 3.21 that the composition product can
be used to determine the coefficients of an output function produced
by a Fliess operator with an analytic input. The following corollary of
Theorem 3.24 describes a lower bound for the interval of convergence
for such an output function.

Corollary 3.3 Let X = {x0, x1, . . . , xm} and X0 = {x0}. Suppose
c ∈ RℓLC〈〈X〉〉\RℓGC〈〈X〉〉 with growth constants Kc,Mc > 0 and cu ∈
RmLC [[X0]]\RmGC [[X0]] with growth constants Kcu,Mcu , respectively. If
cy = c ◦ cu, then for every ǫ > 0

|(cy , xk0)| ≤ Kcy(Mcy + ǫ)kk!, k ≥ 0 (3.20)

for some Kcy > 0, where

Mcy =
Mcu[

1 −mKcuW
(

1
mKcu

exp
(
Mc−Mcu
mMcKcu

))] .

Furthermore, if Mc, Kcu and Mcu are minimal, then no smaller geo-
metric growth constant can satisfy (3.20). Thus, the interval of con-
vergence for the output y is at least as large as T = 1/Mcy .

Example 3.26 The zero-input response corresponds to taking the
limit Kcu → 0 in Corollary 3.3. This yields Mcy = Mc and is consis-
tent with the fact that y0(t) =

∑
k≥0(c, x

k
0)tk/k! has coefficients which

are bounded by the same growth rate as the entire generating series
c. Therefore, as demonstrated in Example 3.5, y0 should converge at
least on the interval [t0, t0 + 1/Mcy ).

Example 3.27 Let X = {x1} and c be a locally maximal series with
growth constants K,M > 0. From Theorem 3.4 it follows that
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y(t) =
K

1 −MEx1 [u](t, 0)
.

Assume that Kcu = K and Mcu = M . For any t ≥ 0 in the interval of
convergence for u, it follows that

|u(t)| ≤
∞∑

k=0

∣∣∣(cu, xk0)
∣∣∣ t
k

k!

=

∞∑

k=0

KMktk

=
K

1 −Mt
.

Setting u(t) = K/(1 −Mt) gives

Ex1 [u](t, 0) =
K

M
ln

(
1

1 −Mt

)
, 0 ≤ t < 1/M,

so that

y(t) =
K

1 −K ln
(

1
1−Mt

) , 0 ≤ t < 1/M.

Applying Corollary 3.3 in this setting yields

1

Mcy

=
1

M
(1 −KW (1/K)).

The image of the monotonically decreasing function f(K) = 1 −
KW (1/K) on (0,∞) is (0, 1). Therefore, 1/Mcy < 1/M as expected.

The section is concluded by considering the cascade connection of
two Fliess operators whose generating series are globally convergent.
The following theorem is the main result.

Theorem 3.25 The cascade connection of Fliess operators each hav-
ing a generating series satisfying the global growth rate (3.13) has a
radius of convergence equal to infinity. Hence, the output of such a
system is always well defined over any finite interval of time when its
input u ∈ Lm1,e(t0).
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Example 3.28 Reconsider the linear series c =
∑

n≥0(c, x
n
0x1)x

n
0x1

and d =
∑

n≥0(d, x
n
0x1)x

n
0x1 in Example 3.24, except here both c, d ∈

RGC〈〈X〉〉 with s∗ = 0. In which case,

∣∣∣(c ◦ d, xk0x1)
∣∣∣ =

∣∣∣∣∣∣

k−1∑

j=0

(c, xk−1−j0 x1)(d, x
j
0x1)

∣∣∣∣∣∣

≤
k−1∑

j=0

(KcM
k−j
c )(KdM

j+1
d )

= KcKdM
k+1k

< KcKd(2M)k+1.

Therefore, global convergence is preserved, and s∗c◦d = 0.

Example 3.29 Suppose X = {x0, x1} and c = d =
∑

k≥0 x
k
1. The

output of the cascade system is exactly that of the system considered
in Example 3.9, namely,

y(t) = Fc◦d[u](t) = exp(Ex1 [exp(Ex1 [u(t)])].

Therefore, when u(t) = 1

y(t) = ee
t−1 =

∞∑

n=0

Bn
tn

n!
.

So the Bell numbers also appear from a simple cascade of two Fliess
operators.

3.7 Feedback Connections

In this section, the feedback connection of two Fliess operators as
shown in Figure 3.14 is considered. Such closed-loop systems appear
frequently in control engineering. As with cascade connections, one
could also replace Fd in the feedback path with a static function fd.
But the focus here will be on the former case. The latter can be
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u 
v 

y 

FdFdF

Fc+ 

Fig. 3.14. Feedback connection of two Fliess operators

found in the literature. Similar to the interconnections in the pre-
vious sections, five basic questions must be addressed. But now the
analysis is considerably more difficult because feedback is generally
described only in implicit terms. That is, given any c, d ∈ RmLC〈〈X〉〉
with X = {x0, x1, . . . , xm}, the output y of the corresponding closed-
loop system must satisfy the feedback equation

y = Fc[u+ Fd[y]] (3.21)

for any admissible input u. The interconnection is well-posed when y is
an admissible input for Fd, and u+Fd[y] is an admissible input for Fc.
Fortunately, this issue can be handled in much the same manner as it
was for cascade connections (see Problem 3.7.1). When there exists a
locally generating series e ∈ RmLC〈〈X〉〉 so that y = Fe[u], the feedback
equation becomes equivalent to

Fe[u] = Fc[u+ Fd◦e[u]], (3.22)

and the output feedback product of c and d, denoted by c@d, is defined
to be e. The first obstacle in the analysis is that Fe is required to
be the composition of two operators, Fc and I + Fd◦e as shown in
Figure 3.15, where one of the operators is not a Fliess operator due to
the presence of identity operator I acting as a direct feed term. Here
I+Fd◦e will be referred to as a unital Fliess operator in order to make
this distinction. The corresponding set of all unital Chen-Fliess series
is denoted by I + F = {I + Fc : c ∈ Rm〈〈X〉〉}. The central claim is
that this mixed composition always renders another Chen-Fliess series.
However, none of the composition products introduced so far describe
this type of composition. To address the issue, it is first convenient
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Table 3.1. Composition products involving c, d, cδ = δ + c, dδ = δ + d when
X = {x0, x1, . . . , xm}

name symbol map

composition c ◦ d Rℓ〈〈X〉〉 × Rm〈〈X〉〉 → Rℓ〈〈X〉〉

mixed composition c ◦̃ dδ Rℓ〈〈X〉〉 × δ + Rm〈〈X〉〉 → Rℓ〈〈X〉〉

group composition c⊚ d Rm〈〈X〉〉 × Rm〈〈X〉〉 → Rm〈〈X〉〉

group product cδ ◦ dδ δ + Rm〈〈X〉〉 × δ + Rm〈〈X〉〉 → δ + Rm〈〈X〉〉

to introduce the symbol δ as the (fictitious) generating series for the
identity map. That is, Fδ := I such that I + Fc := Fδ+c = Fcδ with
cδ := δ + c. The set of all such generating series for I + F will be
denoted by δ + Rm〈〈X〉〉.11 The ultrametric on Rm〈〈X〉〉 generalizes
to δ+Rm〈〈X〉〉 in the obvious way. The following theorem describes the
generating series for this new type of composition in terms of what will
be called the mixed composition product. (See Table 3.1 for a summary
of all the series compositions encountered in this section.)

Theorem 3.26 Let X = {x0, x1, . . . , xm}. Given a Fliess operator
Fc and unital Fliess operator Fdδ , where c ∈ RℓLC〈〈X〉〉 and dδ ∈
δ + RmLC〈〈X〉〉, the cascade connection Fc◦Fdδ has the generating series
in Rℓ〈〈X〉〉

c ◦̃ dδ =
∑

η∈X∗

(c, η)φd(η)(1), (3.23)

where φd is the continuous (in the ultrametric sense) algebra homo-
morphism from R〈〈X〉〉 into End(R〈〈X〉〉) uniquely specified by

φd(xiη) = φd(xi) • φd(η), xi ∈ X, η ∈ X∗

using the family of mappings

φd(xi)(e) = xie+ x0(di ⊔⊔ e),

i = 0, 1, . . . ,m. Here d0 := 0, and φd(∅) denotes the identity map on
R〈〈X〉〉. That is, Fc ◦ Fdδ = Fc ◦̃ dδ .

11 A suitable subscript like ‘LC’ will be added when the set is restricted to series
satisfying a certain growth condition.
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u 
v 

FdFdF y Fc+ 

Fig. 3.15. Mixed composition of two Fliess operators

Proof: Observe that the mixed composition product is identical to
that used for the usual composition product in Theorem 3.20 except
for the extra leading term xie in each operator φd(xi). It is precisely
this term that implements the direct feed component I. In which case,
the proof is very similar to previous proof modulo an insertion of this
extra term in each step (see Problem 3.7.4).

It can be verified in a manner completely analogous to the regular
composition product for Fliess operators that the mixed composition
product is always well defined (summable) and ultrametric continuous
in both arguments. Some basic properties of this product are given
next.

Lemma 3.4 Let X = {x0, x1, . . . , xm}. The mixed composition prod-
uct (3.23) has the following properties:

1. left R-linearity;
2. c ◦̃ 0δ = c;
3. c ◦̃ dδ = k1, k ∈ Rℓ for any fixed dδ if and only if c = k1;
4. (xic) ◦̃ dδ = xi(c ◦̃ dδ) + x0(di ⊔⊔ (c ◦̃ dδ)) for all xi ∈ X;
5. (c ⊔⊔ d) ◦̃ eδ = (c ◦̃ eδ) ⊔⊔ (d ◦̃ eδ);
6. (c ◦ d) ◦̃ eδ = c ◦ (d ◦̃ eδ);
7. (c ◦̃ dδ) ◦̃ eδ = c ◦̃ (d ◦̃ eδ + e)δ,

where c, d, and e are suitably compatible formal power series over X.

Proof:
1. This fact follows directly from the definition of the mixed composi-
tion product.
2. The claim is immediate since φ0(η)(1) = η for all η ∈ X∗.
3. The only nontrivial assertion is that c ◦̃ dδ = k implies c = k. This
claim is best handled later once the Hopf algebra context is developed
(see page 192).
4. Observe
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(x0c) ◦̃ dδ = φd(x0c)(1) = φd(x0) • φd(c)(1)

= x0(c ◦̃ dδ)
(xic) ◦̃ dδ = φd(xic)(1) = φd(xi) • φd(c)(1)

= x0(c ◦̃ dδ)) + x0(di ⊔⊔ (c ◦̃ dδ)),
i = 1, 2, . . . ,m.
5. For any eδ ∈ δ +R〈〈X〉〉, one can define a shuffle product on
End(R〈〈X〉〉) via

φe(xiη) ⊔⊔ φe(xjξ) = φe(xi) • [φe(η) ⊔⊔ φe(xjξ)]+

φe(xj) • [φe(xiη) ⊔⊔ φe(ξ)].

In which case, φe acts as an algebra map between the shuffle algebra on
R〈〈X〉〉 and the shuffle algebra on End(R〈〈X〉〉). That is, φe(c ⊔⊔ d) =
φe(c) ⊔⊔ φe(d). Hence, (c ⊔⊔ d) ◦̃ eδ = φe(c ⊔⊔ d)(1) = φe(c)(1) ⊔⊔ φe(d)(1)
= (c ◦̃ eδ) ⊔⊔ (d ◦̃ eδ) (cf. Problem 3.7.5).
6. See Problems 3.7.4 and 3.7.5.
7. This identity has another interpretation, which will be presented in
Lemma 3.5 (mixed associativity). So the proof is deferred until then.
Also, see Problem 3.7.5.

Of particular importance here is the fact that the feedback equation
(3.22) can be written in terms of the mixed composition product as

Fe[u] = Fc◦̃(d◦e)δ [u].

In light of the uniqueness of generating series (Theorem 3.7 for the
locally convergent case and Theorem 3.40 for the formal case) this
implies that

e = c◦̃(d ◦ e)δ. (3.24)

This equation suggests the possibility of describing e as a fixed point
of a contractive iterated mapping. Consider the following theorem.

Theorem 3.27 For any c ∈ Rm〈〈X〉〉, the mapping dδ 7→ c ◦̃ dδ is an
ultrametric contraction from δ + Rm〈〈X〉〉 to Rm〈〈X〉〉.
Proof: The proof is a minor variation of the previous result for the reg-
ular composition product of two Fliess operators, i.e., Theorem 2.15.
The contraction coefficient, σ, is unaffected by the required modifica-
tions (see Problem 3.7.4).

The first main result of this section is given below and addresses
question 2.
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Theorem 3.28 Let c, d ∈ Rm〈〈X〉〉. Then the following propositions
hold:

1. The mapping

S : Rm〈〈X〉〉 → Rm〈〈X〉〉,
ei 7→ ei+1 = c ◦̃ (d ◦ ei)δ (3.25)

has a unique fixed point in Rm〈〈X〉〉, c@d := limi→∞ ei, which is
independent of e0.

2. The generating series c@d satisfies the feedback equation (3.24).

Proof:
1. The mapping S is a contraction on Rm〈〈X〉〉 since by Theorems 2.15
and 3.27:

dist(S(ei), S(ej)) ≤ σ dist((d ◦ ei)δ , (d ◦ ej)δ) ≤ σ2 dist(ei, ej).

Therefore, the mapping S has a unique fixed point, c@d, that is inde-
pendent of e0, i.e.,

c@d = c ◦̃ (d ◦ (c@d))δ . (3.26)

2. The claim follows directly from comparing (3.24) and (3.26).

Now that it has been established that the closed-loop system in
Figure 3.14 has a Chen-Fliess series representation, the next question
is how to actually compute its generating series. Equivalently, how can
(3.24) be solved to determine e = c@d? Observe that the function v in
Figure 3.14 must satisfy the identity

v = u+ Fd◦c[v].

Therefore,
(I + F−d◦c) [v] = u.

Now suppose there exists a series (−d ◦ c)−1 such that

(
I + F(−d◦c)−1

)
◦
(
I + F(−d◦c)

)
= I.

Then it would follow that

v =
(
I + F(−d◦c)−1

)
[u],

and thus,
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Fc@d[u] = Fc[v] = Fc[
(
I + F(−d◦c)−1

)
[u]]

= Fc ◦̃ (−d◦c)−1
δ

[u].

In which case, the feedback product can be written in the form c@d =
c ◦̃ (−d ◦ c)−1δ provided this inverse series can be determined. This
suggests that two issues need to be investigated. First, the presence
of an inverse implies that some group is involved in this calculation.
What is this underlying group? Second, the group element (−d ◦ c)−1δ
is interacting with the generating series c describing the forward path
via the mixed composition product. What is the exact nature of this
interaction? This latter question motivates the following definition.

Definition 3.7 Let G be a group and S a given set. Then G is said
to act as a transformation group on the right of S if there exists a
mapping A : S ×G→ S : (h, g) 7→ hg such that:

i. h1 = h, where 1 is the identity element of G;

ii. h(g1g2) = (hg1)g2 for all g1, g2 ∈ G.

The action A is said to be free if hg = h implies that g = 1.

Example 3.30 Suppose the two Fliess operators Fc and Fd in Fig-
ure 3.14 are linear time-invariant systems with m × m transfer ma-
trices H and G, respectively. In this case, the corresponding feedback
equation

Hcl = H(I +GHcl) (3.27)

can be solved directly by substitution

Hcl = H(I +G[H(I +GHcl)])

= H(I +GH +GHG[H(I +GHcl)])

...

= H

∞∑

k=0

(GH)k

= H(I −GH)−1. (3.28)

One can verify that the set of transfer functions {I + G}, where G is
an m×m matrix of strictly proper rational functions, is a group under
the product

(I +G1)(I +G2) = I +G1 +G2 +G1G2
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with identity element I and inverse (I+G)−1 =
∑

k≥0(−G)k. In which
case, (3.28) can be interpreted as this group acting on the operator H
from the right to produce the transfer function for the closed-loop sys-
tem, Hcl (see Problem 3.7.2). One subtle point is that the inverse of
(I −GH)−1 is clearly (I −GH). So applying this transformation will
remove the feedback, but it is not clear what, if any, system inter-
connection this second action corresponds to. Nevertheless, there is a
system interconnection that will remove the feedback loop. This issue
will be addressed later in this section.

Moving on to the more general setting, the key idea is that (I +
F , ◦, I) forms a group under the composition

Fcδ ◦ Fdδ = (I + Fc) ◦ (I + Fd)

= I + Fd + Fc ◦ (I + Fd)

= I + Fd + Fc ◦̃ dδ
= Fcδ◦dδ ,

where
cδ ◦ dδ := δ + d+ (c ◦̃ dδ) =: δ + c⊚ d. (3.29)

Note that the same symbol will be used for composition on Rm〈〈X〉〉
and δ + Rm〈〈X〉〉. As elements in these two sets have a distinct nota-
tion, i.e., c versus cδ, respectively, it will always be clear which product
is at play. The following lemma summarizes some key properties of the
composition product on δ + Rm〈〈X〉〉.

Lemma 3.5Let X = {x0, x1, . . . , xm}.The composition product (3.29)
has the following properties:

1. 0δ ◦ cδ = cδ ◦ 0δ = cδ;
2. (c ◦̃ dδ) ◦̃ eδ = c ◦̃ (dδ ◦ eδ) (mixed associativity);
3. associativity,

where c, d, and e are suitably compatible formal power series over X.

Proof:
1. Observe 0δ ◦ cδ = cδ + 0 ◦̃ cδ = cδ using Lemma 3.4 item 1. On the
other hand, cδ ◦ 0δ = 0δ + c ◦̃ 0δ = δ+

∑
η∈X∗(c, η)φ0(η)(1) = cδ using

the fact that φ0(η)(1) = η for all η ∈ X∗.
2. In light of item 1 in Lemma 3.4, it is sufficient to prove the claim
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only for c = η ∈ Xk, k ≥ 0. The cases k = 0 and k = 1 are trivial.
Assume the claim holds up to some fixed k ≥ 0. Then via Lemma 3.4,
item 4, and the induction hypothesis it follows that

((x0η) ◦̃ dδ) ◦̃ eδ = (x0(η ◦̃ dδ)) ◦̃ eδ
= x0((η ◦̃ dδ) ◦̃ eδ)
= x0(η ◦̃ (dδ ◦ eδ))
= (x0η) ◦̃ (dδ ◦ eδ).

In a similar fashion, for i = 1, 2, . . . ,m apply the properties in
Lemma 3.4, items 1, 4, and 5 to get

((xiη) ◦̃ dδ) ◦̃ eδ
= [xi(η ◦̃ dδ) + x0(di ⊔⊔ (η ◦̃ dδ))] ◦̃ eδ
= [xi(η ◦̃ dδ)] ◦̃ eδ + [x0(di ⊔⊔ (η ◦̃ dδ))] ◦̃ eδ
= xi[(η ◦̃ dδ) ◦̃ eδ] + x0[ei ⊔⊔ ((η ◦̃ dδ) ◦̃ eδ)] + x0[(di ⊔⊔ (η ◦̃ dδ)) ◦̃ eδ]
= xi[(η ◦̃ dδ) ◦̃ eδ] + x0[(ei + di ◦̃ eδ)︸ ︷︷ ︸

(d⊚e)i

⊔⊔ ((η ◦̃ dδ) ◦̃ eδ)].

Now employ the induction hypothesis so that

((xiη) ◦̃ dδ) ◦̃ eδ = xi[η ◦̃ (dδ ◦ eδ)] + x0[(d⊚ e)i ⊔⊔ (η ◦̃ (dδ ◦ eδ))]
= (xiη) ◦̃ (dδ ◦ eδ).

Therefore, the claim holds for all η ∈ X∗, and the identity is proved.
Note that this identity is equivalent to the one given in Lemma 3.4,
item 7.
3. First apply (3.29) twice, then Lemma 3.4, item 1, and finally mixed
associativity to get

(cδ ◦ dδ) ◦ eδ = (d+ (c ◦̃ dδ))δ ◦ eδ
= (e+ (d+ (c ◦̃ dδ)) ◦̃ eδ)δ
= (e+ (d ◦̃ eδ) + c ◦̃ (dδ ◦ eδ))δ
= ((d⊚ e) + c ◦̃ (dδ ◦ eδ))δ
= cδ ◦ (dδ ◦ eδ).

Hence, the lemma is proved.

Given the uniqueness of generating series for Chen-Fliess series,
(I+F , ◦, I) is a group if and only if (δ + Rm〈〈X〉〉, ◦, δ) is a group. The
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main proposition is that this latter group acts as a right transformation
group on Rm〈〈X〉〉 via the mixed composition product. The following
theorem establishes this fact. Henceforth, this group will be called the
output feedback group since, as will be shown shortly, it will be used
to provide an explicit formula for the output feedback product.

Theorem 3.29 The triple (δ + Rm〈〈X〉〉, ◦, δ) forms a group. This
group acts as a right transformation group on Rm〈〈X〉〉.

Proof: In light of Lemma 3.5, the only open issue in establishing that
δ + Rm〈〈X〉〉 is a group is demonstrating the existence of an inverse.
Specifically, for a fixed cδ ∈ δ + Rm〈〈X〉〉, the composition inverse,
c−1δ = δ + c−1, must satisfy cδ ◦ c−1δ = δ and c−1δ ◦ cδ = δ. From the
first equation,

cδ ◦ c−1δ = δ + c−1 ◦̃ c−1δ = δ,

which reduces to
c−1 = (−c) ◦̃ c−1δ . (3.30)

Likewise, from the second equation,

c = (−c−1) ◦̃ cδ. (3.31)

Now it was established in Theorem 3.27 that e 7→ (−c) ◦̃ eδ is a con-
traction in the ultrametric sense on Rm〈〈X〉〉 as a complete ultrametric
space and thus has a unique fixed point. So it follows directly that c−1δ
is a right inverse of cδ, i.e., satisfies (3.30). To see that this same series
is also a left inverse, first observe that (3.30) is equivalent to

c−1 ◦̃ 0δ + c ◦̃ c−1δ = 0, (3.32)

using the identity c−1 ◦̃ 0δ = c−1 and the left linearity of the mixed
composition product. Substituting (3.32) back into itself where zero
appears on the left-hand side and applying Lemma 3.4, item 7 gives

c−1 ◦̃ (c ◦̃ c−1δ + c−1)δ + c ◦̃ c−1δ = 0

(c−1 ◦̃ cδ) ◦̃ c−1δ + c ◦̃ c−1δ = 0.

Again from left linearity of the mixed composition product it follows
that

(c−1 ◦̃ cδ + c) ◦̃ c−1δ = 0.

Finally, Lemma 3.4, item 3 implies that c−1 ◦̃ cδ + c = 0, which is
equivalent to (3.31). Therefore, every element of δ + Rm〈〈X〉〉 has an
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inverse. Finally, it is clear that δ + Rm〈〈X〉〉 acts as a right transfor-
mation group on Rm〈〈X〉〉 in light of Lemma 3.5, item 2, namely, the
mixed associativity property.

Example 3.31 If c, d ∈ RmLC〈〈X〉〉, and c is a linear series then

Fc ◦̃ dδ [u] = Fc[u+ Fd[u]] = Fc[u] + Fc◦d[u],

or equivalently,
c ◦̃ dδ = c+ c ◦ d (3.33)

Similarly,
c ◦ (d1 + d2) = c ◦ d1 + c ◦ d2.

Therefore, using (3.30) and then (3.33) repeatedly, it follows that

c−1δ = δ + c−1

= δ − c ◦̃ c−1δ
= δ − c− c ◦ c−1

= δ − c− c ◦ (−c ◦̃ c−1δ )

= δ − c− c ◦ (−c− c ◦ c−1)

= δ − c+ c ◦ c+ c ◦ c ◦ c−1
...

= δ − c+ c◦2 − c◦3 + · · · ,

where c◦i denotes the composition product power. This is equivalent
to the series expansion of the inverse appearing in (3.28). When c = x1
observe

(δ + x1)−1 = δ − x1 + x0x1 − x20x1 + · · ·
= δ − (−x0)∗x1,

where d∗ :=
∑

i≥0 d
i. In contrast, the series c = x0 is not linear, and

in this case

δ − x0 + x◦20 − x◦30 + · · · = δ − x0 + x0 − x0 + · · · ,

which is neither locally finite nor summable. Nevertheless, it can be
easily verified directly that (δ + x0)−1 = δ − x0. So the element is
invertible but does not have a series expansion of the type available
for linear series.
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zzz: Exhibit c@d for

SISO case and link to

Example 5.22.

The explicit formula for the output feedback product conjectured
above is presented next (see also Problem 3.7.8).

Theorem 3.30 For any c, d ∈ Rm〈〈X〉〉, it follows that

c@d = c ◦̃ (−d ◦ c)−1δ . (3.34)

Proof: Recall that the feedback equation for the system in Figure 3.14
reduces to the fixed point equation

e = c ◦̃ (d ◦ e)δ.

where e = c@d. The solution above can be checked by direct substitu-
tion with the aid of the identity in Lemma 3.4, item 6, and (3.30):

c ◦̃ (d ◦ e)δ |e=c ◦̃ (−d◦c)−1
δ

= c ◦̃ (d ◦ (c ◦̃ (−d ◦ c)−1δ ))δ

= c ◦̃ ((d ◦ c) ◦̃ (−d ◦ c)−1δ )δ

= c ◦̃ (−d ◦ c)−1δ
= e.

The goal now is to describe a Faà di Bruno type Hopf algebra asso-
ciated with the group (δ + Rm〈〈X〉〉, ◦, δ), whose antipode facilitates
the explicit computation of the inverse of the group element appearing
in the feedback product above. The coordinate maps for this group
have the form

aiη : δ + Rm〈〈X〉〉 → R, cδ 7→ (ci, η),

where η ∈ X∗ and i = 1, 2, . . . ,m.12 In addition, a special co-
ordinate function 1δ is introduced with the defining property that
cδ ∈ δ + Rm〈〈X〉〉 maps to one in every case.13 Let V denote the
R-vector space spanned by these maps. If the degree of aiη is defined
as deg(aiη) = 2 |η|x0 +

∑m
j=1 |η|xj + 1, then V is a connected graded

vector space. That is, V =
⊕

n≥0 Vn with

12 Given the bijection between δ + Rm〈〈X〉〉 and Rm〈〈X〉〉, ai
η(cδ) will often be

abbreviated by ai
η(c).

13 The subscript δ is added here to distinguish between this coordinate function and
the monomial 1 = 1∅, namely, the unit for the catenation and shuffle algebras.
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Vn = spanR{aiη : deg(aiη) = n}, n > 0,

and V0 = R1δ.
Consider next the free unital commutative R-algebra, H, with prod-

uct
µ : aiη ⊗ ajξ 7→ aiηa

j
ξ

and unit 1δ. This product is clearly associative. The grading on V
induces a connected grading on H with deg(aiηa

j
ξ) = deg(aiη)+deg(ajξ)

and deg(1δ) = 0. Specifically, H =
⊕

n≥0Hn, where

Hn = spanR



a

i1
η1a

i2
η2 · · · aiℓηℓ :

ℓ∑

j=1

deg(a
ij
ηj ) = n



 , n > 0,

and H0 = R1δ.
Two coproducts and a coaction are now introduced (see Prob-

lem 3.7.6). The first coproduct is used to define the Hopf algebra on
H. The second coproduct and coaction provide a recursive manner in
which to compute it. Recalling that cδ ◦ dδ = δ + c ⊚ d, define ∆ for
any aiη ∈ V + :=

⊕
n>0 Vn such that

∆aiη(c, d) = aiη(c⊚ d) = (ci ⊚ d, η).

The coassociativity of ∆ follows from the associativity of the group
product. Specifically, for any c, d, e ∈ Rm〈〈X〉〉:

(id ⊗∆) ◦∆aiη(c, d, e) = (ci ⊚ (d⊚ e), η)

= ((c⊚ d)i ⊚ e, η)

= (∆⊗ id) ◦∆aiη(c, d, e).

Therefore, (id ⊗∆) ◦∆ = (∆⊗ id) ◦∆ as required.
The second coproduct is ∆j

⊔⊔ (V +) ⊂ V +⊗V +, which is isomorphic
to sh∗ via the coordinate maps. That is,

∆j
⊔⊔ a

i
∅ = ai∅ ⊗ aj∅ (3.35a)

∆j
⊔⊔ ◦ θk = (θk ⊗ id + id ⊗ θk) ◦∆j

⊔⊔ , (3.35b)

where id is the identity map on V +, and θk denotes the endomor-
phism on V + specified by θka

i
η = aixkη for k = 0, 1, . . . ,m and

i, j = 1, 2, . . . ,m.
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Example 3.32 The first few terms of ∆j
⊔⊔ are:

∆j
⊔⊔ a

i
∅ = ai∅ ⊗ aj∅

∆j
⊔⊔ a

i
xi1

= aixi1
⊗ aj∅ + ai∅ ⊗ ajxi1

∆j
⊔⊔ a

i
xi2xi1

= aixi2xi1
⊗ aj∅ + aixi2

⊗ ajxi1
+ aixi1

⊗ ajxi2
+

ai∅ ⊗ ajxi2xi1

∆j
⊔⊔ a

i
xi3xi2xi1

= aixi3xi2xi1
⊗ aj∅ + aixi3xi2

⊗ ajxi1
+

aixi3xi1
⊗ ajxi2

+ aixi3
⊗ ajxi2xi1

+

aixi2xi1
⊗ ajxi3

+ aixi2
⊗ ajxi3xi1

+

aixi1
⊗ ajxi3xi2

+ ai∅ ⊗ ajxi3xi2xi1
.

The coaction is ∆̃aiη = ∆aiη − 1δ ⊗ aiη or, equivalently, the coaction
induced by the identity

∆̃aiη(c, d) = (ci ◦̃ dδ, η) =
∑

aiη(1)(c)a
i
η(2)(d).

A key observation is that this coaction can be computed recursively
as described in the next lemma. It is not difficult to show using items
2 and 3 of this lemma that aiη(1) ∈ V + and aiη(2) ∈ H, and thus,

∆̃V + ⊆ V + ⊗H.

Lemma 3.6 The following identities hold:

1. ∆̃ai∅ = ai∅ ⊗ 1δ
2. ∆̃ ◦ θi = (θi ⊗ id) ◦ ∆̃
3. ∆̃ ◦ θ0 = (θ0 ⊗ id) ◦ ∆̃+ (θi ⊗ µ) ◦ (∆̃ ⊗ id) ◦∆i

⊔⊔ ,

i = 1, 2, . . . ,m, where id denotes the identity map on H.14

Proof:
1. First note that any series c can be uniquely decomposed as c =
(c, ∅)∅ + xic

i, i = 0, 1, . . . ,m, where the series ci are arbitrary. In
which case, using the left linearity of the mixed composition product
and Lemma 3.4, item 4, it follows that

14 The Einstein summation notation is used in item 3 and throughout to indicate
summations from either 0 or 1 to m, e.g.,

∑m
i=1 aib

i = aib
i. It will be clear from

the context which lower bound is applicable.
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∆̃ai∅(c, d) = ai∅(c ◦̃ dδ) = ai∅
(
(c, ∅)∅ + (xjc

j) ◦̃ dδ
)

= (ci, ∅) + ai∅(xj(c
j ◦̃ dδ) + x0(dj ⊔⊔ (cj ◦̃ dδ)))

= (ci, ∅) = (ai∅ ⊗ 1δ)(c, d).

2. For any η ∈ X∗ observe

(∆̃ ◦ θi)ajη(c, d) = ∆̃ajxiη(c, d)

= ajxiη(xk(ck ◦̃ dδ) + x0(dk ⊔⊔ (ck ◦̃ dδ)))
= ajη(c

i ◦̃ dδ)
= ∆̃ajη(c

i, d)

=
∑

ajη(1) ⊗ ajη(2)(c
i, d)

=
∑

θi(a
j
η(1)) ⊗ ajη(2)(c, d)

= (θi ⊗ id) ◦ ∆̃ajη(c, d).

Note that since ajη(1) ∈ V +, the operation θi(a
j
η(1)) is well defined.

3. Proceeding as in the previous item, it follows that

(∆̃ ◦ θ0)aiη(c, d)

= aix0η(c ◦̃ dδ)
= aix0η(xj(c

j ◦̃ dδ) + x0(dj ⊔⊔ (cj ◦̃ dδ)))
= aiη(c

0 ◦̃ dδ + dj ⊔⊔ (cj ◦̃ dδ))

= aiη(c
0 ◦̃ dδ) +

m∑

j=1

∆j
⊔⊔ a

i
η(c

j ◦̃ dδ , d)

= aiη(c
0 ◦̃ dδ) +

m∑

j=1

∑

ξ,ν∈X∗

(η, ξ ⊔⊔ ν) aiξ(c
j ◦̃ dδ)ajν(d)

= ∆̃aiη(c
0, d) +

m∑

j=1

∑

ξ,ν∈X∗

(η, ξ ⊔⊔ ν) (∆̃aiξ ⊗ ajν)(cj , d, d)

= (θ0 ⊗ id) ◦ ∆̃aiη(c, d) + (θj ⊗ id)◦
∑

ξ,ν∈X∗

(η, ξ ⊔⊔ ν) (∆̃aiξ ⊗ ajν)(c, d, d)

= (θ0 ⊗ id) ◦ ∆̃aiη(c, d) + (θj ⊗ µ) ◦ (∆̃ ◦ id) ◦∆j
⊔⊔ a

i
η(c, d).
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The next theorem is a central result describing the algebraic un-
derpinnings of the feedback connection.

Theorem 3.31 (H,µ,∆) is a connected graded commutative nonco-
commutative unital Hopf algebra.

Proof: From the development above, it is clear that (H,µ,∆) is a
bialgebra with unit 1δ and counit ǫ defined by ǫ(aη) = 0 for all η ∈ X∗

and ǫ(1δ) = 1. Here it is shown that this bialgebra is graded and
connected. Therefore, H automatically has an antipode, and thus, is
a Hopf algebra by Theorem 2.10. Specifically, since the algebra H is
graded by Hn, n ≥ 0 with H0 = R1δ, it only needs to be shown for
any aiη ∈ V + that

∆̃aiη ∈ (V + ⊗H)n :=
⊕

j+k=n
j≥1,k≥0

Vj ⊗Hk. (3.36)

This fact is evident from the first few terms computed via Lemma 3.6:

n = 1 : ∆̃ai∅ = ai∅ ⊗ 1δ

n = 2 : ∆̃aixj = aixj ⊗ 1δ

n = 3 : ∆̃aix0 = aix0 ⊗ 1δ + aixℓ ⊗ aℓ∅

n = 3 : ∆̃aixjxk = aixjxk ⊗ 1δ

n = 4 : ∆̃aix0xj = aix0xj ⊗ 1δ + aixℓ ⊗ aℓxj + aixℓxj ⊗ aℓ∅

n = 4 : ∆̃aixjx0 = aixjx0 ⊗ 1δ + aixjxℓ ⊗ aℓ∅

n = 4 : ∆̃aixjxkxl = aixjxkxl ⊗ 1δ

n = 5 : ∆̃aix20
= aix20

⊗ 1δ + aixℓ ⊗ aℓx0 + aixℓx0 ⊗ aℓ∅+

aix0xℓ ⊗ aℓ∅ + aixℓxν ⊗ aℓ∅a
ν
∅ ,

where i, j, k, l = 1, 2, . . . m. In which case, using the identities ∆(aiηa
j
ξ) =

∆aiη∆a
j
ξ and ∆aiη = ∆̃aiη + 1δ ⊗ aiη, it follows that ∆Hn ⊆ (H ⊗H)n,

and this would complete the proof. To prove (3.36), the following facts
are essential:

1. deg(θla
i
η) = deg(aiη) + 1, l = 1, 2, . . . ,m

2. deg(θ0a
i
η) = deg(aiη) + 2
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3. ∆j
⊔⊔ a

i
η ∈ (V + ⊗ V +)n+1, n = deg(aiη).

The proof is via induction on the length of η. When |η| = 0 then
clearly ∆̃ai∅ = ai∅ ⊗ 1δ ∈ V1 ⊗H0 and n = 1. Assume now that (3.36)
holds for words up to some fixed length |η| ≥ 0. Let n = deg(aiη).
There are two ways to increase the length of η. First consider aixlη
for some l 6= 0. From item 1 above deg(aixlη) = n + 1, and from

Lemma 3.6 ∆̃aixlη = (θl ⊗ id) ◦ ∆̃aiη. Therefore, using the induction

hypothesis, ∆̃aixlaη ∈⊕j+k=n Vj+1 ⊗Hk ⊂ (V ⊗H)n+1, which proves

the assertion. Consider next aix0η. From item 2 above deg(aix0η) = n+2.
Lemma 3.6 is employed as in the first case. First note that item 3
above ∆j

⊔⊔ a
i
η ∈ (V + ⊗ V +)n+1, and so using the induction hypothesis

it follows that (∆̃⊗ id) ◦∆j
⊔⊔ a

i
η ∈ (V + ⊗H ⊗ V +)n+1. In which case,

(θi ⊗ µ) ◦ (∆̃ ⊗ id) ◦∆j
⊔⊔ a

i
η ∈ (V + ⊗H)n+2. By a similar argument,

(θ0 ⊗ id) ◦ ∆̃aiη ∈ (V + ⊗H)n+2. Thus, ∆̃aix0η ∈ (V + ⊗H)n+2, which
again proves the assertion and completes the proof.

The deferred proof from Lemma 3.4 is addressed next.

Proof of Lemma 3.4, item 3: Recall the claim is that c ◦̃ dδ = k1
implies c = k1, k ∈ Rℓ. If c ◦̃ dδ = k1 then clearly ki = ai∅(c ◦̃ dδ) =

∆̃ai∅(c, d) = ai∅c, i = 1, 2, . . . , ℓ. Furthermore, for any xj ∈ X with

j 6= 0, 0 = aixj (c ◦̃ dδ) = ∆̃aixj(c, d) = aixjc, i = 1, 2, . . . , ℓ. Now suppose

aiηc = 0, i = 1, 2, . . . , ℓ for all aiη ∈ Vk with k = 1, 2, . . . , n. Then for
any xj ∈ X

0 = ∆̃aixjη(c, d) = aixjηc+
∑

ai
xjη(2)

6=1

aixjη(1)(c) a
i
xjη(2)

(d),

where in general aixjη(1) 6= ai∅. Therefore, aixjηc = 0, i = 1, 2, . . . , ℓ. In

which, case c = k1.

Example 3.33 Recall that Lemma 3.4, item 3 was used to establish
that δ + Rm〈〈X〉〉 constitutes a transformation group. But once estab-
lished, this identity becomes trivial to justify. Namely, if c ◦̃ dδ = k1
then

c = c ◦̃ (dδ ◦ d−1δ ) = (c ◦̃ dδ) ◦̃ d−1δ = k1 ◦̃ d−1δ = k1.
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The following result supports the primary application of the Hopf
algebra (H,µ,∆) in computing the feedback product.

Lemma 3.7 The Hopf algebra (H,µ,∆) has an antipode S satisfying
aiη(c

−1) = (Saiη)(c) for all η ∈ X∗ and c ∈ Rm〈〈X〉〉.

Proof: The claim follows directly from (2.32).

Finally, it was established in Theorem 2.10 that the antipode, S,
of any graded connected Hopf algebra (H,µ,∆) can be computed for
any a ∈ H+ by

Sa = −a−
∑

(Sa′(1))a
′
(2), (3.37)

or alternatively,

Sa = −a−
∑

a′(1)Sa
′
(2), (3.38)

where the reduced coproduct is ∆′a = ∆a − a ⊗ 1δ − 1δ ⊗ a =∑
a′(1) ⊗ a′(2). This can be viewed as being partially recursive in that

the coproduct needs to be computed first before the antipode recursion
can be applied. The next theorem provides a fully recursive algorithm
to compute the antipode for the output feedback group.

Theorem 3.32 The antipode, S, of any aiη ∈ V + in the output feed-
back Hopf algebra can be computed by the following algorithm:

i. Recursively compute ∆j
⊔⊔ via (3.35).

ii. Recursively compute ∆̃ via Lemma 3.6.
iii. Recursively compute S via (3.37) or (3.38) with

∆′aiη = ∆̃aiη − aiη ⊗ 1δ.

Proof: In light of the previous results, the only detail is the minor
observation that S is the antipode of the Hopf algebra with coproduct
∆a = ∆̃a+1δ⊗a. In which case, the corresponding reduced coproduct
is as described in step iii.

Applying the algorithm above via the left antipode formula (3.37)
gives the antipode of the first few coordinate maps:

H1 : Sai∅ = −ai∅ (3.39a)

H2 : Saixj = −aixj (3.39b)
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H3 : Saix0 = −aix0 + aixℓa
ℓ
∅ (3.39c)

H3 : Saixjxk = −aixjxk (3.39d)

H4 : Saix0xj = −aix0xj + aixℓa
ℓ
xj + aixℓxja

ℓ
∅ (3.39e)

H4 : Saixjx0 = −aixjx0 + aixjxℓa
ℓ
∅ (3.39f)

H4 : Saixjxkxl = −aixjxkxl (3.39g)

H5 : Saix20
= −aix20 − (Saixℓ)a

ℓ
x0 − (Saixℓx0)aℓ∅ − (Saix0xℓ)a

ℓ
∅−

(Saixℓxν )aℓ∅a
ν
∅

= −aix20 − (−aixℓ)a
ℓ
x0 − (−aixℓx0 +

✘
✘
✘
✘aixℓxνa
ν
∅)a

ℓ
∅−

(−aix0xℓ + aixνa
ν
xℓ

+ aixνxℓa
ν
∅)a

ℓ
∅ −

✘
✘
✘
✘
✘
✘✘

(−aixℓxν )aℓ∅a
ν
∅

= −aix20 + aixℓa
ℓ
x0 + aixℓx0a

ℓ
∅ + aix0xℓa

ℓ
∅ − aixνa

ν
xℓ
aℓ∅−

aixνxℓa
ν
∅a
ℓ
∅, (3.39h)

where i, j, k, l = 1, 2, . . . m. The explicit calculations for Sai
x20

are shown

above to display the inter-term cancellation. This is the same phe-
nomenon observed for the classical Faà di Bruno Hopf algebra pre-
sented in Section 2.6. As with that Hopf algebra, the right antipode
formula here is also known to be cancellation free and thus is pre-
ferred for calculations. Finally, it should be noted when m = 1, i.e.,
the single-input, single-output case, that all the summations above
vanish.

Example 3.34 Consider a linear time-invariant system with an m×m
transfer function H(s) and state space realization (A,B,C). The
corresponding components of the linear generating series are ci =∑

k≥0

∑m
j=1(ci, x

k
0xj)x

k
0xj , where (ci, x

k
0xj) = CiA

kBj , k ≥ 0, and Ci,
Bj denote the i-th row of C and the j-th column of B, respectively.
The composition inverse of the return difference matrix I + H(s) is
computed directly as

(I + C(sI −A)−1B)−1 = I − C(sI − (A−BC))−1B.

Therefore, it follows that

(c−1i , xk0xj) = −Ci(A−BC)kBj , k ≥ 0, i, j = 1, 2, . . . ,m.

Expanding this product gives results which are consistent with the
antipode formulas (3.39). For example,
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(c−1i , x0xj) = −Ci(A−BC)Bj

= −CiABj + CiBCBj

= −CiABj +
m∑

ℓ=1

CiBℓCℓBj

= −(ci, x0xj) +

m∑

ℓ=1

(ci, xℓ)(cℓ, xj)

= (−aix0xj + aixℓa
ℓ
xj + aixℓxja

ℓ
∅)c

= (Saix0xj )c,

where the fact that (c, xℓxj) = (c, ∅) = 0 has been used in the second
to the last line.

A unity feedback system is one where the operator Fd in Figure 3.14
is replaced with the identity map Fδ = I. At first glance, it does
not appear that the output feedback formula (3.34) will apply to this
situation. However, if the loop generating series −d◦c in this formula is
replaced with −c this corresponds exactly to a unity feedback system,
and the formula does render the correct closed-loop generating series.
So introducing a slight abuse of notation, the generating series for a
unity feedback system will be denoted by c@δ := c ◦̃ (−c)−1δ , and it is
evident from (3.30) that c@δ = (−c)−1, and therefore, c−1 = (−c)@δ.
That is, every inverse generating series can be viewed as coming from
a unity feedback system.

Example 3.35 Let c =
∑

k≥0 k!xk1 . The generating series for the

unity feedback system c@δ = (−c)−1 is computed directly from (3.39).
For example, the coefficients for all the degree four terms are:

((−c)−1, x0x1) = Sax0x1(−c)
= ax1(−x1)ax1(−x1) + ax1x1(−2!x1x1)a∅(−1) = 3

((−c)−1, x1x0) = Sax1x0(−c)
= ax1x1(−2!x1x1)a∅(−1) = 2

((−c)−1, x1x1x1) = Sax1x1x1(−c)
= −ax1x1x1(−3!x1x1x1) = 6.

Therefore, the polynomial
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a4 = 6x31 + 3x0x1 + 2x1x0

is comprised of all the degree 4 terms appearing in c@δ. Continuing in
this way, c@δ =

∑
k≥1 ak, where

a1 = 1

a2 = x1

a3 = 2x21 + x0

a4 = 6x31 + 3x0x1 + 2x1x0

a5 = 24x41 + 12x0x
2
1 + 8x1x0x1 + 6x21x0 + 3x20

a6 = 120x51 + 60x0x
3
1 + 40x1x0x

2
1 + 30x21x0x1 + 24x31x0+

15x20x1 + 12x0x1x0 + 8x1x
2
0.

These are the Devlin polynomials. They are known to be related by
the simple linear recursion

an = (n− 1)an−1x1 + (n− 2)an−2x0, n ≥ 2, (3.40)

where a0 = 0 and a1 = 1.

In applications, generally the plant, modeled by Fc in Figure 3.14
is fixed and the feedback law Fd is considered variable. In which case,
there is an underlying additive feedback transformation group in this
setting.

Definition 3.8 For any fixed c ∈ R〈〈X〉〉, define

Oc = {eδ ∈ δ + R〈〈X〉〉 : eδ = (d ◦ c)δ , d ∈ R〈〈X〉〉} .

Theorem 3.33 For any fixed series c ∈ R〈〈X〉〉, the triple (Oc,+, δ)
defines an additive group, where

eδ + e′δ = (d ◦ c)δ + (d′ ◦ c)δ := ((d+ d′) ◦ c)δ

for any eδ = (d ◦ c)δ , e′δ = (d′ ◦ c)δ ∈ Oc.

Proof: The claim follows directly from the left linearity of the compo-
sition product on the R-vector space R〈〈X〉〉.

The group (Oc,+, δ) is isomorphic to the additive transformation
group described in the following theorem.
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Theorem 3.34 The additive group (R〈〈X〉〉,+, 0) acts on the set
R〈〈X〉〉 as a right transformation group, where the action is given by
the output feedback product. That is, c@0 = c and

(c@d1)@d2 = c@(d1 + d2).

Proof: The first identity is trivial. For the second, two algebraic facts
are needed. First, as described in Lemma 3.7, the composition inverse
is defined in terms of a Hopf algebra antipode, S, using the group
(δ + R〈〈X〉〉, ◦, δ). Such an S is always an antihomomorphism for both
the algebra and the coalgebra structures on H, for example, S(a1a2) =
S(a2)S(a1), ∀a1, a2 ∈ H. Therefore, it follows directly that (cδ◦dδ)−1 =
d−1δ ◦ c−1δ . Second, from Lemma 3.4, item 6, recall that

c ◦ (d ◦̃ eδ) = (c ◦ d) ◦̃ eδ.

Proceeding with the calculation, it follows by definition of the output
feedback product and the fact that (R〈〈X〉〉, ◦, δ) is known to act as a
right transformation on R〈〈X〉〉 via the product c ◦̃ dδ that

(c@d1)@d2

= (c ◦̃ (−d1 ◦ c)−1δ )@d2

= (c ◦̃ (−d1 ◦ c)−1δ ) ◦̃ (−d2 ◦ (c ◦̃ (−d1 ◦ c)−1δ ))−1δ

= c ◦̃
[
(−d1 ◦ c)−1δ ◦ (−d2 ◦ (c ◦̃ (−d1 ◦ c)−1δ ))−1δ

]
.

Now apply the first fact stated above, the definition of the group prod-
uct on δ + R〈〈X〉〉, and the second fact in this order to get

(c@d1)@d2 = c ◦̃
[
(−d2 ◦ (c ◦̃ (−d1 ◦ c)−1δ ))δ◦

(−d1 ◦ c)δ
]−1

= c ◦̃
[
(−d1 ◦ c) + (−d2 ◦ (c ◦̃ (−d1 ◦ c)−1δ )) ◦̃

(−d1 ◦ c)δ
]−1
δ

= c ◦̃
[
(−d1 ◦ c) + ((−d2 ◦ c) ◦̃ (−d1 ◦ c)−1δ ) ◦̃

(−d1 ◦ c)δ
]−1
δ
.

Finally, just simplify the result using properties already stated so that

(c@d1)@d2 = c ◦̃
[
(−d1 ◦ c) + (−d2 ◦ c) ◦̃ ((−d1 ◦ c)−1δ ◦
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(−d1 ◦ c)δ)
]−1
δ

= c ◦̃ (−(d1 + d2) ◦ c))−1δ
= c@(d1 + d2).

Example 3.36 Returning to the linear time-invariant case in Exam-
ple 3.30, the above theorem reduces to a simple identity concerning
transfer functions. Namely, if H is the transfer function for the plant
and feedback G1 is applied, then the closed-loop system has the trans-
fer function

Hcl,1 = H(I −G1H)−1.

If a second feedback loop G2 is then applied the resulting closed-loop
transfer function is

Hcl,2 = Hcl,1(I −G2Hcl,1)
−1

= H(I − (G1 +G2)H)−1.

Clearly, the second feedback loop will cancel the first feedback loop
when G2 = −G1. It is easy to see that (I − (G1 + G2)H)−1 6=
(I − G1H)−1(I − G2H)−1. Therefore, what is essentially a compo-
sitional group in Example 3.30 will not describe the output feedback
transformation group consider here. Nevertheless, all inverse opera-
tions above are with respect to this composition group. So it is still an
essential concept.

Finally, issues connected with convergence are addressed. As with
the cascade connection, the main results will be stated along with il-
lustrative examples, but the most difficult proofs will be left to the
literature. The first theorem states that local convergence is preserved
under the composition inverse. The radius of convergence for this op-
eration is also given.

Theorem 3.35 Suppose X = {x0, x1, . . . , xm}. Let c ∈ RmLC〈〈X〉〉\
RmGC〈〈X〉〉 with growth constants Kc,Mc > 0. If b = c−1, then for
every ǫ > 0

|(b, η)| ≤ Kb (Mb + ǫ)|η| |η|!, η ∈ X∗,

for some Kb > 0, where

Mb =
Mc

1 −mKc ln
(

1 + 1
mKc

) .
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Therefore, b ∈ RmLC〈〈X〉〉. Furthermore, if Kc and Mc are minimal,
then no geometric growth constant smaller than Mb exists. Thus, the
radius of convergence for the composition inverse operation is

1

Mc(m+ 1)

[
1 −mKc ln

(
1 +

1

mKc

)]
.

Example 3.37 In Example 3.35 it was shown that if c =
∑

k≥0 k!xk1
then (−c)−1 =

∑
k≥0 ak, where ak are the Devlin polynomials. Define

the integer sequence
bnk = max

η∈Xn
(ak, η)

corresponding to the largest coefficient in ak for a given word length n.
A straightforward inductive argument using (3.40) (see Problem 3.7.9)
yields the identity

bn2n+1 =
(2n)!

2nn!
= 1 · 3 · 5 · · · (2n− 1), (3.41)

which is usually denoted as the double factorial (2n − 1)!!. Note, in
particular, that

(2n − 1)!! = deg(1) deg(x0) · · · deg(xn−10 ).

This implies that the fastest growing subsequence of coefficients of
(−c)−1 with respect to word length corresponds to those coefficients
attached to the words xk0 , k ≥ 0, since it is known in general that

(ak, xi1xi2 · · · xin) =

n−1∏

j=1

deg(xi1xi2 · · · xij )

when k = deg(xi1xi2 · · · xin) and n ≥ 2. Therefore, in light of Theo-
rem 3.35 with Kc = Mc = 1, it should be true that for some K > 0

(2n − 1)!! ≤ K

(
1

1 − log 2

)n
n! = K(3.25889...)nn!

for all n ≥ 1. To see this is so, one can employ the well known identity

(2n − 1)!! =
1

π
2nΓ

(
n+

1

2

)
,

where Γ denotes the gamma function. The claim is now evident since
Γ (n+ 1

2) < Γ (n+ 1) = n! for all n = 1, 2, . . ..
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Two immediate consequences of the previous theorem are the fol-
lowing.

Theorem 3.36 The triple (δ + RmLC〈〈X〉〉, ◦, δ) is a subgroup of the
group (δ + Rm〈〈X〉〉, ◦, δ).

Proof: The set of generating series δ + RmLC〈〈X〉〉 is closed under com-
position since the set RmLC〈〈X〉〉 is closed under addition and mixed
composition (the proof is similar to that of Theorem 3.24). In light of
Theorem 3.35, δ + RmLC〈〈X〉〉 is also closed under inversion. Hence, the
theorem is proved.

Theorem 3.37 If c, d ∈ RmLC〈〈X〉〉, then c@d ∈ RmLC〈〈X〉〉.

Proof: Since the composition product, the mixed composition product,
and the composition inverse all preserve local convergence, the claim
follows directly from Theorem 3.30.

The radius of convergence of the output feedback product is given
in the following theorem.

Theorem 3.38 Suppose X = {x0, x1, . . . , xm}. Let c, d ∈ RmLC〈〈X〉〉\
RmGC〈〈X〉〉 with growth constants Kc,Mc > 0 and Kd,Md > 0, respec-
tively. If e = c@d, then for every ǫ > 0

|(e, η)| ≤ Ke(Me + ǫ)|η||η|!, η ∈ X∗,

for some Ke > 0, where

Me =
1

∫ 1/Mc

0
W (exp(f(z)))

1+W (exp(f(z))) dz

and

f(z) =
1 −Mdz

mKd
+ ln


(1 −Mcz)

KcMd
KdMc

mKd


 .

Furthermore, if Kc, Mc, Kd and Md are minimal, then no geometric
growth constant smaller than Me exists. Thus, the radius of conver-
gence for e = c@d is
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1

(m+ 1)

[∫ 1/Mc

0

W (exp(f(z)))

1 +W (exp(f(z)))
dz

]
. (3.42)

.

Example 3.38 Suppose X = {x0, x1}. Recall from Theorem 3.4 that
if c is a locally maximal series with growth constants Kc,Mc then

y = Fc[u] =
Kc

1 −McEx0+x1 [u]
.

Setting z1 = y and computing the derivative gives directly a state
space realization for this input-output system, namely,

ż1 =
Mc

Kc
z21(1 + u), z1(0) = Kc

y = z1

(see Problem 3.6.5). An analogous realization exists for Fd if d is locally
maximal. If these two systems are now interconnected as shown in
Figure 3.14, then a realization for the closed-loop system Fc@d is

ż1 =
Mc

Kc
z21 (1 + z2 + u) , z1(0) = Kc (3.43a)

ż2 =
Md

Kd
z22 (1 + z1) , z2(0) = Kd (3.43b)

y = z1. (3.43c)

A numerical simulation of (3.43) with Kc = 1,Mc = 2,Kd = 3 and
Md = 4 and u=0 gives the response shown in Figure 3.16. There is a
finite escape time at tesc ≈ 0.0723. As discussed earlier for the parallel
and cascade connections, it is known that the zero-input response of
locally maximal series defines the radius of convergence for the corre-
sponding connection. The same is true here. Numerically integrating
(3.42) for this case gives tesc = 0.0723 as expected.

The following corollary gives the radius of convergence for a unity
feedback system.

Corollary 3.4 Suppose X = {x0, x1, . . . , xm}. Let c ∈ RmLC〈〈X〉〉\
RmGC〈〈X〉〉 with growth constants Kc,Mc > 0. If e = c@δ, then for
every ǫ > 0
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Fig. 3.16. Zero-input response of feedback system in Example 3.38

|(e, η)| ≤ Ke(Me + ǫ)|η||η|!, η ∈ X∗,

for some Ke > 0, where

Me =
Mc

1 −mKc ln
(

1 + 1
mKc

) . (3.44)

Furthermore, if Kc and Mc are minimal, then no geometric growth
constant smaller than Me exists. Thus, the radius of convergence for
e = c@δ is

1

Mc(m+ 1)

[
1 −mKc ln

(
1 +

1

mKc

)]
.

The next corollary is useful for the convergence analysis of unity
feedback systems having analytic inputs.

Corollary 3.5 Suppose X = {x0, x1, . . . , xm}. Let c ∈ RmLC〈〈X〉〉\
RmGC〈〈X〉〉 with growth constants Kc,Mc > 0. Assume e = c@δ and let
Me be as defined in (3.44). If cu ∈ RmLC [[X0]]\RmGC [[X0]] with growth
constants Kcu,Mcu > 0 and cy = e ◦ cu, then for every ǫ > 0

|(cy, xk0)| ≤ Kcy(Mcy + ǫ)kk!, k ≥ 0,

for some Kcy > 0, where
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Fig. 3.17. Zero-input response of feedback system in Example 3.39

Mcy =
Mcu

1 −mKcuW
(

1
mKcu

exp
(
Me−Mcu
mKcuMe

)) .

Thus, the interval of convergence for the output y = Fcy [u] is at least
as large as T = 1/Mcy .

Proof: The proof is an immediate consequence of Corollaries 3.3 and
3.4.

Example 3.39 Let X = {x0, x1}. Suppose e = c@δ, where c is a
locally maximal series with growth constants Kc,Mc > 0. The zero-
input response of the feedback system is described by the solution of
the state space system

ż =
Mc

Kc
(z2 + z3), z(0) = Kc

y = z.

Numerical solutions of this system are shown in Figure 3.17 when Kc =
Mc = 1 and when Kc = 4, Mc = 0.5. As expected from Corollary 3.4,
the respective finite escape times are tesc = 1 − ln(2) ≈ 0.3069 and
tesc = 2(1 − 4 log(5/4)) ≈ 0.2149.
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Example 3.40 LetX = {x0, x1} and consider the case where e = c@δ
with c =

∑
n≥0 n!xn1 . In comparison to the previous example, c has

most of its coefficients equal to zero. Therefore, it is likely that the
output will be finite over a longer interval. The zero-input response of
the unity feedback system is described by the solution of

ż = z3, z(0) = 1

y = z.

Therefore, y(t) = 1/
√

1 − 2t is finite up to t = 0.5, which is longer
than the finite escape time of tesc = 0.3069 obtained in the previous
example.

The next example illustrates an important distinction between
the feedback connection and all previous interconnections considered,
namely, feedback does not preserve global convergence.

Example 3.41 Consider a feedback interconnection involving the
globally convergent series c = x1 and d =

∑
k≥0 x

k
1 . Setting z1 =

Fc[u] = Ex1 [u] and z2 = Fd[u] = exp[Ex1 [u]], it is clear that ż1 = u
and ż2 = z2u. In which case, Fc@d has the state space realization

ż1 = z2 + u, z1(0) = 0

ż2 = z1z2, z2(0) = 1

y = z1.

Setting u = 0, y satisfies the initial value problem ÿ− ẏy = 0, y(0) = 0,
ẏ(0) = 1, which has the solution

y(t) =
√

2 tan

(
t√
2

)
=

∞∑

k=1

(−1)k−12k(22k−1)
B2k

k

t2k−1

(2k − 1)!

= t+
t3

3!
+ 4

t5

5!
+ 34

t7

7!
+ 496

t9

9!
+ · · ·

for 0 ≤ t < π/
√

2 ≈ 2.2214, where Bk denotes the k-th Bernoulli
number. A numerical simulation of the state space realization confirms
a finite escape time at tesc = 2.2214. Hence, the closed-loop system is
not globally convergent.
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While global convergence is not preserved under feedback, there is
no doubt in light of Theorem 3.37 that the closed-loop system still
has a locally convergent generating series. It stands to reason that
the radius of convergence in this case might be larger than that given
by Theorem 3.38 since stronger growth bound have been imposed on
the generating series of the component systems. The first theorem
describes the radius of convergence of the feedback connection of two
globally convergent subsystems with Gevrey order s = 0. Then the
unity feedback case is presented as a corollary. It is easy to directly
compare radii of convergence in this latter case as illustrated by an
example.

Theorem 3.39 Suppose X = {x0, x1, . . . , xm}. Let c, d ∈ RmGC〈〈X〉〉
with growth constants Kc,Mc > 0 and Kd,Md > 0, respectively, and
Gevrey order s=0. If e = c@d, then for every ǫ > 0

|(e, η)| ≤ Ke(Me + ǫ)|η||η|!, η ∈ X∗,

for some Ke > 0, where

Me =
1∫∞

0
1

1+W (exp(f(z))) dz
, (3.45)

and

f(z) =
mKcMd

Mc
(exp(Mcz) − 1) +Mdz +mKd + ln(mKd).

Furthermore, if Kc, Mc, Kd, and Md are minimal, then no geometric
growth constant smaller than Me exists. Thus, the radius of conver-
gence for e = c@d is

1

(m+ 1)

[∫ ∞

0

1

1 +W (exp(f(z)))
dz

]
. (3.46)

Example 3.42 SupposeX = {x0, x1}. Recall from Example 3.22 that
a maximal series with Gevrey order s = 0 and growth constants Kc,Mc

yields the Fliess operator

y = Fc[u] = Kc exp (McEx0+x1 [u]) .
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Fig. 3.18. Zero-input response of feedback system in Example 3.42

Setting z1 = y gives directly the state space realization

ż1 = Mcz1(1 + u), z1(0) = Kc

y = z1.

Therefore, the feedback interconnection of two such systems is realized
by

ż1 = Mcz1 (1 + z2 + u) , z1(0) = Kc

ż2 = Mdz2 (1 + z1) , z2(0) = Kd

yi = z1.

A numerical simulation of this system with growth constants Kc =
1,Mc = 2,Kd = 3 and Md = 4 gives the zero-input response shown in
Figure 3.18. Numerical integration of (3.46) for this case gives tesc =
0.1570 as observed in the figure.

Corollary 3.6 Suppose X = {x0, x1, . . . , xm}. Let c ∈ RmGC〈〈X〉〉 with
growth constants Kc,Mc > 0 and Gevrey order s = 0. If e = c@δ, then
for every ǫ > 0

|(e, η)| ≤ Ke(Me + ǫ)|η||η|!, η ∈ X∗,
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Fig. 3.19. Zero-input responses of the feedback system in Example 3.43

for some Ke > 0, where

Me =
Mc

ln
(

1 + 1
mKc

) .

Furthermore, if Kc and Mc are minimal, then no geometric growth
constant smaller than Me exists. Thus, the radius of convergence for
e = c@δ is

1

Mc(m+ 1)

[
ln

(
1 +

1

mKc

)]
.

Proof: Set Kc = Kd and Mc = Md in (3.45) and then evaluate directly.

Example 3.43 Suppose X = {x0, x1}. Let e = c@δ with c being a
maximal series with growth constants Kc,Mc and s = 0. This is the
global version of Example 3.39. The zero-input response of the unity
feedback system is described by the solution of the state space system

ż = Mc(z + z2), z(0) = Kc

y = z.
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Numerically generated solutions of this system are shown in Fig-
ure 3.19 when Kc = Mc = 1 and when Kc = 4, Mc = 0.5. From Corol-
lary 3.6 the respective finite escape times are tesc = ln(2) ≈ 0.6931
and tesc = 2 log(5/4) ≈ 0.4463. Note that these escape times are about
twice that of the respective cases in Example 3.39. To see why this hap-
pens, observe that the geometric growth constant for the local case in
Corollary 3.4 has the form Me = α(Kc)Mc, where

α(Kc) =
1

1 −mKc ln
(

1 + 1
mKc

) ,

while for the global case in Corollary 3.6, Me = γ(Kc)Mc, where

γ(Kc) =
1

ln
(

1 + 1
mKc

) .

In light of the series expansions about Kc = ∞:

α(Kc) =
4

3
+ 2Kc +O

(
1

Kc

)

γ(Kc) =
1

2
+Kc +O

(
1

Kc

)
,

the radius of convergence for the global case with s = 0 is always about
twice that for the local case, especially when Kc ≫ 1.

Example 3.44 Suppose X = {x0, x1} and consider the case where
e = c@δ with c =

∑
n≥0 x

n
1 . The series c has the same growth constants

Kc = Mc = 1 as in Example 3.43 except most of its coefficients are
zero. Thus, the zero-input response is expected to be finite over a
longer interval. The zero-input response of the unity feedback system
is described by the solution of

ż = z2, z(0) = 1

y = z.

Therefore, y(t) = 1/(1 − t) is finite up to t = 1, which exceeds the
finite escape time of tesc = 0.6931 in the previous example.
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Table 3.2. Radii of convergence for connections of only locally convergent systems

connection c, d ∈ Rℓ
LC〈〈X〉〉\Rℓ

GC 〈〈X〉〉 source

parallel 1
max{Mc,Md}(m+1)

Theorem 3.17

product 1
max{Mc,Md}(m+1)

Theorem 3.18

cascade
(ℓ = m
for d)

1
Md(m+1)

[
1−mKdW

(
1

mKd
exp

(
Mc−Md

mKdMc

))]
Theorem 3.24

feedback
(ℓ = m)

1
(m+1)

∫ 1/Mc

0

W (exp(f(z)))
1+W (exp(f(z)))

dz

f(z) = 1−Mdz
mKd

+ ln

(
(1−Mcz)

KcMd
K

d
Mc

mKd

)
Theorem 3.38

unity
feedback
(ℓ = m)

1
Mc(m+1)

[
1−mKc ln

(
1 + 1

mKc

)]
Corollary 3.4

Finally, a summary of the radii of convergence for all four elemen-
tary system interconnections is given in Table 3.2 for the case where
the subsystems have only locally convergence generating series. The
analogous summary for the globally convergent case is given in Ta-
ble 3.3. Here the distinction is made between the composite system
having a globally convergent generating series in the sense of (3.13)
(GC) versus having only the corresponding operator being globally
convergent.

3.8 Formal Fliess Operators

All the focus up to this point has been on Fliess operators which have
at least a locally convergent generating series. This provides for a well
defined mapping from a ball of input functions in Lmp [t0, t0+T ] to a ball

of output functions in Lℓq[t0, t0 + T ]. In this section, this requirement
will be relaxed and instead, the class of formal Fliess operators will be
defined without any reference to convergence. Theorem 3.21 motivates
the approach, namely, that Fc can be viewed as a mapping from the set
of formal inputs, Rm[[X0]], to the set of formal outputs, Rℓ[[X0]], using
the composition product. After all, the composition product of two
series as induced by operator composition is well defined (summable)
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Table 3.3. Radii of convergence for connections of globally convergent systems

connection c, d ∈ Rℓ
GC〈〈X〉〉 source

parallel ∞ (GC) Theorem 3.16

product ∞ (GC) Theorem 3.16

cascade
(ℓ = m for d)

∞ Theorem 3.25

feedback
(ℓ = m, s = 0)

1
(m+1)

∫∞

0
1

1+W (exp(f(z)))
dz

f(z) = mKcMd

Mc
(exp(Mcz)− 1) +Mdz

+mKd + ln(mKd)

Theorem 3.39

unity feedback
(ℓ = m, s = 0)

1
Mc(m+1)

ln
(
1 + 1

mKc

)
Corollary 3.6

independent of whether its arguments are convergent in any sense. The
following definition makes this notion precise.

Definition 3.9 The set of formal Fliess operators is the collection
of mappings

F :=
{
Rm[[X0]] → Rℓ[[X0]] : cu 7→ cy = c ◦ cu, c ∈ Rℓ〈〈X〉〉

}
.

As was shown in Theorem 3.7 for the locally convergent case, the
generating series of a formal Fliess operator is unique. It should be
noted from the onset, however, that the method of proof for The-
orem 3.7 does not apply here. The piecewise constant test input ū
employed earlier is not in general characterized over [t0, t0 +T ] by any
single generating series, cū. Thus, a completely different approach is
needed here.

Theorem 3.40 Let c, d ∈ Rℓ〈〈X〉〉. If c ◦ cu = d ◦ cu for all cu ∈
Rm[[X0]] then c = d.

The following three lemmas are essential to the development of a
proof. They recast the composition product in a different light, showing
more of its combinatoric nature. (This approach will also be useful in
Chapter 5 for defining Chen series.)

Lemma 3.8 Let c ∈ Rℓ〈〈X〉〉 and cu ∈ Rm[[X0]]. Then for any n ≥ 0

(c◦cu, xn0 ) = (c, xn0 )+

n∑

k=1

m,n∑

i1,...,ik=1
j1,...,jk=0

(
c, P̄ j1···jki1···ik

(n)
)

(cui1 , x
j1
0 ) · · · (cuik , x

jk
0 ),
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where cui is the i-th component series of cu and

P̄ j1···jki1···ik
(n) =

∞∑

n0,...,nk=0

χj1···jkn0···nk
(n)xnk

0 xik · · · xn1
0 xi1x

n0
0

is a polynomial with coefficients

χj1···jkn0···nk
(n)

=
(
xnk+1
0 [xjk0 ⊔⊔ [x

nk−1+1
0 [x

jk−1

0 ⊔⊔ · · · xn1+1
0 [xj10 ⊔⊔ xn0

0 ] · · · ]]], xn0
)
.

Clearly, χj1···jkn0···nk
(n) = 0 whenever n0 + n1 + · · · + nk + k + j1 + j2 +

· · · jk 6= n. So P̄ j1···jki1···ik
(n) is homogeneous of degree n − j, where j :=

j1 + j2 + · · · + jk when k ≤ n− j, and P̄ j1···jki1···ik
(n) = 0 when k > n− j.

Proof: From the definition of the composition product,

(c ◦ cu, xn0 ) =
∑

η∈X∗

(c, η)(η ◦ cu, xn0 )

= (c, xn0 ) +

∞∑

k=1

∑

η∈Γk

(c, η)(η ◦ cu, xn0 ), (3.47)

where

Γk :=



ξ ∈ X∗ :

m∑

j=1

|ξ|xj = k



 .

Let η be any word in Γk. Substitute cu =
∑

j≥0(cu, x
j
0) componentwise

into the following expression and use the R-linearity of the shuffle
product:

(η ◦ cu, xn0 )

= ((xnk
0 xik · · · xn1

0 xi1x
n0
0 ) ◦ cu, xn0 )

=
(
xnk+1
0 [cuik ⊔⊔ [x

nk−1+1
0 [cuik−1

⊔⊔ · · · xn1+1
0 [cui1 ⊔⊔ xn0

0 ] · · · ]]], xn0
)

=

∞∑

j1,...,jk=0

(
xnk+1
0 [xjk0 ⊔⊔ [x

nk−1+1
0 [x

jk−1

0 ⊔⊔ · · · xn1+1
0 [xj10 ⊔⊔ xn0

0 ] · · · ]]], xn0
)

(cui1 , x
j1
0 ) · · · (cuik , x

jk
0 )

=

∞∑

j1,...,jk=0

χj1···jkn0···nk
(n) (cui1 , x

j1
0 ) · · · (cuik , x

jk
0 ).
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Finally, substitute the above identity in equation (3.47)

(c ◦ cu, xn0 )

= (c, xn0 ) +

∞∑

k=1

m∑

i1,...,ik=1
j1,...,jk≥0
n0,...,nk≥0

(c, xnk
0 xik · · · xn1

0 xi1x
n0
0 )χj1···jkn0···nk

(n)

(cui1 , x
j1
0 ) · · · (cuik , x

jk
0 )

= (c, xn0 ) +
n∑

k=1

m,n∑

i1,...,ik=1
j1,...,jk=0

(
c, P̄ j1···jki1···ik

(n)
)

(cui1 , x
j1
0 ) · · · (cuik , x

jk
0 ),

and the lemma is proved.

An alternative identity for (c ◦ cu, xn0 ) can be deduced from the
one in Lemma 3.8 by introducing an ordering on the coefficients
(cui1 , x

j1
0 ) · · · (cuik , x

jk
0 ). For each k ≥ 1 define the set of 2 × k ma-

trices

Sk =

{(
j1 j2 . . . jk
i1 i2 . . . ik

)
: 1 ≤ il ≤ m, jl ≥ 0,

(1, 0) ≤ (i1, j1) ≤ · · · ≤ (ik, jk)

}
,

where “ ≤ ” denotes the lexicographic order on the set {(i, j) : i, j ∈
N0}. Define the positive integers s1, . . . , sp for a given element of Sk
by

(
j1 j2 . . . jk
i1 i2 . . . ik

)
=




β1 · · · β1 β2 · · · β2 · · · βp · · · βp
α1 · · ·α1︸ ︷︷ ︸

s1

α2 · · ·α2︸ ︷︷ ︸
s2

· · · αp · · ·αp︸ ︷︷ ︸
sp


 .

Using this ordering, the lemma below follows naturally.

Lemma 3.9 Let c ∈ Rℓ〈〈X〉〉 and cu ∈ Rm[[X0]]. Then

(c ◦ cu, xn0 ) = (c, xn0 ) +
n∑

k=1

∑

Sk

1

s1! · · · sp!
(
c, P j1···jki1···ik

(n)
)

(cui1 , x
j1
0 ) · · · (cuik , x

jk
0 ),

where the inner sum is taken over all elements of Sk such that k+j ≤ n
and



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

3.8 Formal Fliess Operators 213

P j1···jki1···ik
(n) :=

∑

σ∈Πk

P̄
jσ(1)···jσ(k)

iσ(1)···iσ(k)
(n).

Here Πk denotes the permutation group defined on the set {1, 2, . . . , k}.

Proof: This new expression follows from Lemma 3.8 by grouping the
terms related by permutation.

Example 3.45 Consider the single-input, single-output case so that
X = {x0, x1} and ℓ = 1. Here the lower indices of P̄ and P are such
that i1 · · · ik = 1 · · · 1 in every case, so they are suppressed in the
notation. For k = 3, the first few polynomials P j1j2j3(n) are written
below in terms of the polynomials P̄ j1j2j3(n) using the definition:

P j1j2j3(n) = P̄ j1j2j3(n) + P̄ j1j3j2(n) + P̄ j2j1j3(n)+

P̄ j2j3j1(n) + P̄ j3j1j2(n) + P̄ j3j2j1(n).

For example,

P 000(n) = 3! P̄ 000(n)

P 001(n) = 2! (P̄ 001(n) + P̄ 010(n) + P̄ 100(n))

P 011(n) = 2! (P̄ 011(n) + P̄ 101(n) + P̄ 110(n))

P 111(n) = 3! P̄ 111(n).

A more compact form of the above identity is possible if one associates
a family of polynomials in R〈X〉 with each cu ∈ Rm[[X0]]:

Pcu(n) := xn0 +
n∑

k=1

∑

Sk

1

s1! · · · sp!
P j1···jki1···ik

(n) (cui1 , x
j1
0 ) · · · (cuik , x

jk
0 ),

(3.48)
n ≥ 0. Clearly, deg(Pcu(n)) = n and

(c ◦ cu, xn0 ) = (c, Pcu(n)), n ≥ 0.

Therefore,

c ◦ cu =

∞∑

n=0

(c, Pcu(n))xn0 .
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Example 3.46 Continuing the previous example, it follows directly
from the definition of Pcu(n) that

Pcu(0) = 1

Pcu(1) = x0 + x1(cu, ∅)

Pcu(2) = x20 + x1(cu, x0) + (x0x1 + x1x0)(cu, ∅) + x21(cu, ∅)2

Pcu(3) = x30 + x1(cu, x
2
0) + (x0x1 + 2x1x0)(cu, x0)+

3x21(cu, ∅)(cu, x0) + (x20x1 + x1x
2
0 + x0x1x0)(cu, ∅)+

(x0x
2
1 + x1x0x1 + x21x0)(cu, ∅)2 + x31(cu, ∅)3

...

The next lemma combined with the previous one provides the core
argument for the uniqueness of the generating series of a formal Fliess
operator.

Lemma 3.10 Let X = {x1, x2, . . . , xn} and p ∈ R[X]. Define the
corresponding generating function on Rn

fp(z) =
∑

η∈X∗

(p, η)
zη

η!
.

Then fp(z) = 0 for all z ∈ Rn if and only if p = 0.

Proof: For any η = xi1 · · · xik ∈ X∗ define the partial differentiation
operator

∂η

∂zη
=

∂k

∂zi1∂zi2 · · · ∂zik
.

Assume the support of p is ordered. If fp(z) = 0 everywhere on Rn

then it follows that

∂η

∂zη
fp(z)

∣∣∣∣
z=0

= (p, η) = 0, ∀η ∈ supp(p).

Thus, p = 0. The converse claim is trivial.
zzz: Not satisfied

with this proof.

Open problem:

Show c ◦ cu = 0

for all cu

implies c = 0.

Proof of Theorem 3.40: Since c◦cu = d◦cu is equivalent to (c−d)◦cu =
0, it is sufficient to prove that if c ◦ cu = 0 for all cu ∈ Rm[[X0]]
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then c = 0. From c ◦ 0 = 0 it follows directly using Lemma 3.9 that
(c, xn0 ) = 0 for all n ≥ 0. Thus, it is only necessary to show that
(c, η) = 0 for every η ∈ Γk, k ≥ 1. This fact is proved by contradiction.
That is, suppose c 6= 0 but c◦cu = 0 for all cu ∈ Rm[[X0]]. For any fixed
n ≥ 1, it is immediately evident from Lemma 3.9 that (c ◦ cu, xn0 ) is a
polynomial in the ordered variables zℓ := (cuiℓ , x

jℓ
0 ), ℓ = 1, . . . , n with

coefficients proportional to
(
c, P j1···jki1···ik

(n)
)

, k ≤ n − j. In which case,

an ordered alphabet can be introduced so that this polynomial can be
represented exactly as p in Lemma 3.10. Since fp(z) = (c ◦ cu, xn) = 0
for any z (i.e, any cu), it follows from the lemma that

(
c, P j1···jki1···ik

(n)
)

= 0 (3.49)

for every n ≥ 1 and any set of indices
(
j1···jk
i1···ik

)
∈ Sk. This by itself,

however, is not sufficient to conclude that c = 0. Suppose there exists
for some fixed k̄ ≥ 1 a word η0 ∈ Γk̄ such that (c, η0) 6= 0. Define a
corresponding language

Ω = {η ∈ Γk̄ : |η|xi = |η0|xi , i = 0, 1, . . . ,m},

which is comprised of all words which are permutations of the letters
of η0. With Ω one can associate a nonzero polynomial

Q =
∑

η∈Ω

(c, η) η.

Observe for any n ≥ 0 and du ∈ Rm[[X0]] that

(Q ◦ du, xn0 )

=
n∑

k=1

∑

Sk

1

s1! · · · sp!
(
Q,P j1···jki1···ik

(n)
)

(dui1 , x
j1
0 ) · · · (duik , x

jk
0 )

=

∞∑

k=1

∑

Sk

∑

η∈Ω

(c, η)

s1! · · · sp!
(
η, P j1···jki1···ik

(n)
)

(dui1 , x
j1
0 ) · · · (duik , x

jk
0 )

=
∑

S̃k̄

1

s1! · · · sp!
(
c, P

j1···jk̄
i1···ik̄

(n)
)

(dui1 , x
j1
0 ) · · · (dui

k̄
, x
jk̄
0 )

= 0

using (3.49), the definition of Q, and letting
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S̃k̄ :=

{(
j1 j2 . . . jk̄
i1 i2 . . . ik̄

)
∈ Sk̄ : j = n− |η0| ,

η0 = x
nk̄
0 xik̄ · · · x

n1
0 xi1x

n0
0

}
.

But since Q is a polynomial, it is locally convergent. It is already
known from Theorem 3.21 that if Q ◦ du = 0 for all locally convergent
du in Rm[[X0]] then Q = 0. But this contradicts the assumed property
that Q 6= 0, which had followed from the assumption that (c, η0) 6= 0.
Hence, c = 0, and the theorem is proved.

In Chapter 1, the notion of the formal Laplace-Borel transform of
a function was introduced. Namely, given a function u : R→ R, which
is either analytic at a point t0 ∈ R or is a function in the formal sense,
one can construct its generating series

cu =

∞∑

n=0

(cu, x
n
0 )xn0

directly from its Taylor series expansion. The formal Laplace transform
in this setting is the mapping

Lf : u 7→ cu, (3.50)

and its inverse is the formal Borel transform. In light of Theorems 3.7
and 3.40, an analogous definition is possible for any Fliess operator,
convergent or formal. Slightly abusing the notation, elements in F will
be written as Fc.

Definition 3.10 The formal Laplace transform on F is defined
as the mapping

Lf : F → Rℓ〈〈X〉〉, Fc 7→ c.

The corresponding inverse transform, the formal Borel transform

on Rℓ〈〈X〉〉, is
Bf : Rℓ〈〈X〉〉 → F , c 7→ Fc.

Note that when m = 0, this definition is consistent with (3.50) in
the sense that a given function u can be represented as a constant
operator Fcu , that is, u = Fcu [v] for any signal v, and Lf [u] = cu =
Lf [Fcu ]. In fact, as the following example shows, this point of view is
implicit in the classical treatment of linear time-invariant systems.
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Example 3.47 Consider a causal linear integral operator

y(t) =

∫ t

0
h(t− τ)u(τ) dτ,

where the kernel function h is analytic at t = 0. This operator
is completely characterized by the integral Laplace transform of it
kernel function, namely its transfer function H(s) := L [h](s) =∑

k>0(ch, x
k
0)s−k. In terms of the formal Laplace transform, this is

equivalent to taking the transform of a signal, specifically, ch =
L [h], as opposed to the operator u 7→ y. On the other hand, the
formal Laplace transform of the operator is the linear series c =∑

j≥0(ch, x
k
0)xk0x1 = chx1 (see Section 1.3).

It is next shown that many of the familiar properties of the integral
Laplace transform also have their formal counterparts. To facilitate the
analysis, the concept of a generalized series appearing in the previous
section is further refined.

Definition 3.11 A Dirac series, δi, is a generalized series with the
defining property that Fδi [u] = ui(t), or equivalently, δi ◦ cu = cui ,
i = 1, 2, . . . ,m.

Theorem 3.41 For any c, d ∈ Rℓ〈〈X〉〉, the following identities hold:

1. Linearity

Lf [αFc + βFd] = αLf [Fc] + βLf [Fd]

Bf [αc+ βd] = αBf [c] + βBf [d] ,

where α, β ∈ R.
2. Integration

Lf [InFc] = xn0c

Bf [xn0c] = InFc,

where I(·) denotes the formal integration operator.
3. Differentiation

Lf [DFc] = x−10 (c) +
m∑

i=1

δi ⊔⊔ (x−1i (c))
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Bf

[
x−10 (c) +

m∑

i=1

δi ⊔⊔ (x−1i (c))

]
= DFc,

where D(·) is the formal differentiation operator. If xn0 is a left
factor of c, that is, c = xn0c

′ for some c′ ∈ Rℓ〈〈X〉〉, then

Lf [DnFc] = x−n0 (c)

Bf

[
x−n0 (c)

]
= DnFc.

4. Products

Lf [FcFd] = Lf [Fc] ⊔⊔ Lf [Fd]

Bf [c ⊔⊔ d] = Bf [c] Bf [d] .

Proof: The properties of linearity and integration are trivial to verify.
The product property follows directly from Theorem 3.14. Thus, only
the differentiation property requires some justification. It was shown
in Theorem 3.6 that the derivative of a convergent Fliess operator is

d

dt
Fc[u](t) = Fx−1

0 (c)[u](t) +

m∑

i=1

ui(t)Fx−1
i (c)[u](t)

= Fx−1
0 (c)+

∑m
i=1 δi ⊔⊔ (x−1

i (c))[u].

For a formal operator, one can easily show that the composition prod-
uct satisfies the identity

x−10 (c ◦ cu) = x−10 (c) ◦ cu +

m∑

i=1

cui ⊔⊔ [x−1i (c) ◦ cu]

=

(
x−10 (c) +

m∑

i=1

δi ⊔⊔ (x−1i (c))

)
◦ cu

(see Problem 2.7.7). Thus, the first pair of identities in part 3 is es-
tablished. Now if x0 is a left factor of c, then Fx−1

i (c)[u](t) = 0 for

i = 1, 2, · · · ,m. In this case, d
dtFc[u](t) = Fx−1

0 (c)[u](t). Proceeding

inductively, the second pair of identities follow.

Example 3.48 Consider a generalization of the Wiener system in Ex-
ample 3.8:



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

3.8 Formal Fliess Operators 219

y(t) = exp

(∫ t

0
u1(τ) + u2(τ) dτ

)
.

Setting X = {x1, x2}, observe that

y(t) =
∞∑

k=0

1

k!
(Ex1 [u](t) + Ex2 [u](t))k

=
∞∑

k=0

1

k!

(
E(x1+x2) ⊔⊔ k [u](t)

)

=
∞∑

k=0

E(x1+x2)k [u](t)

= Fc[u](t),

where c = (x1 + x2)
∗ :=

∑
k≥0(x1 + x2)

k. Therefore,

Lf [Fc] = (x1 + x2)∗.

This result can be viewed as an operator version of the integral trans-
form pair

et
L⇐⇒ (1 − s)−1.

Other formal Laplace-Borel transform pairs are given in Table 3.4.

Example 3.49 Suppose Fc has the generating series c = char(X). For
any fixed word η ∈ X∗

Lf [FcEη] = Lf [Fc] ⊔⊔ Lf [Eη]

= c ⊔⊔ η

=
∑

ν∈X∗

(
ν

η

)
ν,

where
(ν
η

)
denotes the number of subwords of ν which are equal to η

(see Problem 2.4.4). For example, if X = {x0, x1} and η = x1x0 then

c ⊔⊔ η = (x0 + x1) ⊔⊔ x1x0

= x0x1x0 + 2x1x0x0 + 2x1x1x0 + x1x0x1

=

(
x0x1x0
x1x0

)
x0x1x0 +

(
x1x0x0
x1x0

)
x1x0x0 +

(
x1x1x0
x1x0

)
x1x1x0+
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Table 3.4. Elementary formal Laplace-Borel transform pairs.

Fc Lf [Fc]

u 7→ 1 1

u 7→ tn n! xn
0

u 7→
(∑n−1

i=0

(
i

n−1

)
(at)i

i!

)
eat (1− ax0)

−n

u 7→ 1
n!

(∫ t

t0

∑k
j=1 uij (τ )dτ

)n
(xi1 + xi2 + · · ·+ xik)

n

u 7→
∑

n≥0
an

n!

(∫ t

t0

∑k
j=1 uij (τ )dτ

)n ∑
n≥0 an(xi1 + xi2 + · · ·+ xik)

n

u 7→ e
∫
t

t0

∑
k

j=1 uij
(τ)dτ

(xi1 + xi2 + · · ·+ xik)
∗

u 7→
∫ t

t0

∑k
j=1 uij (τ )dτ e

∫
t

t0

∑
k
j=1 uij

(τ)dτ xi1
+xi2

+···+xi
k

[1−(xi1
+xi2

+···+xi
k
)]2

u 7→ cos
(∫ t

t0

∑k
j=1 uij (τ )dτ

)
1

1+(xi1
+xi2

+···+xi
k
)2

u 7→ sin
(∫ t

t0

∑k
j=1 uij (τ )dτ

)
xi1

+xi2
+···+xi

k

1+(xi1
+xi2

+···+xi
k
)2

(
x1x0x1
x1x0

)
x1x0x1.

Example 3.50 Let X = {x1, x2},

y(t) = cos

(∫ t

0
u1(τ) + u2(τ) dτ

)
,

and d = (d1, d2) ∈ R2〈〈X〉〉 be arbitrary. From Table 3.4 it follows that
y = Fc[u], where

c =
1

1 + (x1 + x2)2
:=

∞∑

k=0

(−1)k(x1 + x2)
2k.

Setting Fe = Fc ◦ Fd, the formal Laplace transform of Fe is then

Lf [Fe] = c ◦ d =

∞∑

k=0

(−1)k(x1 + x2)2k ◦ d.
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Example 3.51 For any c ∈ Rm〈〈X〉〉, xi ∈ X with i = 1, 2, · · · ,m,
and n ≥ 0, recall that

xni ◦ c =
1

n!
(x0ci)

⊔⊔ n

(see Problem 2.7.7(a)). Applying the formal Borel transform to both
sides of this identity gives

Bf [xni ◦ c] = Bf

[
1

n!
(x0ci)

⊔⊔ n

]

=
1

n!
(Bf [x0ci])

n

=
1

n!

(∫ t

0
Fci [u](τ) dτ

)n
.

Example 3.52 Consider the linear differential equation

dny(t)

dtn
+

n−1∑

i=0

ai
diy(t)

dti
=

n−1∑

i=0

bi
diu(t)

dti

with initial conditions y(i)(0) = 0, u(i)(0) = 0, and where ai, bi ∈ R,
i = 0, 1, . . . , n− 1 for n ≥ 1. The goal is to construct a series solution
y = Fc[u] for some c ∈ R〈〈X〉〉. First, integrate both sides of the
equation n times and then apply the formal Laplace transform to get

(
δ +

n−1∑

i=0

ai x
n−1−i
0 x1

)
◦ c =

n−1∑

i=0

bi x
n−1−i
0 x1,

or equivalently,

(
1 +

n−1∑

i=0

ai x
n−i
0

)
c =

n−1∑

i=0

bi x
n−1−i
0 x1.

Therefore,
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c =

(
1 +

n−1∑

i=0

ai x
n−i
0

)−1 n−1∑

i=0

bi x
n−1−i
0 x1.

Rephrased in the language of the integral Laplace transform, this is
equivalent to

Y (s) =

(
1 +

n−1∑

i=0

ai
1

sn−i

)−1(n−1∑

i=0

bi
1

sn−i

)
U(s)

=

(
sn +

n−1∑

i=0

ais
i

)−1(n−1∑

i=0

bis
i

)
U(s).

Example 3.53 Consider the nonlinear differential equation

dny(t)

dtn
+

n−1∑

i=0

ai
diy(t)

dti
+

k∑

j=2

pj u(t)yj(t) =

n−1∑

i=0

bi
diu(t)

dti

with y(i)(0) = 0, u(i)(0) = 0, and where ai, bi, pj ∈ R, i = 0, 1, . . . , n−1
and j = 2, . . . , k for n ≥ 1, k ≥ 2. As in the previous example, integrate
both side of the equation n times and assume y = Fc[u]. Applying the
formal Laplace transform in this case gives

(
1 +

n−1∑

i=0

ai x
n−i
0

)
c+

k∑

j=2

pj x
n−1
0 x1(c ⊔⊔ j) =

n−1∑

i=0

bi x
n−1−i
0 x1.

Defining

dj = −
(

1 +
n−1∑

i=0

ai x
n−i
0

)−1
pjx

n−1
0 x1

and

c1 =

(
1 +

n−1∑

i=0

ai x
n−i
0

)−1(n−1∑

i=0

bi x
n−1−i
0 x1

)
,

it follows that

c =

k∑

j−2

dj(c
⊔⊔ j) + c1.
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©

−−−−−−−−−→
◦

−−
−
−
−
−
−→

Lf

−−
−
−
−
−
−→

Bf

−−
−
−
−
−
−
−→

Lf

−−
−
−
−
−
−
−→

Bf

−−−−−−−−−−−−−−→
◦

(Fc, Fd) Fc ◦ Fd = Fc◦d

(c, d) c ◦ d

Fig. 3.20. The monoid isomorphism Lf between (F , ◦, I) and (Rm〈〈X〉〉, ◦, δ).

An inductive solution is given by c = limn→∞ cn, where

cn+1 =
k∑

j−2

dj(c
⊔⊔ j
n ) + c1, n ≥ 1,

provided the limit exists. This can be verified using the fact that the
dj and c1 are all proper.

Given two linear integral operators with kernel functions h1 and
h2 defined on [0,+∞), respectively, their composition has the kernel
function h1 ∗ h2, where ∗ denotes the usual convolution product on
the set of real-valued functions. The set of all such functions forms a
monoid M if the Dirac delta function, δ, is admitted as the unit. The
integral Laplace transform satisfies the well known identity

L [h1 ∗ h2](s) = L [h1](s)L [h2](s) = H1(s)H2(s)

and maps M to the monoid of corresponding transfer functions under
the pointwise product in C with L (δ) = 1 (see Problem 2.1.1). This
section is concluded by observing that the formal Laplace transform
acts analogously as a monoid isomorphism in the context of Fliess
operators.

Theorem 3.42 For any c ∈ Rℓ〈〈X〉〉 and d ∈ Rm〈〈X〉〉:

Lf (Fc ◦ Fd) = Lf (Fc) ◦ Lf (Fd)

Bf (c ◦ d) = Bf (c) ◦ Bf (d).

Proof: The proof follows directly from the definitions. For any Fc, Fd ∈
F

Lf (Fc ◦ Fd) = Lf (Fc◦d) = c ◦ d
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= Lf (Fc) ◦ Lf (Fd).

Similarly, for any formal power series c and d,

Bf (c ◦ d) = Fc◦d = Fc ◦ Fd
= Bf(c) ◦ Bf (d).

Setting ℓ = m and recalling that Fδ = I acts as the unit on F , the
commutative diagram in Figure 3.20 shows the monoid isomorphism
relating the monoids (F , ◦, I) and (Rm〈〈X〉〉, ◦, δ).

Problems

Section 3.1

Problem 3.1.1 Let t0 and t1 be fixed real numbers with t0 < t1.

(a) Show that if u ∈ Lmp+1[t0, t1] for any p ∈ [1,∞) then u ∈ Lmp [t0, t1].
In addition, show that every u ∈ Lm∞[t0, t1] is also in Lmp [t0, t1] for
every p ∈ [1,∞).

(b) Repeat part (a) for the extended spaces Lmp,e(t0) and Lm∞,e(t0).

Problem 3.1.2 Prove that Lmp [t0,∞) ⊂ Lmp,e(t0) for any p ∈ [1,∞].

Section 3.2

Problem 3.2.1 Show that for any p ∈ (1,∞] and any finite interval
[t0, t0 + T ]

‖u‖1 ≤ ‖u‖
p
T

1
q ,

when u ∈ Lmp [t0, t0 + T ], and p and q are conjugate exponents.

Remark: Consider a subset Ω ⊂ R and two functions u, v : Ω → Rm,
where ‖u‖

p
and ‖v‖

q
are well defined in the sense that

‖u‖
p

=

(∫

Ω
|u(t)|p dt

) 1
p

<∞.
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Hölder’s inequality states that

∫

Ω

∣∣uT (t)v(t)
∣∣ dt ≤ ‖u‖

p
‖v‖

q

when p and q are conjugate exponents. The special case where p =
q = 2 is known as the Cauchy-Schwarz inequality.

Problem 3.2.2 Reconsider the Wiener system in Example 3.3.

(a) Determine the generating series c assuming z(0) = a.
(b) For what values of a is c well defined?

Problem 3.2.3 A function f : R → R is said to satisfy a Lipschitz
condition on J = [a, b] if there exists a constant L > 0 such that

|f(z1) − f(z2)| ≤ L |z1 − z2| , ∀z1, z2 ∈ J.

(a) Show that if f satisfies a Lipschitz condition on J then it is abso-
lutely continuous on J .

(b) Show that if f is continuous on J and has a bounded derivative
on (a, b), i.e., |f ′(z)| < M everywhere on (a, b) for some finite M ,
then f satisfies a Lipschitz condition on J .

(c) What can one conclude about f when 0 < L < 1?

Remark: The mean value theorem is useful in this problem.

Problem 3.2.4 Consider a function f : R→ R.

(a) Show that if f is absolutely continuous on J = [a, b] then it is
continuous on J .

(b) Show that if f is continuously differentiable on J then it is abso-
lutely continuous on J .

Problem 3.2.5 Let X = {x0, x1, . . . , xm}, c ∈ RLC〈〈X〉〉, and ui ∈
C1[t0, t0 + T ] for i = 1, 2, . . . ,m. Define y = Fc[u].

(a) Derive a formula for d2y/dt2.
(b) Suppose m = 1, and c is a linear series. Compute dy/dt and

d2y/dt2.

Problem 3.2.6 Suppose c = (c, xixj)xixj+ (c, xjxi)xjxi.

(a) For the input ū shown in Figure 3.5 compute Fc[ū](t1+t2) assuming
t0 = 0.



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

226 3. Fliess Operators

(b) Compute G(c, α) :=
∂2

∂t1∂t2
Fc[ū](t1 + t2)

∣∣∣∣
t1=t2=0+

.

(c) Compute
∂2G

∂αi2∂αj1
and

∂2G

∂αj2∂αi1
. Is the result what is expected?

Explain.
(d) Suppose now that xi = x0 so that α0k = 1, k = 1, 2. If partials

∂/∂α0k are not taken in part (c), what is the result?

Problem 3.2.7 Consider a series of functions

f(z) = f1(z) + f2(z) + . . . ,

where each fi : WC → C is an analytic function on a region WC in the
complex plane. Show that if the series converges uniformly on every
compact subset of WC then f is also analytic on WC.

Remark: This is a standard problem in complex analysis. It can be
solved by forming the partial sums sn =

∑n
i=1 fi and applying Morera’s

theorem. For more information, see, for example, Chapter 5 of [2].

Section 3.3

Problem 3.3.1 For each formal power series c over X∗ with coeffi-
cients given below, determine its minimal Gevrey order and whether
it is locally convergent, globally convergent, or neither. When appro-
priate determine at least one pair of real numbers R,T > 0 such that
the Fliess operator Fc is well defined on Bp(R)[0, T ].

(a) (c, η) = 2|η| sin(π2 |η|)
(b) (c, η) = 2|η|+1

(c) (c, η) = |η|2, η ∈ X∗

(d) (c, η) = 5|η|(|η| + 1)!

(e) (c, η) = |η||η|
(f) (c, η) = (|η|!)2

Remark: Stirling’s approximation formula

k! ∼
√

2πk kke−k, k ≫ 1

is useful for part (e).
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Problem 3.3.2 Provide an example, if possible, for each scenario be-
low concerning linear series (see (2.48)). If no such example exists, give
a justification.

(a) A series c which is linear but not globally convergent.
(b) A series d which is globally convergent but not linear.

Problem 3.3.3 Let c ∈ RGC〈〈X〉〉 be a maximal series with growth
constants K,M > 0 and s = 0. Verify that

y = Fc[u] = K exp(MFchar(X)[u]).

Remark: This is the global version of Theorem 3.4. For the case where
0 ≤ s < 1, see Problem 1.1.2 for a hint on how to proceed.

Section 3.4

Problem 3.4.1 Express the input-output mapping of the Wiener sys-
tem in Example 3.8 as a Volterra operator.

Problem 3.4.2 Consider the linear input-output system y = Fc[u]
with generating series

c =

∞∑

i,j=0

KM i+j(i+ j)!xi0x1x
j
0

with K,M ≥ 0.

(a) Write Fc as a Volterra operator on the interval [0, T ].
(b) Show that y satisfies

ẏ(t) − M

1 −Mt
y(t) =

K

1 −Mt
u(t), y(0) = 0.

Problem 3.4.3 If the order of the blocks in a Wiener system are
reversed, the resulting system is called a Hammerstein system. An
example of a single-input, single-output Hammerstein system is shown
in Figure 3.21. Suppose g(u) = u2.

(a) Determine a Volterra operator representation of the input-output
map u 7→ y.

(b) Determine a Fliess operator representation of u 7→ y.
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y u 
z 

g

Fig. 3.21. The Hammerstein system in Problem 3.4.3.

(c) Suppose u(t) =
∫ t
0 v(τ) dτ . Determine a Fliess operator represen-

tation of v 7→ y. This is an example of what is called dynamic
extension.

Section 3.5

Problem 3.5.1 Provide a proof for Theorem 3.16 for the special case
where s∗c = s∗d.

Problem 3.5.2 Show that if A ∈ Rn×n and B ∈ Rm×m, then

(A⊕B)k =

k∑

j=0

(Ak−j ⊗Bj)

(
k

j

)
.

Remark: See the references [19, 18, 20, 21] for various elementary iden-
tities involving the Kronecker product.

Problem 3.5.3 Show that if d ∈ RLC〈〈X〉〉 with growth constants
Kd,Md > 0, then for any k ≥ 1:

∣∣∣(d ⊔⊔ k, ν)
∣∣∣ ≤ Kk

dM
|ν|
d

(|ν| + k − 1)!

(k − 1)!
, ∀ν ∈ X∗.

Show that this implies the more generous upper bound

∣∣∣(d ⊔⊔ k, ν)
∣∣∣ ≤ Kk

d (kMd)
|ν| |ν|!, ∀ν ∈ X∗.

What kind of system interconnection could produce the generating
series d ⊔⊔ k?

Remark: See Problem 2.4.8.
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Problem 3.5.4 Show that (1 − x1)
⊔⊔ −1 =

∑
k≥0 k!xk1 , where c ⊔⊔ −1

denotes the shuffle inverse of c ∈ R〈〈X〉〉 as defined in Problem 2.4.11.
Hence, the shuffle inverse does not preserve global convergence.

Remark: It is shown in [92] that the shuffle inverse does preserve local
convergence.

Section 3.6

Problem 3.6.1 Verify the integer sequence identity (3.19) used in the
analysis of the cascade connection of two linear time-invariant systems.

Remark: An inductive proof is possible, but an alternative approach is
to use the integral formula

∫ 1

0
(1 − x)i−1xj−1 dx = B(i, j),

where B(x, y) = Γ (x)Γ (y)/Γ (x + y) is the beta function.

Problem 3.6.2 Consider the system shown in Figure 3.22 comprised
of a harmonic oscillator with transfer function H(s) = ωo/(s

2 + ω2
o)

followed by a saturation type function. Derive a Fliess operator rep-

y u 
z 

H(s ) 

oscillator saturation function

Fig. 3.22. The system with saturation considered in Problem 3.6.2.

resentation of the input-output mapping u 7→ y. State any required
assumptions and discuss the convergence properties of the proposed
model.

Problem 3.6.3 Let X = {x0, x1, . . . , xm} be a fixed alphabet. Con-
sider a Fliess operator Fc, c ∈ Rm〈〈X〉〉, and a function fd : Rm → Rm

with generating series d ∈ Rm〈〈X〉〉 of the form d =
∑

xj∈X
(d, xj)xj .

That is,
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fd(z1, . . . , zm) =

m∑

j=0

(d, xj)zj ,

with z0 := 1.

(a) Show that the Hammerstein-Fliess system Fc ◦ fd has the generat-
ing series

c ◦ d =
∑

η∈X∗

(c, η)dη ,

where d∅ := 1 and d0 := 1. That is, Fc ◦ fd = Fc◦d.
(b) Is c ◦ d always well defined?
(c) Is it true that if c is locally convergent then so is c ◦ d?

Problem 3.6.4 Consider the Fliess operators Fc and Fd, where c =∑
k≥0 x

k
1 and d = x1.

(a) Verify that (c ◦ d, xk0xk1) = k!, k ≥ 0.
(b) Determine Fc◦d[u] and its convergence properties.

Problem 3.6.5
Let X = {x0, x1}. Assume c ∈ R〈〈X〉〉 is a maximal series with growth
constants K,M > 0 and Gevrey order s. Consider the input-output
system y = Fc[u].

(a) Determine a differential equation in terms of u, y, and its deriva-
tives that is satisfied when s = 1. Be sure to include initial condi-
tions.

(b) Repeat part (a) when s = 0.
(c) Repeat part (a) when 0 < s < 1.

Problem 3.6.6 Verify the inequality

n∑

k=0

(
n

k

)−1
≤ 2 +

n− 1

n
, n ≥ 1

used in Example 3.24.

Problem 3.6.7 Consider two single-input, single-output Fliess oper-
ators Fc and Fd connected in series so that y = (Fc ◦ Fd)[u]. Assume
the generating series c and d are only locally convergent with minimal
growth constants Kc,Mc > 0 and Kd,Md > 0, respectively.

(a) What is the minimal geometric growth constant for the composite
system?
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(b) Is it possible for the composite system to have a well defined output
over a longer interval of time than one or both of its subsystems?
Either provide such an example or prove such an example does not
exist.

(c) What are the practical consequences of the answer to part (b)?

Section 3.7

Problem 3.7.1 Let Fc and Fd be two Fliess operators with generating
series c, d ∈ RmLC〈〈X〉〉. Show that the feedback connection of these
operators is always well-posed.

Remark: As with the cascade connection, Theorem 3.2 is useful here.

Problem 3.7.2 Consider the field of (irreducible) rational functions
in s ∈ C with real coefficients denoted by R(s). Let Rp0̄(s) be the
subfield of proper elements g of R(s) with the defining property that
g(+∞) exists and is not zero. Let S = Rp0(s) denote the ring of
strictly proper elements h of R(s). Therefore, h(+∞) = 0. Observe
that g ∈ Rp0̄(s) if and only if g = K+h for some K 6= 0 and h ∈ Rp0(s).
Show that Rp0̄(s) acts freely from the right as a right transformation
group on Rp0(s), where the product hg is defined in the usual fashion
when g, h ∈ R(s).

Problem 3.7.3 For the series c = 2x21 and d = 3x0 − x1 in R〈X〉,
compute the following:

(a) c ◦ d
(b) c ◦̃ dδ
(c) cδ ◦ dδ.
Problem 3.7.4 Prove the following propositions:

(a) For any c ∈ RℓLC〈〈X〉〉 and d ∈ RmLC〈〈X〉〉, Fc ◦ (I + Fd) = Fc ◦̃ dδ .
Recall this is the defining property of the mixed composition prod-
uct given in Theorem 3.26.

(b) The mixed composition product provides an ultrametric contrac-
tion from δ + Rm〈〈X〉〉 to Rm〈〈X〉〉 as described in Theorem 3.27.

(c) For all c, d, e ∈ Rm〈〈X〉〉, (c ◦ d) ◦̃ eδ = c ◦ (d ◦̃ eδ).
Problem 3.7.5 Verify the following properties of the mixed compo-
sition product by checking their corresponding identities in the Fliess
operator algebra:
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(a) The following distributivity property holds for all c, d, e ∈ RmLC〈〈X〉〉:

(c ⊔⊔ d) ◦̃ eδ = (c ◦̃ eδ) ⊔⊔ (d ◦̃ eδ)

(cf. Problem 2.7.7(d)).
(b) For any c, d, e ∈ RmLC〈〈X〉〉 it follows that

(c ◦ d) ◦̃ eδ = c ◦ (d ◦̃ eδ)
(c ◦̃ dδ) ◦̃ eδ = c ◦̃ (d ◦̃ eδ + e)δ.

Problem 3.7.6 It was shown in Lemma 3.5 that the mixed com-
position product satisfies a mixed associativity property on the set
B ⊗ A ⊗ A, where A = δ + Rm〈〈X〉〉 and B = Rm〈〈X〉〉. The corre-
sponding commutative diagram is shown in Figure 3.23.

−−−−−−−−−−−−−→
id⊗◦

−−
−
−
−
−
−
−→

◦̃⊗id

−−
−
−
−
−
−
−→

◦̃

−−−−−−−−−−−−−−−−−→
◦̃

B ⊗A⊗A B ⊗A

B ⊗A B

Fig. 3.23. Commutative diagram for the mixed associativity property in
Lemma 3.5.

(a) Draw the commutative diagram for the mixed coassociativity prop-
erty.

(b) From the diagram deduce that this property is equivalent to

(id ⊗∆) ◦ ∆̃ = (∆̃⊗ id) ◦ ∆̃.

(c) Show that the mixed composition product is mixed coassociative.

Remark: Strictly speaking, ∆̃ is not a coproduct since it is not coasso-
ciative. Hence, the term coaction is used instead.

Problem 3.7.7 Consider the composition groupG = (δ + R〈〈X〉〉, ◦, δ)
with X = {x0, x1}.

(a) Show that G has a faithful representation π : G→ GL(R∞), where
π(cδ) is given by
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



1 (c, ∅) (c, x0) (c, x1) (c, x2
0) (c, x0x1) (c, x1x0) (c, x2

1) · · ·

0 1 0 0 0 0 0 0 · · ·

0 0 1 0 0 0 0 0 · · ·

0 0 (c, ∅) 1 (c, x0) (c, x1) 0 0 · · ·

0 0 0 0 1 0 0 0 · · ·

0 0 0 0 (c, ∅) 1 0 0 · · ·

0 0 0 0 (c, ∅) 0 1 0 · · ·

0 0 0 0 (c, ∅)2 (c, ∅) (c, ∅) 1 · · ·

...
...

...
...

...
...

...
...

. . .





.

The coefficients of cδ are ordered lexicographically along the top
row with x0 < x1, and the partitioning is done according to word
length.

(b) Show that det(π(cδ)) = 1, and that the matrices in this represen-
tation are upper triangular only in the case where cδ = δ+c with c
proper. This case is most similar to the representation for the Faà
di Bruno group GFdB (see Problem 2.6.5).

Problem 3.7.8 Consider the feedback connection of two multivari-
able linear time-invariant systems as described in Example 3.30.

(a) Show that the feedback equation (3.27) has the solution

Hcl = (I −HG)−1H =
∞∑

k=0

(HG)kH. (3.51)

(b) Show that this solution is equivalent to (3.28).
(c) The feedback product as described in Theorem 3.30 is clearly the

nonlinear analogue of (3.28). Is there a nonlinear version of (3.51)?
If so, derive it. If not, explain why not.

Problem 3.7.9 Verify formula (3.41) for the largest coefficients in the
Devlin polynomials.

Problem 3.7.10 Consider two feedback schemes involving proportional-
integral-derivative (PID) compensation as shown in Figure 3.24, where
c ∈ R〈〈X〉〉 and X = {x0, x1}. Assume for the system in Figure 3.24(a)
that

w(t) = KP y(t) +KI

∫ t

0
y(τ) dτ +KD

dy

dt
,

whereKP ,KI andKD are fixed real numbers. An analogous expression
holds for the mapping from w to v in the system shown in the other
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u 
v 

y Fc + 

w PID 

(a) PID compensator in the feedback loop.

v 
v 

y + PID 
w 

Fc 

(b) PID pre-compensator with unity feedback

Fig. 3.24. Two feedback schemes involving PID compensation in Problem 3.7.10.

figure. Determine the generating series d, if possible, so that w = Fd[v]
in Figure 3.24(a) if all the PID coefficients are zero except for the
following:

(a) KP

(b) KI

(c) KD.

Repeat the exercise so that y = Fd[w] in Figure 3.24(b).

Section 3.8

Problem 3.8.1 Explicitly compute the formal Laplace transform of
the following functions:

(a) y(t) = 1
(b) y(t) = tn/n!
(c) y(t) = e−αt, α ∈ R
(d) y(t) = cos(ωt), ω ∈ R
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Problem 3.8.2 For each c ∈ R〈〈X〉〉 with X = {x0, x1} below, com-
pute the unit step response ys(t) of Fc on an interval [0, T ]. Specify
the largest possible T on which this output is well defined.

(a) c = (1 − x0)−1x1x0
(b) c = (1 − x1)−1

(c) c = 1 + x21

Problem 3.8.3 For each input-output differential equation below,
solve for y using the Laplace-Borel transform.

(a) y′ + ay = bu, y(0) = 0, a, b ∈ R
(b) y′ + y2 = uy, y(0) = 0

Problem 3.8.4 In many communication and control systems, a phase-
locked loop (PLL) is used to synchronize an incoming external signal
with an internally generated signal. For two sinusoids at the same
carrier frequency, ωc, this amounts to driving their phase difference
to zero. A simple example of such a system is shown in Figure 3.25.
The voltage controlled oscillator produces a sinusoid at the carrier

vo(t )

voltage

controlled

oscillator

voltage

controlled

oscillator

loop

filter

   ideal

lowpass

   filter

sin( ct+ f (t ))

cos( ct+ i (t ))

sin( i (t ) - f  (t ))

Fig. 3.25. Phase-locked loop in Problem 3.8.4.

frequency with phase

θf (t) =

∫ t

0
vo(τ) dτ.

For simplicity assume that the loop filter has transfer function H(s) =
1.

(a) Derive a differential equation in terms of the instantaneous input
frequency ωi = dθi/dt and the phase difference ∆θ = θi − θf . The
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mapping ωi 7→ ∆θ describes how the PLL tracks the change in
phase of the input signal.

(b) Assuming that there exists a c ∈ R〈〈X〉〉 such that Fc : ωi 7→ ∆θ,
derive an algebraic equation that c must satisfy.

(c) How can c be determined from this equation?

Problem 3.8.5 Suppose the formal Laplace transform is extended to
the group Fδ so that Lf : Fδ → δ + Rm〈〈X〉〉, Fcδ 7→ cδ . Is Lf a
group isomorphism? Explain.
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lute continuity and Theorem 3.5 are covered in Chapter 11 of [200].

Section 3.3 The main results of this section, Theorems 3.10 and 3.12,
have appeared in a number of special cases starting with the the orig-
inal papers of Fliess, for example, [71]. Here the case where s = 0 and
p = ∞ was presented, primary in the context of rational series. The
condition on p was relaxed to p ≥ 1 by Gray and Wang in [103]. The
condition on the Gevrey order was generalized by Winter Arboleda et
al. to 0 ≤ s < 1 in [217] (see also [216]).

Section 3.4 The Volterra operator is a classical concept originating
with V. Volterra in the latter part of the 19th century [208, 209]. As ex-
plained, for example, in [76], a variety of different approaches has been
taken in the literature. The book by Schetzen gives a detailed treat-
ment of the more traditional approach to the subject [182]. Volterra se-
ries as defined by Schetzen do not assume causality and require bound-
edness assumptions to ensure that the integrals over (−∞,∞) are fi-
nite. In this setting, it is more natural to do steady-state analysis in
the frequency domain using the multivariable Fourier transform. Addi-
tional analytical results along these lines appear in the paper by Boyd
et al. [17]. This approach was adapted to control theory in the book
by Rugh using the multivariable Laplace transform [176]. The class
of Volterra series that can be written in terms of Chen-Fliess series,
on the other hand, are inherently causal, frequently have only a finite
radius of convergence, and are well suited for transient response anal-
ysis. In this context, the formal Laplace transform, or equivalently, the
Laplace-Borel transform, is used for symbolic computation in lieu of
the multi-dimensional Laplace transform [76, 147, 148]. Theorem 3.13
is due to Fliess [67, 69, 71]. See also [122, Chapter 3].

Section 3.5 The generating series for the parallel connections in The-
orem 3.14 were first described by Fliess in [71]. The local convergence
Theorem 3.15 can be found in the Ph.D. dissertation of Wang [210].
The global convergence results in Theorem 3.16 are based on the work
of Venkatesh [204] and Winter Arboleda [216]. The remaining mate-
rial in this section addressing the radius of convergence follows from
the analysis by Thitsa and Gray in [199]. The only exception is the
material at the end of the section regarding the boundary of the re-
gion of convergence for the parallel product connection. This issue was
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treated by Gray et al. in [99]. Also see [204] and [205] for an alternative
approach.

Section 3.6 The generating series for the Wiener-Fliess connection in
Theorem 3.19 appeared in [83, 101]. (See the bibliographic notes for
Section 2.7 for additional context regarding this result.) The cascade
connection of Chen-Fliess series as described in Theorem 3.20 was first
given by Ferfera in [62, 63], albeit in a different notation. Theorem 3.21
was first developed in an analytic setting in [152]. The ideas surround-
ing this result are certainly implicit in the early work of Fliess et al., see
for example, [71, 76], but the approach of utilizing series composition
was never explicitly mentioned or developed. The first local conver-
gence regarding the Wiener-Fliess connection was presented in [83].
The radius of convergence for this connection given in Theorem 3.22
as well as the global result given in Theorem 3.23 (with s = 0) was
given by Gray and Thitsa in [101]. The more general case is treated
by Venkatesh in [204]. Local convergence of the cascade connection
of two Fliess operators was first proved by Gray and Li in [98]. The
radius of convergence for this connection given in Theorem 3.24 was
developed in [199], as is Corollary 3.3. Finally, the global convergence
of this cascade connection as described in Theorem 3.25 was proved for
the s = 0 case in [199]. The general case is treated by Winter Arboleda
in [216]. Also, see closely related results by Venkatesh in [204].

Section 3.7
The feedback connection of two Fliess operators was first treated in

the Ph.D. dissertation of Ferfera [62]. The idea of using a contraction
mapping theorem to prove the existence of a feedback product was
discussed there, but the details of such a program first appeared in
[98] with some additional improvements in [104]. The mixed compo-
sition product was further characterized in the Ph.D. dissertation of
Li [151] under the name of the modified composition product. While
central to the analysis, the role of this product as a right action in a
transformation group was not full recognized until it appeared in [86].
See also [93] for a generalization. The characterization of the mixed
composition product in Theorem 3.26 is based on an analogous treat-
ment of the composition product appearing in [85] and subsequently
by Foissy in [78]. Theorems 3.27 and 3.28 are based on the treatment
in [98]. Lemmas 3.4 and 3.5 are a compilation of properties taken
from [78, 88, 98, 151]. The first attempt to provide a computation
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framework for computing the feedback product in the single-input,
single-output case was made by Gray et al. with the presentation of
the output feedback Hopf algebra in [85]. Subsequent work by Foissy
in [78] provided a grading that removed certain technical restrictions
in the original approach. The group appearing in Theorem 3.29 and
the feedback product in Theorem 3.30 follows the multivariable treat-
ment presented in [88]. Lemma 3.6 and Theorem 3.31 also appeared
in [88] as the multivariable extension of the SISO versions in [78]. A
purely combinatorial treatment of the output feedback Hopf algebra is
presented in [58] from a pre-Lie point of view. Theorem 3.32 is adapted
from [89]. Theorems 3.33 and 3.34 are based on the presentation in [87].
The polynomials of Devlin in Example 3.35 first appeared in [54] in the
context of Hilbert’s sixteenth problem. Their connection to unity feed-
back systems was described in [60]. Related analysis appears in [61].
Finally, the convergence analysis of the feedback connection in Theo-
rems 3.35-3.39 and the related examples are largely based on the work
of Thitsa and Gray [198, 199]. The only exception is Example 3.41,
which first appeared in [97].

Section 3.8 The formal Laplace-Borel transform has its roots in the
work of E. Borel, who introduced the idea in the context of studying
divergent series [12, pp. 242-245]. The treatment of the topic here is
based largely on [55, pp. 232–235], in addition to [187, Section 10.2].
The formal Laplace-Borel transform was first used by Fliess, et al.
for nonlinear systems analysis in [68, 71, 74, 76, 147]. A related ap-
proach was later developed by Hoang Ngoc Minh in [117]. The formal
Laplace transform of a system employing the notion of a composition
product was presented in [151, 152], but at the time there was no ex-
plicit uniqueness theorem for the generating series of a formal Fliess
operator, so the analysis was restricted there to the locally convergent
case. This deficiency was later addressed in [104], though to date a
truly combinatorial treatment of this problem has not appeared to the
author’s knowledge. Theorem 3.40 and the supporting Lemmas 3.8,
3.9 and Lemma 3.10 are all taken from this reference. The formula
in Lemma 3.8, however, has appeared in a number of earlier places,
for example, in the work of Crouch and Lamnabhi-Lagarrigue [149],
and Sontag and Wang [211]. Theorems 3.41 and 3.42 are based on the
presentation in [151, 152]. Finally, Example 3.53 was adapted from
[76, 151, 152].
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4. Rational Series and Linear Representations

In Chapter 1 a series c ∈ R〈〈X〉〉 was said to be rational if it as-
sumes either the form ba−1 or ba−1xi, where i 6= 0 and, a and b are
polynomials in x0. The series a−1 is the inverse of a in the sense that
aa−1 = a−1a = 1, but thus far no general representation of a−1 has
been developed. In this chapter, the notion of rationality is generalized
to its fullest extent. It relies on the availability of four rational oper-
ations defined on R〈〈X〉〉: addition, scalar multiplication, the Cauchy
product, and inversion. Then the issue of determining when a series
has a linear representation is addressed. Such series are said to be rec-
ognizable. A fundamental result in this area is Schützenberger’s Repre-
sentation Theorem, which states that a series is rational if and only if
it is recognizable. Next, a Hankel matrix characterization of rationality
is given. This turns out to be useful for characterizing the minimal-
ity of linear representations. It also has a canonical factorization that
will be used in Chapter 6 to describe state space realizations of Fliess
operators with rational generating series. Finally, the shuffle product
and the composition product are considered on the set of rational se-
ries. It is shown that the shuffle product preserves rationality, while
the composition product does not unless certain conditions are met. In
addition, it is shown that the feedback product also does not preserve
rationality.

4.1 Rational Series

Consider a fixed alphabet X = {x0, x1, . . . , xm}. A series c ∈ R〈〈X〉〉
is called Cauchy invertible or simply invertible (in this chapter) if there
exists a series c−1 ∈ R〈〈X〉〉 such that cc−1 = c−1c = 1. In the event
that c is not proper, it is always possible to write

c = (c, ∅)(1 − c′),
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where (c, ∅) is nonzero, and c′ ∈ R〈〈X〉〉 is proper. It then follows that

c−1 =
1

(c, ∅)
(1 − c′)−1 =

1

(c, ∅)
(c′)∗,

where

(c′)∗ :=

∞∑

i=0

(c′)i

(see Example 2.13). In fact, c is invertible if and only if c is not proper
(see Problem 4.1.1). Now let S be a subalgebra of the R-algebra R〈〈X〉〉
with the Cauchy product. S is said to be rationally closed when every
invertible c ∈ S has c−1 ∈ S (or equivalently, every proper c′ ∈ S
has (c′)∗ ∈ S). The rational closure of any subset E ⊂ R〈〈X〉〉 is the
smallest rationally closed subalgebra of R〈〈X〉〉 containing E.

Definition 4.1 A series c ∈ R〈〈X〉〉 is rational if it belongs to the
rational closure of R〈X〉.

Thus, a given rational series can be obtained from a finite set of poly-
nomials by performing a finite number of additions, scalar products,
Cauchy products, and inversions (or star operations), the so called
rational operations.

Example 4.1 Suppose X = {x0, x1} and E = {x0, 1 + x0x1}. Then
the rational closure of E contains elements like: x0, 1 + x0x1, (1 +
x0x1)−1, 1, x0x1, x

2
0x1, 2(x0+x20x1), 3+x0+x0x1x0, x0(1+x0x1)

−1,. . . ,
but not, for example, x0 + x1 or x21.

Example 4.2 Suppose X = {x}, {αi}i∈N0 is a sequence of real num-
bers, and

c =
∞∑

i=0

αix
i.

If αi = αi for every i ∈ N0 and some α ∈ R then the series c is clearly
rational because c = (1−αx)−1. On the other hand, when αi = αi/i!,
the series

c =

∞∑

i=0

(αx)i

i!
= eαx

is not rational since it is not the result of applying a finite number of
rational operations to any finite set of polynomials in R〈X〉.
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Let R〈〈X〉〉n×n denote the set of n × n matrices with components
from R〈〈X〉〉. Convergence in R〈〈X〉〉n×n is defined componentwise us-
ing the ultrametric dist on R〈〈X〉〉, that is, if A,B ∈ R〈〈X〉〉n×n then
dist(A,B) := maxi,j dist(aij, bij). A matrix C ∈ R〈〈X〉〉n×n is called
proper when every component cij is proper. Similar to the scalar case,
one can verify that C∗ is well defined if C is proper (see Problem 4.1.4).
The following lemma describes more precisely the nature of the compo-
nents of C∗. This characterization will be employed shortly to describe
the relationship between rational and recognizable series.

Lemma 4.1 If C ∈ R〈〈X〉〉n×n is proper then

C∗ =
∞∑

i=0

Ci

has components in the rational closure of the components of C.

Proof: The proof is by induction on n. The result is immediate when
n = 1. So select some n ≥ 1 and assume the lemma holds up to
this fixed value. Analogous to the scalar case, it is easily verified that
C∗ ∈ R(n+1)×(n+1) is the unique solution to the matrix equations

(In+1 −C)C∗ = In+1, C∗(In+1 −C) = In+1,

where In+1 is an (n+ 1)× (n+ 1) identity matrix (see Problem 4.1.5).
Consequently,

C∗ = In+1 + CC∗ = In+1 + C∗C. (4.1)

Now partition the rows and columns of the matrix C in the following
manner:

n 1

C =

[
C1 C4

C3 C2

]
n

1

It can be verified by direct substitution into (4.1) that

C∗ =

[
∆∗1 C∗1C4∆

∗
2

C∗2C3∆
∗
1 ∆∗2

]
, (4.2)
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where ∆1 = C1 + C4C
∗
2C3 and ∆2 = C2 + C3C

∗
1C4 (see Prob-

lem 4.1.6). Since the lemma is assumed to hold for matrices of di-
mension n or less, all the components of C∗1 and C∗2 are in the rational
closure of the components of C. The same is obviously true for the
components of ∆∗1 and ∆∗2, and thus for all the components of C∗.
Hence, by induction, the lemma is true for all n ≥ 1.

4.2 Recognizable Series

As discussed in Section 2.1, the collection of R-linear mappings on
the vector space Rn, represented by the set of matrices Rn×n, forms a
monoid under matrix multiplication. The following definition utilizes
this fact to describe the central notion behind recognizability of a
formal power series.

Definition 4.2 A linear representation of a series c ∈ R〈〈X〉〉 is
any triple (µ, γ, λ), where

µ : X∗ → Rn×n

is a monoid homomorphism, and γ, λT ∈ Rn×1 are such that

(c, η) = λµ(η)γ, ∀η ∈ X∗.

The integer n ≥ 1 is the dimension of the representation.

Definition 4.3 A series c ∈ R〈〈X〉〉 is called recognizable if it has
a linear representation.

Given any linear representation (µ, γ, λ) of c, the homomorphism µ
is uniquely specified by its image on X = {x0, x1, . . . , xm}, specifically
by the set of matrices N = {N0, N1, . . . , Nm}, where Ni = µ(xi), i =
0, 1, . . . ,m (see Problem 2.1.3). In which case, c can be written in the
form

c =
∑

η∈X∗

(λµ(η)γ) η

=
∞∑

k=0

m∑

i1,...,ik=0

(λNik · · ·Ni1γ) xik · · · xi1 . (4.3)
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Given one linear representation for c, it is trivial to produce another
representation of the same dimension. The set of all nonsingular ma-
trices in Rn×n defines the general linear group GLn(R). This group
acts as a transformation group on the set of n dimensional linear rep-
resentations via the mapping

AT : (µN , γ, λ) → (µÑ , γ̃, λ̃),

where µN is the monoid homomorphism specified by the set of matrices
N , and

Ñi = TNiT
−1, γ̃ = Tγ, λ̃ = λT−1.

Clearly (µÑ , γ̃, λ̃) is another representation of c. Since there are un-
countable infinitely many such T in GLn(R), the set of linear repre-
sentations of c has the same cardinality. In fact, the action A does
not account for all possible representations of c since representations
of different dimensions can also exist (see Problem 4.4.6).

Example 4.3 Suppose X = {x0} and c ∈ R[[X0]] is recognizable with
representation (µA, z0, C) and A = µ(x). Using the homomorphism

ρ : X∗ → N, η 7→ |η|

described in Example 2.3, the mapping

µA(η) = Aρ(η)

is a homomorphism of X∗ into Rn×n. Therefore, the series c can be
written in the form

c =
∑

η∈X∗

(CAρ(η)z0) η =
∞∑

i=0

(CAiz0) x
i
0

= C(Ax0)∗z0.

A central question is how to determine when a given series is recog-
nizable. Ultimately, this will be answered via three different methods,
each of which provides some insight into the nature of recognizable
series. But first a necessary condition for recognizability is presented.
In applications, it can be useful for quickly determining if a specific
series has any hope of being recognizable.
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Theorem 4.1 If c ∈ R〈〈X〉〉 is recognizable, then c is globally conver-
gent with Gevrey order s∗ = 0.

Proof: Since c is recognizable, its coefficients can be written in the
form

(c, xik · · · xi1) = λNik · · ·Ni1γ.

Assuming c 6= 0, otherwise the problem is trivial, define the positive
constants K = ‖λ‖ ‖γ‖ and M = maxi ‖Ni‖, where ‖·‖ when applied
to a matrix denotes the induced matrix norm. For any k ≥ 0, it follows
from the Cauchy-Schwarz inequality that

|(c, xik · · · xi1)| = |λNik · · ·Ni1γ|
≤ ‖λ‖ ‖Nik · · ·Ni1γ‖
≤ ‖λ‖ ‖Nik · · ·Ni1‖ ‖γ‖
≤ ‖λ‖ ‖Nik‖ · · · ‖Ni1‖ ‖γ‖
≤ KMk.

Thus, if a series c is recognizable, its coefficients can have at most a
geometric growth rate. The following property provides the first neces-
sary and sufficient test for recognizability. The subsequent two sections
provide alternative characterizations of recognizability in terms of ra-
tionality and the Hankel mapping of c.

Definition 4.4 A subset V ⊂ R〈〈X〉〉 is called stable when ξ−1(c) ∈
V for all c ∈ V and ξ ∈ X∗.1

Theorem 4.2 A series c ∈ R〈〈X〉〉 is recognizable if and only if there
exists a stable finite dimensional R-vector subspace of R〈〈X〉〉 contain-
ing c.

Proof: Suppose c is recognizable. Then there exists a linear represen-
tation (µ, γ, λ) of finite dimension n such that

(c, η) = λµ(η)γ, ∀η ∈ X∗.

Define the set of series {c̄i}ni=1 in R〈〈X〉〉 by

1 It will normally be clear from context, but the convention is that ξ−1(·) refers
to the left-shift operator, while c−1 denotes the rational inverse of c.
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(c̄i, η) = [µ(η)γ]i, i = 1, . . . , n,

where [v]i denotes the i-th component of vector v ∈ Rn. Let V be the
R-vector subspace of R〈〈X〉〉 defined by the span of {c̄i}ni=1. Observe
that for any η ∈ X∗,

(c, η) = λµ(η)γ =

n∑

i=1

λi[µ(η)γ]i =

n∑

i=1

λi(c̄i, η),

and thus,

c =
∑

η∈X∗

(c, η)η =
∑

η∈X∗

(
n∑

i=1

λi(c̄i, η)

)
η

=

n∑

i=1

λi


∑

η∈X∗

(c̄i, η)η


 =

n∑

i=1

λic̄i.

Hence, c ∈ V . Now select any ĉ ∈ V . Clearly, there exists real numbers
{λ̂i}ni=1 such that

(ĉ, η) =

n∑

i=1

λ̂i(c̄i, η)

=

n∑

i=1

λ̂i[µ(η)γ]i

= λ̂µ(η)γ.

Consequently, for any ξ ∈ X∗

ξ−1(ĉ) =
∑

η∈X∗

(ĉ, ξη)η =
∑

η∈X∗

(λ̂µ(ξη)γ)η

=
∑

η∈X∗

(λ̂µ(ξ)µ(η)γ)η

=
∑

η∈X∗

n∑

i=1

[λ̂µ(ξ)]i[µ(η)γ]iη

=

n∑

i=1

[λ̂µ(ξ)]ic̄i.

So ξ−1(ĉ) ∈ V , and this proves the theorem in one direction.
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Now conversely, let V be a stable n dimensional R-vector subspace
of R〈〈X〉〉 containing c. Let {c̄i}ni=1 be any basis for V . Then it is
possible to write

c =

n∑

i=1

λic̄i (4.4)

for some λi ∈ R, i = 1, . . . , n. Since V is stable, it follows that x−1(c̄i) ∈
V for every letter x ∈ X and every i = 1, 2, . . . , n. Thus, it is also
possible to write

x−1(c̄i) =
n∑

j=1

[µ(x)]ij c̄j ,

where [µ(x)]ij ∈ R, i, j = 1, . . . , n. This clearly defines a mapping
µ : X 7→ Rn×n. Furthermore, this mapping can be uniquely extended
in the usual manner to a monoid homomorphism µ : X∗ → Rn×n, i.e.,

µ(xikxik−1
· · · xi1) = µ(xik)µ(xik−1

) · · ·µ(xi1) (4.5)

(see Problem 2.1.3). It is now shown inductively on the length of an
arbitrary η ∈ X∗ that

η−1(c̄i) =

n∑

j=1

[µ(η)]ij c̄j. (4.6)

The empty word case is trivial, and the case where η ∈ X was estab-
lished above. Suppose that up to some fixed k ≥ 1 the identity (4.6)
holds for every η ∈ Xk. Then for any x ∈ X it follows that

(ηx)−1(c̄i) = x−1(η−1(c̄i))

= x−1

(
n∑

k=1

[µ(η)]ik c̄k

)

=

n∑

k=1

[µ(η)]ik x
−1(c̄k)

=

n∑

k=1

[µ(η)]ik

n∑

j=1

[µ(x)]kj c̄j

=

n∑

j=1

(
n∑

k=1

[µ(η)]ik[µ(x)]kj

)
c̄j
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=

n∑

j=1

[µ(ηx)]ij c̄j .

Hence, equation (4.6) holds for all η ∈ Xk+1 and thus for every word
in X∗. Now define γ ∈ Rn×1 componentwise by γj = (c̄j , ∅). Observe
that for any η ∈ X∗

(c̄i, η) = (η−1(c̄i), ∅)

=
n∑

j=1

[µ(η)]ij(c̄j , ∅)

= [µ(η)γ]i,

and thus, from equation (4.4),

(c, η) =

n∑

i=1

λi(c̄i, η)

=
n∑

i=1

λi[µ(η)γ]i

= λµ(η)γ.

So c is recognizable.

Example 4.4 Suppose p ∈ R〈X〉 where X = {x0, x1, . . . , xm}. Let
Vp be the R-vector subspace of R〈X〉 ⊂ R〈〈X〉〉, where p̂ ∈ Vp if
deg(p̂) ≤ deg(p). Clearly p ∈ Vp, and it is easily verified that dim(Vp) =∑deg(p)

i=0 (m+1)i. In addition, Vp is stable since ξ−1(p̂) ≤ deg(p) for any
ξ ∈ X∗ and p̂ ∈ Vp. Thus, every polynomial p, which was already
known to be rational, is now also seen to be recognizable.

Example 4.5 Suppose p ∈ R〈X〉 with (p, ∅) = 1. Then p−1 = (p′)∗,
where p′ = 1 − p. Since p′ is recognizable there exists a finite dimen-
sional R-vector subspace Vp′ containing p′. Define a second subspace

Vp−1 = {α+ p̂p−1 : α ∈ R, p̂ ∈ Vp′}.

Clearly, p−1 ∈ Vp−1 since p−1 = 1 + p′p−1. The subspace Vp−1 is finite
dimensional since Vp′ is. The stability of Vp−1 follows directly from
Lemma 2.1 using the fact that p′ is proper. Specifically, for any x ∈ X:
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x−1(α+ p̂p−1) = x−1(p̂p−1)

= x−1(p̂)p−1 + (p̂, ∅) x−1(p−1)

= x−1(p̂)p−1 + (p̂, ∅) x−1(p′p−1)

= x−1(p̂)p−1 + (p̂, ∅)x−1(p′)p−1

=
[
x−1(p̂) + (p̂, ∅)x−1(p′)

]
p−1.

But x−1(p̂), x−1(p′) ∈ Vp′ since p̂, p′ ∈ Vp′ , and Vp′ is stable. Thus,
x−1(α + p̂p−1) ∈ Vp−1 , and therefore Vp−1 is also stable (see Prob-
lem 4.2.1). Consequently, p−1 is recognizable, in addition to being ra-
tional. In the next section, it is shown that being both rational and
recognizable is no coincidence.

4.3 Schützenberger’s Theorem

The following theorem is fundamental in the theory of rational series.

Theorem 4.3 (Schützenberger) A formal power series is rational if
and only if it is recognizable.

Proof: Suppose c is recognizable. Let (µ, γ, λ) be any linear represen-
tation of c of dimension n. Consider the proper matrix in R〈X〉n×n:

C =
∑

x∈X

µ(x)x.

It follows from a defining property of homomorphisms (see equa-
tion (2.1)) and a modest generalization of the identity (char(X))i =
char(Xi) (see Problem 2.4.6) that

C∗ =

∞∑

i=0

Ci =

∞∑

i=0

(
∑

x∈X

µ(x)x

)i

=

∞∑

i=0

∑

η∈Xi

µ(η)η =
∑

η∈X∗

µ(η)η.

Thus,

c =
∑

η∈X∗

(λµ(η)γ)η = λC∗γ. (4.7)



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

4.3 Schützenberger’s Theorem 251

rational 

series

recognizable

series

R XX

R XX

Fig. 4.1. The initial set inclusions in the proof that all rational series are recog-
nizable.

From Lemma 4.1, every component of C∗ is in the rational closure of
the polynomials comprising C. Hence, c is rational.

It is next shown that all rational series are recognizable. In light of
the result just proven above and Example 4.4, the known set inclusions
are as shown in Figure 4.1. Observe it is only necessary to show that
the set of recognizable series is rationally closed, and thus, it can not
be smaller than the smallest rational closure of R〈X〉, namely, the set
of rational series. Hence, the set of recognizable series is not a proper
subset of the set of rational series, as shown in the figure, but is in fact
equivalent to this set.

The set of recognizable series is rationally closed:

1. Suppose series c and d are recognizable. Let Vc and Vd be any cor-
responding stable finite dimensional R-vector subspaces of R〈〈X〉〉
as per Theorem 4.2. Then c+d is in the inner sum Vc+Vd, which is
also stable and a finite dimensional R-vector subspaces of R〈〈X〉〉
(see Problem 4.2.2). Hence, c + d is recognizable. Closure under
the scalar product is shown similarly.

2. Suppose series c and d are recognizable with Vc and Vd as defined
above. Define the subspace
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Vcd = {ĉd+ d̂ : ĉ ∈ Vc, d̂ ∈ Vd}.

Vcd contains cd and is finite dimensional since both Vc and Vd are.
Furthermore, as a direct consequence of Lemma 2.1, Vcd is stable
(see Problem 4.3.2). Thus, cd is recognizable.

3. Suppose c is recognizable and proper. Define the subspace

Vc∗ = {α+ ĉc∗ : α ∈ R, ĉ ∈ Vc}.

Again, c∗ ∈ Vc∗ , and Vc∗ is a finite dimensional R-vector subspace
of R〈〈X〉〉 since Vc is. The stability of Vc∗ follows from the same
type of argument as given in Example 4.5. Specifically, from the
identity c∗ = 1 + cc∗ and the assumption that (c, ∅) = 0, it follows
for any x ∈ X that:

x−1(α+ ĉc∗) = x−1(ĉc∗)

= x−1(ĉ)c∗ + (ĉ, ∅) x−1(c∗)

= x−1(ĉ)c∗ + (ĉ, ∅) x−1(cc∗)

= x−1(ĉ)c∗ + (ĉ, ∅)x−1(c)c∗

=
[
x−1(ĉ) + (ĉ, ∅)x−1(c)

]
c∗.

But x−1(ĉ), x−1(c) ∈ Vc since c, ĉ ∈ Vc, and Vc is stable. Thus,
x−1(α+ ĉc∗) ∈ Vc∗ , and therefore, Vc∗ is stable.

4.4 Hankel Rank of a Rational Series

In this section, a characterization of a rational/recognizable series is
given via its Hankel mapping. The following definition generalizes the
more familiar notion introduced in Chapter 1.

Definition 4.5 For any c ∈ R〈〈X〉〉, the R-linear mapping Hc :
R〈X〉 → R〈〈X〉〉 on the R-vector space R〈X〉 uniquely specified by

(Hc(η), ξ) = (c, ξη), ∀ξ, η ∈ X∗

is called the Hankel mapping of c.
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Each R-vector space R〈X〉 and R〈〈X〉〉 is clearly spanned by the set
of monomials {1 η}η∈X∗ . So the mapping Hc : R〈X〉 → R〈〈X〉〉 has
a matrix representation, whose (ξ, η) component is given by [Hc]ξ,η =
(Hc(η), ξ) = (c, ξη) (see Problem 4.4.1). Its range space, Hc(R〈X〉),
is a vector subspace of R〈〈X〉〉, but not necessarily finite dimensional.
Consider the following definition.

Definition 4.6 The Hankel rank of c ∈ R〈〈X〉〉 is

ρH(c) = dim(Hc(R〈X〉)).

Example 4.6 Suppose X = {x0}. Given any c ∈ R〈〈X〉〉 and xi0, x
j
0 ∈

X∗, observe
(Hc(x

i
0), xj0) = (c, xi+j0 ).

Thus, the linear mapping Hc has the matrix representation

Hc =




(c, ∅) (c, x0) (c, x20) · · ·
(c, x0) (c, x20) (c, x30) · · ·
(c, x20) (c, x30) (c, x40) · · ·

...
...

...
. . .


 ,

which has the well known Hankel structure. As described in Section 1.1,
when the rank of this matrix is finite, there exists polynomials p, q ∈
R〈X〉 so that c = pq−1. Hence, the series c is rational.

The Hankel characterization of rationality for an arbitrary finite
alphabet is given below.

Theorem 4.4 A series c ∈ R〈〈X〉〉 is rational if and only if its Hankel
rank, ρH(c), is finite.

Proof: Suppose c is rational. Then from Theorems 4.2 and 4.3 there
exists a stable R-vector subspace Vc ⊂ R〈〈X〉〉 containing c with finite
dimension n. Let {c̄i}ni=1 be any basis for Vc. Since Vc is stable, for any
ξ ∈ X∗ there exists real numbers {αξ,i}ni=1 such that

ξ−1(c) =

n∑

i=1

αξ,i c̄i.

For each c̄i, associate the companion series
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ei =
∑

ξ∈X∗

αξ,i ξ.

It is shown next that Hc(R〈X〉) lies in the subspace of R〈〈X〉〉 spanned
by {ei}ni=1. Therefore, ρH(c) ≤ n < ∞. Select any polynomial p =∑r

j=1(p, ηj)ηj and apply Hc:

Hc(p) =

r∑

j=1

Hc(ηj)(p, ηj)

=
r∑

j=1

∑

ξ∈X∗

(Hc(ηj), ξ)ξ (p, ηj)

=
r∑

j=1

∑

ξ∈X∗

(c, ξηj)ξ (p, ηj)

=

r∑

j=1

∑

ξ∈X∗

(ξ−1(c), ηj)ξ (p, ηj)

=

r∑

j=1

∑

ξ∈X∗

[
n∑

i=1

αξ,i(c̄i, ηj)

]
ξ (p, ηj)

=
n∑

i=1




r∑

j=1

(c̄i, ηj)(p, ηj)


 ei.

Thus, the first half of the theorem is proved.
Now consider the converse claim. Suppose ρH(c) is finite, say

ρH(c) = n. The set of words {ηi}ni=1 in X∗, which label the n linearly
independent columns of Hc, describe a basis {Hc(ηi)}ni=1 for Hc(R〈X〉).
For each x ∈ X, one can uniquely define a matrix µ(x) ∈ Rn×n via the
system of equations

Hc(xηi) =
n∑

j=1

[µ(x)]ji Hc(ηj), i = 1, . . . , n, (4.8)

since Hc(xηi) is the xηi-th column of the matrix Hc. The mapping
µ : X → Rn×n can be uniquely extended to a monoid homomorphism
on X∗ via equation (4.5). (This part of the proof closely parallels the
proof of Theorem 4.2.) It is now shown inductively on word length
that for an arbitrary η ∈ X∗
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Hc(ηηi) =

n∑

j=1

[µ(η)]jiHc(ηj). (4.9)

The claim is trivial if η is empty. Apply (4.8) for words of length one.
Suppose that up to some fixed k ≥ 0 the identity (4.9) holds for every
η ∈ Xk. Then for any x ∈ X and ξ ∈ X∗ observe that

(Hc(xηηi), ξ) = (c, ξxηηi)

= (Hc(ηηi), ξx)

=
n∑

k=1

[µ(η)]ki(Hc(ηk), ξx)

=
n∑

k=1

[µ(η)]ki(Hc(xηk), ξ)

=
n∑

k=1

[µ(η)]ki

n∑

j=1

[µ(x)]jk(Hc(ηj), ξ)

=

n∑

j=1

[µ(xη)]ji(Hc(ηj), ξ).

Thus, equation (4.9) holds for every η ∈ X∗. Now since c ∈ Hc(R〈X〉)
(c = Hc(1)), there must exist scalars {γi}ni=1 such that c =

∑n
i=1 γiHc(ηi).

Therefore, given any η ∈ X∗ observe

(c, η) =
n∑

i=1

γi(Hc(ηi), η) =
n∑

i=1

γi(c, ηηi)

=

n∑

i=1

γi(Hc(ηηi), ∅) =

n∑

i=1

γi

n∑

j=1

[µ(η)]ji(Hc(ηj), ∅)

= λµ(η)γ,

where

λ = [(Hc(η1), ∅) (Hc(η2), ∅) · · · (Hc(ηn), ∅)]

= [(c, η1) (c, η2) · · · (c, ηn)]

γ = [γ1 γ2 · · · γn]T .

Thus, c is recognizable, or equivalently, rational.
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Example 4.7 Let X = {x1} and consider the series c =
∑

k≥0 x
k
1. For

any p ∈ R〈X〉 and η ∈ X∗ observe that

(Hc(p), η) =
∑

ξ∈X∗

(p, ξ)(Hc(ξ), η)

=
∑

ξ∈X∗

(p, ξ)(c, ηξ).

Therefore,

(Hc(p), x
i
1) =

∞∑

j=0

(p, xj1)(c, xi1x
j
1)

=

∞∑

j=0

(p, xj1),

or equivalently,

Hc(p) =

∞∑

i=0



∞∑

j=0

(p, xj1)


xi1

= c

∞∑

j=0

(p, xj1).

Thus, it follows that ρH(c) = 1. It is easy to see that (N1, λ, γ) =
(1, 1, 1) is a linear representation of c

Example 4.8 Suppose X = {x0, x1}. Consider a linear series c ∈
R〈〈X〉〉 with coefficients

(c, η) =

{
CAkB1 : η = xk0x1, k ≥ 0

0 : otherwise,

where (A,B1, C) is the controllability canonical form of c:

A =

[
0 −(ã, ∅)
1 −(ã, x0)

]
, B1 =

[
1
0

]
, C =

[
(c, x1) (c, x0x1)

]
.

This series is rational since it can be directly verified that c = ba−1x1
with
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a = 1 + (a, x0)x0 + (a, x20)x20

b = (b, ∅) + (b, x0)x0,

where (a, xi0) = (ã, x2−i0 ) for i = 1, 2, (b, ∅) = (c, x1) and (b, x0) =
(c, x0x1) + (c, x1)(a, x0) (see Section 1.4 and Problem 4.4.3). The in-
ductive procedure used in the previous proof provides one way to syn-
thesize a linear representation of c, but surprisingly it is distinct from
the triple (µA, B1, C). That is, what one commonly calls a realization
for this linear series does not directly yield a linear representation of
c. The Hankel matrix for c is

∅ x0 x1 x20 x0x1 x1x0 x21

Hc =




0 0 CB1 0 CAB1 0 0 · · ·
0 0 CAB1 0 CA2B1 0 0 · · ·

CB1 0 0 0 0 0 0 · · ·
0 0 CA2B1 0 CA3B1 0 0 · · ·

CAB1 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

. . .




∅
x0
x1
x20
x0x1
x1x0
x21

↑ ↑ ↑
η1 η2 η3

If the polynomials b̃ and ã share no common roots, then the columns yyy: Check page break.

corresponding the words η1 = ∅, η2 = x1, and η3 = x0x1 are linearly
independent, while all columns to the right of these columns lie in their
span. Thus, ρH(c) = 3. According to equation (4.8) and employing the
Cayley-Hamilton Theorem,

Hc(x0η1) = 0

Hc(x0η2) = Hc(η3)

Hc(x0η3) = −(ã, ∅)Hc(η2) − (ã, x0)Hc(η3)

Hc(x1η1) = Hc(η2)

Hc(x1η2) = 0

Hc(x1η3) = 0.

The corresponding homomorphism, µN , is therefore uniquely specified
by N = {N0, N1}, where



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

258 4. Rational Series and Linear Representations

N0 =




0 0 0

0 0 −(ã, ∅)
0 1 −(ã, x0)


 , N1 =




0 0 0

1 0 0
0 0 0


 .

The remaining portion of the linear representation follows from this
same construction to be

λ =
[

0 (c, x1) (c, x0x1)
]
, γ =




1

0
0


 .

Clearly, the triple (A,B1, C) is imbedded in this representation. (See
Problem 4.4.4 for the most general case.) Note that Hc given above is a
Hankel matrix for a series in two letters, while in contrast, the Hankel
matrix Hci employed in Chapter 1 (equation (1.27)), is a Hankel matrix
for a series in only one letter, namely the series bia

−1
i in x0.

The link between rationality of a series and its Hankel mapping can
also be seen through a canonical factorization of the latter.2 Specif-yyy: Absolute label in

footnote. ically, the finiteness of the Hankel rank implies the existence of a
factorization of Hc = QcPc, where Pc : R〈X〉 → R〈X〉 is an R-
vector space homomorphism whose range has dimension ρH(c), and
Qc : R〈X〉 → R〈〈X〉〉 is an R-vector space isomorphism onto the range
of Hc. To produce such a factorization, define the following equivalence
relation on R〈X〉:

p ∼ p′ ⇐⇒ Hc(p) = Hc(p
′) ⇐⇒ p− p′ ∈ null(Hc).

In which case, the canonical factorization induced by this relation
yields the desired mappings:

Pc : R〈X〉 → R〈X〉/ ∼
Qc : R〈X〉/ ∼→ R〈〈X〉〉

(see Figure 4.2). The existence of the vector space isomorphism Qc
means that R〈X〉/ ∼ is a ρH(c) dimensional subspace of R〈X〉. It is
also an R〈X〉-module under the product

xi · Pc(p) := Pc(pxi), xi ∈ X, p ∈ R〈X〉 (4.10)

2 See Section A.2 of Appendix A.
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Pc Qc

✲R〈X〉 R〈〈X〉〉
Hc

R〈X〉/ ∼

❅
❅
❅
❅
❅❘ �

�
�
��✒

Fig. 4.2. The canonical factorization of the Hankel mapping Hc : R〈X〉 7→ R〈〈X〉〉.

(see Problem 4.4.2).
Next it is shown that this canonical factorization of Hc leads di-

rectly to an ρH(c) dimensional representation of c. Set Z = R〈X〉/ ∼
and define for each xi ∈ X the R-linear map

Xi : Z → Z, z 7→ xi · z.

Fix a basis for Z, and let Ni denote any matrix representation of Xi in
this basis. Define row vector γ to be Pc(1) ∈ Z written in terms of this
basis. Likewise, the column vector λ is a representation of the R-linear
map Z → R : p 7→ (Qc(z), ∅) in terms of this basis. Since c = Hc(1),
it follows that for any η = xi1xi2 · · · , xik ∈ X∗:

(c, xi1xi2 · · · , xik) = (Hc(1), xi1xi2 · · · xik)

= (Hc(xi1xi2 · · · xik), ∅)

= (QcPc(xi1xi2 · · · xik), ∅)

= (QcXikPc(xi1xi2 · · · xik−1
), ∅)

= (QcXik−1
XikPc(xi1xi2 · · · xik−2

), ∅)

...

= (Qc(Xi1Xxi2
· · ·XikPc(1)), ∅)

= λNi1Ni2 · · ·Nikγ,

and (c, ∅) = (Hc(1), ∅) = (Qc(Pc(1)), ∅) = λγ.
A linear representation of c is said to be minimal if there exists no

other linear representation of c with a lower dimension. One advantage
of the Hankel matrix characterization of rationality is that it provides
the minimal dimension of its linear representations.
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Theorem 4.5 The minimal dimension of a linear representation of a
rational series c ∈ R〈〈X〉〉 is equivalent to its Hankel rank, ρH(c).

Proof: Suppose c has a linear representation of dimension n < ρH(c).
Then its underlying maps Xi are on a vector space Z of dimension n. In
which case, the linear maps Qc and Pc in the canonical factorization of
Hc have matrix representations with rank not exceeding n. Therefore,
rank(Hc) = rank(QcPc) ≤ n < ρH(c), which is a contradiction.

If (µ, γ, λ) is a minimal linear representation of c then clearly so is
AT (µ, γ, λ) for any T ∈ GLn(R). What is not so evident is whether
all the minimal linear representations of c lie on an orbit of the action
A, namely O(µ,γ,λ)(A) := {AT (µ, γ, λ) : T ∈ GLn(R)}. The following
theorem establishes this claim.

Theorem 4.6 Let (µN , γ, λ) and (µÑ , γ̃, λ̃), be two minimal linear
representations of a rational series c ∈ R〈〈X〉〉. Then there exists a
matrix T ∈ GLn(R) such that (µÑ , γ̃, λ̃) = AT (µN , γ, λ).

Proof: Since (µ, γ, λ) and (µ̃, γ̃, λ̃) are both minimal linear represen-
tations of the same series c, they have the same Hankel matrix Hc.
The canonical factorization Hc = QcPc depends only on the minimal
dimension ρH(c) of the vector space Z = R〈X〉/ ∼. As each linear
map Xi : Z → Z, z 7→ xi · z is independently defined of any particular
minimal representation, any two matrix representations of it must be
related by similarity. As all such matrices in a given representation are
by assumption written in terms of the same basis for Z, µÑ = µTNT−1

for some T ∈ GLn(R). Furthermore, since for every η ∈ X∗

(c, η) = λ̃µÑ (η)γ̃

= λ̃TµN (η)T−1γ̃

= λµN (η)γ.

It follows that λ̃ = λT−1 and γ̃ = Tγ, hence proving the theorem.

Example 4.9 Example 4.7 can be generalized to an arbitrary alpha-
bet X = {x0, x1, . . . , xm} by considering the series c =

∑
η∈X∗ η. As

before, for any p ∈ R〈X〉 and η ∈ X∗ observe

(Hc(p), η) =
∑

ξ∈X∗

(p, ξ)(c, ηξ)
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=
∑

ξ∈X∗

(p, ξ),

and thus,

Hc(p) =
∑

η∈X∗

∑

ξ∈X∗

(p, ξ) η

= c
∑

ξ∈X∗

(p, ξ).

Therefore, ρH(c) = 1. In this case, c has a minimal linear representa-
tion Ni = 1, i = 0, 1, . . . ,m and λ = γ = 1.

4.5 The Shuffle and Composition Products as Rational

Operations

It is possible that other binary operators on R〈〈X〉〉 may be rational
in the sense that they produce a rational series when their arguments
are rational series. The first theorem states that the shuffle product is
one such example.

Theorem 4.7 If c and d are rational series in R〈〈X〉〉, then c ⊔⊔ d is
also a rational series in R〈〈X〉〉.

Proof: In light of Theorems 4.2 and 4.3, let Vc and Vd be any stable
finite dimensional R-vector subspaces of R〈〈X〉〉 containing c and d,
respectively. Let {c̄i}nc

i=1 and {d̄i}nd
i=1 be any corresponding pair of bases

for Vc and Vd. Define the subspace of R〈〈X〉〉:

Vc ⊔⊔ d = span {c̄i ⊔⊔ d̄j : i = 1, . . . , nc; j = 1, . . . , nd}.

Clearly Vc ⊔⊔ d is a finite dimensional subspace of R〈〈X〉〉. Setting

c =

nc∑

i=1

αic̄i and d =

nd∑

j=1

βj d̄j

it follows that

c ⊔⊔ d =

nc,nd∑

i,j=1

αiβj c̄i ⊔⊔ d̄j ∈ Vc ⊔⊔ d.
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To see that Vc ⊔⊔ d is stable, observe that for any x ∈ X

x−1(c̄i ⊔⊔ d̄j) = x−1(c̄i) ⊔⊔ d̄j + c̄i ⊔⊔ x−1(d̄j) (4.11)

for all i and j (see Theorem 2.5). Since Vc and Vd are stable, it fol-
lows that x−1(c̄i ⊔⊔ d̄j) ∈ Vc ⊔⊔ d, and thus, Vc ⊔⊔ d is stable (see Prob-
lem 4.2.3(c)). Hence, c ⊔⊔ d is recognizable, and therefore rational.

The following theorem gives a specific linear representation of the
shuffle product of two series.

Theorem 4.8 If c ∈ R〈〈X〉〉 has a linear representation (µc, γc, λc),
and d ∈ R〈〈X〉〉 has representation (µd, γd, λd), then c ⊔⊔ d has a linear
representation (µ, γc ⊗ γd, λc ⊗ λd), where for each xi ∈ X, µ(xi) =
µc(xi) ⊗ Ind

+ Inc ⊗ µd(xi).

Proof: For any fixed ν ∈ X∗ and using ideas from Example 2.19,
observe that

(c ⊔⊔ d, ν) =
∑

η,ξ∈X∗

(c, η)(d, ξ)(η ⊔⊔ ξ, ν)

=
∑

η,ξ∈X∗

λcµc(η)γc λdµd(ξ)γd (η ⊗ ξ, sh∗(ν))

= (λc ⊗ λd)


 ∑

η,ξ∈X∗

(µc(η) ⊗ µd(ξ))(sh
∗(ν), η ⊗ ξ)


 (γc ⊗ γd).

The claim is now proved if it can be shown that

µ(ν) =
∑

η,ξ∈X∗

(µc(η) ⊗ µd(ξ))(sh
∗(ν), η ⊗ ξ).

It is clear for ν = ∅ that
∑

η,ξ∈X∗

(µc(η) ⊗ µd(ξ))(sh
∗(∅), η ⊗ ξ) = µc(∅) ⊗ µd(∅)

= Inc ⊗ Ind

= µ(∅).

If ν = xi ∈ X, then
∑

η,ξ∈X∗

(µc(η) ⊗ µd(ξ))(sh
∗(xi), η ⊗ ξ)
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=
∑

η,ξ∈X∗

(µc(η) ⊗ µd(ξ))(xi ⊗ 1 + 1⊗ xi, η ⊗ ξ)

= µc(xi) ⊗ Ind
+ Inc ⊗ µd(xi)

= µ(xi).

Now assume the identity holds for words up to length k ≥ 0, and let
ν ∈ Xk. Given any xi ∈ X observe that

∑

η,ξ∈X∗

(µc(η) ⊗ µd(ξ))(sh
∗(xiν), η ⊗ ξ)

=
∑

η,ξ∈X∗

(µc(η) ⊗ µd(ξ))(sh
∗(xi)sh

∗(ν), η ⊗ ξ)

=
∑

η,ξ∈X∗

(µc(η) ⊗ µd(ξ))((xi ⊗ 1 + 1⊗ xi)sh
∗(ν), η ⊗ ξ)

=
∑

η,ξ∈X∗

(µc(η) ⊗ µd(ξ))(sh
∗(ν), x−1i (η) ⊗ ξ)+

∑

η,ξ∈X∗

(µc(η) ⊗ µd(ξ))(sh
∗(ν), η ⊗ x−1i (ξ))

=
∑

η,ξ∈X∗

(µc(xiη) ⊗ µd(ξ))(sh
∗(ν), η ⊗ ξ)+

∑

η,ξ∈X∗

(µc(η) ⊗ µd(xiξ))(sh
∗(ν), η ⊗ ξ)

=
∑

η,ξ∈X∗

(µc(xi)µc(η) ⊗ µd(ξ))(sh
∗(ν), η ⊗ ξ)+

∑

η,ξ∈X∗

(µc(η) ⊗ µd(xi)µd(ξ))(sh
∗(ν), η ⊗ ξ)

= (µc(xi) ⊗ Ind
+ Inc ⊗ µd(xi))µ(ν)

= µ(xi)µ(ν)

= µ(xiν),

where the induction hypothesis was employed in the third to the last
step. Thus, the identity holds for all ν ∈ X∗, and the theorem is proved.

Example 4.10 Let X0 = {x0} and consider two series c, d ∈ R[[X0]]
with linear representations
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(c, xk0) = CcA
k
czc, (d, xk0) = CdA

k
dzd, k ≥ 0.

It was shown in Example 3.14 that c ⊔⊔ d has the linear representation
(Ac ⊕Ad, Cc ⊗ Cd, zc ⊗ zd). In the context of the previous theorem,

µ(x0) = (Ac ⊗ Ind
) + (Inc ⊗Ad) = Ac ⊕Ad,

so that µ(xk0) = (Ac ⊕Ad)
k, k ≥ 0.

Example 4.11 Suppose X = {x0, x1}. Consider two rational linear
series c, d ∈ R〈〈X〉〉 with linear representations coming from linear
state space realizations (Ac, Bc, Cc) and (Ad, Bd, Cd), respectively, as
in Example 4.8. In which case, c ⊔⊔ d has the linear representation

µ(x0) =

[
0 0
0 Ac

]
⊗ Ind

+ Inc ⊗
[

0 0
0 Ad

]

µ(x1) =

[
0 0
Bc 0

]
⊗ Ind

+ Inc ⊗
[

0 0
Bd 0

]

γ =

[
1
0

]
⊗
[

1
0

]
, λ =

[
0 Cc

]
⊗
[

0 Cd
]
.

Next consider the composition product. The following example re-
veals that the composition product is not in general a rational opera-
tion. This has important consequences in system theory as it implies
that a cascade of two rational systems (i.e., systems with rational gen-
erating series) do not always produce another rational system.

Example 4.12 Suppose X = {x0, x1} and consider the rational series
c = (1 − x1)

−1 = x∗1. The claim is that c composed with itself is not
rational. The main goal is to show that

(c ◦ c, xk00 xk11 ) = (k0)k1 , k0 ≥ 0, k1 ≥ 0,

or equivalently,
(x−k11 x−k00 (c ◦ c), ∅) = (k0)k1 . (4.12)

The claim is trivial when k0 = k1 = 0 provided that 00 := 1. If k0 = 1
and k1 = 0, observe that
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x−10 (c ◦ c) = x−10 (c)︸ ︷︷ ︸
0

◦c+ c ⊔⊔ (x−11 (c)︸ ︷︷ ︸
c

◦c)

= c ⊔⊔ (c ◦ c).

The intermediate claim then is that

x−k00 (c ◦ c) = c ⊔⊔ k0
⊔⊔ (c ◦ c), k0 ≥ 1.

If the identity above holds up to some fixed k0 ≥ 1 then

x−k0−10 (c ◦ c) = x−10 (c ⊔⊔ k0
⊔⊔ (c ◦ c))

= x−10 (c ⊔⊔ k0) ⊔⊔ (c ◦ c) + c ⊔⊔ k0
⊔⊔ x−10 (c ◦ c)

=

[
k0c

⊔⊔ (k0−1)
⊔⊔ x−10 (c)︸ ︷︷ ︸

0

]
⊔⊔ (c ◦ c)+

c ⊔⊔ k0
⊔⊔ (c ⊔⊔ (c ◦ c))

= c ⊔⊔ (k0+1)
⊔⊔ (c ◦ c).

(The identities in Problem 2.4.5(h) and 2.7.7(f) were employed above.)
Hence, the intermediate identity in question holds for k0 ≥ 0. Next
observe that

x−11 x−k00 (c ◦ c) = x−11 (c ⊔⊔ k0
⊔⊔ (c ◦ c))

= x−11 (c ⊔⊔ k0) ⊔⊔ (c ◦ c) + c ⊔⊔ k0
⊔⊔ x−11 (c ◦ c)︸ ︷︷ ︸

0

= k0c
⊔⊔ (k0−1)

⊔⊔ x−11 (c)︸ ︷︷ ︸
c

⊔⊔ (c ◦ c)

= k0c
⊔⊔ k0

⊔⊔ (c ◦ c).

The second intermediate claim is that

x−k11 x−k00 (c ◦ c) = (k0)k1c ⊔⊔ k0
⊔⊔ (c ◦ c).

If this is the case up to some fixed k1 ≥ 1 then

x−k1−11 x−k00 (c ◦ c) = x−11 ((k0)k1c ⊔⊔ k0
⊔⊔ (c ◦ c))

= (k0)k1
[
x−11 (c ⊔⊔ k0) ⊔⊔ (c ◦ c)+

c ⊔⊔ k0
⊔⊔ x−11 (c ◦ c)︸ ︷︷ ︸

0

]
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= (k0)k1
[
k0c

⊔⊔ k0
⊔⊔ (c ◦ c)

]

= (k0)k1+1c ⊔⊔ k0
⊔⊔ (c ◦ c).

Hence, this claim holds for all k1, k0 ≥ 0. To validate (4.12), simply
compare the constant coefficients in the above identity:

(x−k11 x−k00 (c ◦ c), ∅) = ((k0)k1c ⊔⊔ k0
⊔⊔ (c ◦ c), ∅)

(c ◦ c, xk00 xk11 ) = (k0)k1 .

Setting k0 = k1 yields the expression

(c ◦ c, xk0xk1) = kk, k ≥ 0. (4.13)

The key observation is that these coefficients are growing faster than
any sequence of coefficients from a rational series can possibly grow.
Specifically, from Theorem 4.1 it is known that every rational series
has coefficients satisfying a growth rate with Gevrey order s∗ = 0.
But kk, k ≥ 0 is clearly growing faster than this. So c ◦ c can not be
rational. (See Problem 4.5.6 for additional analysis of this example.)

There are special conditions under which the composition of two
rational series is again rational. The following definition provides one
such condition.

Definition 4.7 A series c ∈ R〈〈X〉〉 is limited relative to xi if
there exists an integer Ni ≥ 0 such that

max
η∈supp(c)

|η|xi ≤ Ni.

If c is limited relative to xi for every i = 1, . . . ,m then c is input-
limited. In such cases, let Nc := maxiNi.

Clearly any linear series c has this property (see Example 2.33),
specifically Nc = 1, while the series c given in Example 4.12 does
not. The following theorem states that the input-limited property is
a sufficient condition for preserving rationality under composition. It
is easily shown by counterexample that this condition is not necessary
(see Problem 4.5.4). Here a series d ∈ Rm〈〈X〉〉 is said to be rational
when each component series di, i = 1, 2, . . . ,m is rational.
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Theorem 4.9 Let c ∈ R〈〈X〉〉 and d ∈ Rm〈〈X〉〉 be two rational se-
ries. If c is input-limited then c ◦ d ∈ R〈〈X〉〉 is rational.

The proof of this theorem relies on the following lemma which
uses an operator monoid reminiscent of the algebra homomorphisms
ψ and φ utilized in Chapters 2 and 3. Note that the shuffle product
on R〈〈X〉〉 × Rn×n〈〈X〉〉 is defined componentwise.

Lemma 4.2 Let c ∈ R〈〈X〉〉 be a rational series with a linear repre-
sentation (µ, γ, λ). Let Ni := µ(xi) ∈ Rn×n, i = 0, 1, . . . ,m. Then for
any d ∈ Rm〈〈X〉〉 it follows that

c ◦ d =
∑

η∈X̃∗

λΨη((N0x0)
∗)γ,

where X̃ := {x1, x2, . . . , xm}, and the set of operators {Ψη : η ∈ X̃∗}
is the monoid under operator composition involving the following op-
erators

Ψxi : Rn×n〈〈X〉〉 → Rn×n〈〈X〉〉, E 7→ x0(N0x0)
∗Ni(di ⊔⊔E)

with Ψ∅ equivalent to the identity map on Rn×n〈〈X〉〉.

Proof: Observe from the definition of the composition product that

c ◦ d =

∞∑

k=0

m∑

i1,...,ik=1

∞∑

n0,...,nk=0

λNnk
0 NikN

nk−1

0 Nik−1
· · ·Nn1

0 Ni1N
n0
0 γ·

(xnk
0 xikx

nk−1

0 xik−1
· · · xn1

0 xi1x
n0
0 ) ◦ d

=
∞∑

k=0

m∑

i1,...,ik=1

∞∑

n0,...,nk=0

λNnk
0 NikN

nk−1

0 Nik−1
· · ·Nn1

0 Ni1N
n0
0 γ·

xnk+1
0

[
dik ⊔⊔

[
x
nk−1+1
0

[
dik−1

⊔⊔ · · · xn1+1
0 [di1 ⊔⊔ xn0

0 ] · · ·
]]]

.

From the bilinearity and continuity of the shuffle product (in the ul-
trametric sense), it follows that

c ◦ d =

∞∑

k=0

m∑

i1,...,ik=1

λx0



∞∑

nk=0

(N0x0)
nk


Nik


dik ⊔⊔ ·


x0




∞∑

nk−1=0

(N0x0)
nk−1


Nik−1


dik−1

⊔⊔ · · ·
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x0

(
∞∑

n1=0

(N0x0)n1

)
Ni1

[
di1 ⊔⊔

(
∞∑

n0=0

(N0x0)
n0

)]
· · ·
]]]

γ

=

∞∑

k=0

m∑

i1,...,ik=1

λx0(N0x0)
∗Nik

[
dik ⊔⊔

[
x0(N0x0)

∗Nik−1

[
dik−1

⊔⊔ · · ·

x0(N0x0)
∗Ni1 [di1 ⊔⊔ (N0x0)

∗] · · · ]]] γ.

Finally, applying the definition of Ψη,

c ◦ d =

∞∑

k=0

∑

xik ···xi1∈X̃
k

λΨxikΨxik−1
· · ·Ψxi1 ((N0x0)∗)γ

=
∑

η∈X̃∗

λΨη((N0x0)∗)γ,

and the lemma is proved.

Proof of Theorem 4.9: Since c is input-limited, it follows from Lemma 4.2
that

c ◦ d =

Nc∑

k=0

∑

η∈X̃k

λΨη((N0x0)
∗)γ.

Clearly each operator Ψη is mapping a rational series to another ra-
tional series as it involves only a finite number of rational operations.
Therefore, for any integer k ≥ 0 the formal power series

∑

η∈X̃k

λΨη((N0x0)
∗)γ

is again rational since the summation is finite. Thus, c ◦ d must be
rational.

Example 4.13 Let X = {x0, x1} and consider two rational linear
series c, d ∈ R〈〈X〉〉 with linear representations as in Example 4.11. In
light of the linearity of the series and Theorem 4.9, c ◦ d must also be
rational. Specifically, for any k ≥ 0 observe

(c ◦ d, xk0x1) =
k−1∑

j=0

(c, xk−1−j0 x1)(d, xj0x1)
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=

k−1∑

j=0

(CcA
k−1−j
c Bc)(CdA

j
dBd)

= Cc



k−1∑

j=0

Ak−1−jc BcCdA
j
d


Bd

=
[
Cc 0

] [ Ac BcCd
0 Ad

]k [
0
Bd

]
.

Thus, a linear representation for c ◦ d is immediately evident.

It is noted in closing that the input-limited condition does not apply
to the feedback product. That is, if c and d are rational with c input-
limited, it is not the case that c@d is necessarily rational.

Example 4.14 Suppose c = 1 + x1x
∗
0, which is clearly input-limited

and rational. Consider the system Fc in a feedback interconnection
with itself. It can be readily checked that c@c and c@δ satisfy the
same fixed point equation, and thus are equivalent series. Now define
e = c@δ|x1→0 in R[[X0]]. This corresponds to the generating series for
the self-excited unity feedback system, and in this case the fixed point
equation reduces to

e = (1 + x1x
∗
0) ◦ e

= 1 +

∞∑

k=0

x1x
k
0 ◦ e = 1 +

∞∑

k=0

x0(e ⊔⊔ xk0)

= 1 + x0(e ⊔⊔ x∗0).

Since x−10 (e) = e ⊔⊔ x∗0 and (e, ∅) = 1, it follows that y = Fe[0] satisfied
the differential equation

y′(t) = y(t) et, y(0) = 1,

which has the solution

y(t) = ee
t−1, t ≥ 0. (4.14)

Therefore, the coefficients of (c@c, xk0) = (e, xk0) correspond to the
Bell numbers, which first appear in Example 3.9 and are known to be
growing at a rate faster than Gevrey order s = 0. Hence, in light of
Theorem 4.1, c@c can not be rational.
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Problems

Section 4.1

Problem 4.1.1 Let c ∈ R〈〈X〉〉.
(a) Prove c is Cauchy invertible if and only if it is not proper.
(b) Show that if c is Cauchy invertible, then the inverse is unique.

Problem 4.1.2 Compute the Cauchy inverse of each of the following
series in R〈〈X〉〉 assuming X = {x0, x1}.

(a) c = x0 + x1
(b) c = 1 + x0x1
(c) c = 1 + x0 + x1 + x0x1 + x21 + x0x

2
1 + x31 + x0x

3
1 + x41 + · · ·

Problem 4.1.3 Show that (char(X))∗ = char(X∗).

Remark: See Problems 2.4.6 and 4.5.2.

Problem 4.1.4 Consider the mapping dist(A,B) = maxij dist(aij , bij),
where (A,B) ∈ R〈〈X〉〉n×n.

(a) Verify that dist is an ultrametric on R〈〈X〉〉n×n.
(b) Show that if C ∈ R〈〈X〉〉n×n is proper then C∗ is well defined.
(c) Is the converse of the statement in (b) true? Explain.

Problem 4.1.5 Show that the matrix C∗ defined in Lemma 4.1 is
the unique solution to the matrix equations (In − C)C∗ = In and
C∗(In −C) = In.

Problem 4.1.6 Verify the expression for C∗ in equation (4.2). The
following identities are useful: C∗1C4∆

∗
2 = ∆∗1C4C

∗
2 and C∗2C3∆

∗
1 =

∆∗2C3C
∗
1 .

Remark: ∆1 and ∆2 are related to the Schur complements found in
block matrix inversion formulas.

Section 4.2

Problem 4.2.1 Show that a subset V ⊂ R〈〈X〉〉 is stable if and only
if x−1(c) ∈ V for all c ∈ V and x ∈ X.
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Problem 4.2.2 Let Vc and Vd be two stable subsets in R〈〈X〉〉. Their
inner sum is Vc + Vd := {ĉ+ d̂ ∈ R〈〈X〉〉 : ĉ ∈ Vc, d̂ ∈ Vd}.

(a) Show that if Vc and Vd are stable then so is Vc + Vd.
(b) Likewise, show that if Vc and Vd are finite dimensional R-vector

subspaces of R〈〈X〉〉 then the same is true of Vc + Vd.

Problem 4.2.3 Suppose V is a finite dimensional R-vector subspace
of R〈〈X〉〉.
(a) Show that if V is stable then every series in V is rational, and in

particular, every series in any given basis for V is rational. Is the
converse true?

(b) A specific series c in V is said to be stable with respect to V if
ξ−1(c) ∈ V for all ξ ∈ X∗. Show that each series c̄i in a given basis
{c̄i}ni=1 for V is stable with respect to V if and only if V is stable.

(c) Let {c̄i}ni=1 be a basis for V . Show that x−1(c̄i) ∈ V for all x ∈ X
and i = 1, 2, . . . , n if and only if V is stable.

Section 4.3

Problem 4.3.1 Suppose c ∈ R〈〈X〉〉.
(a) If c is rational, show that there exists a P ∈ Rn×1 and a properQ ∈

R〈X〉n×n such that c = λZ, where λ ∈ R1×n and Z ∈ R〈〈X〉〉n×1
satisfies the linear equation

Z = P +QZ.

(b) Describe under what conditions a linear equation with P ∈
R〈〈X〉〉n×1 and proper Q ∈ R〈〈X〉〉n×n yields a rational series
c = λZ for some given λ ∈ R1×n.

Remark: See (4.1) and (4.7).

Problem 4.3.2 Let c, d ∈ R〈〈X〉〉. Show that if Vc and Vd are stable
subspaces of R〈〈X〉〉 then so is

Vcd = {ĉd+ d̂ : ĉ ∈ Vc, d̂ ∈ Vd}.

Section 4.4
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Problem 4.4.1 For any c ∈ R〈〈X〉〉 and p ∈ R〈X〉, show that

(a) Hc(p) =
∑

ν,η∈X∗

(c, νη)(p, η) ν

(b) ξ−1(Hc(p)) = Hξ−1(c)(p), ξ ∈ X∗.

Problem 4.4.2 In Section 2.2, it was stated that the set of series
R〈〈X〉〉 forms an R〈X〉-module, where the product of a polynomial and
a series is defined via the Cauchy product. Equation (4.10) introduces
another R〈X〉-module on R〈〈X〉〉, which is more natural for extracting
representations of a series c from its Hankel mapping, Hc.

(a) Completely describe this new R〈X〉-module on R〈〈X〉〉.
(b) Contrast the definition in part (a) to that for the R〈X〉-module

defined on R〈〈X〉〉 by the Cauchy product.

Problem 4.4.3 Verify the rational factorization of c given in Exam-
ple 4.8 by:

(a) Computing H(s) = C(sI −A)−1B1 and then applying (1.8).
(b) Computing the first two coefficients of the linear series ba−1x1 =∑

i≥1 hix
i−1
0 x1.

Problem 4.4.4 Let X = {x0, x1}. Consider the series c ∈ R〈〈X〉〉
with coefficients

(c, η) =





CAkB1 : η = xk0x1, k ≥ 0
CAkz0 : η = xk0 , k ≥ 0

0 : otherwise,

where (A,B1, C) is an n dimensional linear state space realization in
controllability canonical form and z0 ∈ Rn is arbitrary.

(a) Show that c is a rational series.
(b) Derive a linear representation of c when n = 2 by choosing the

same basis columns indexed by η1, η2, and η3 from the Hankel
matrix Hc as in Example 4.8.

(c) Is this representation of c minimal ? Explain.
(d) Show that the change of state space coordinates

T =




1 0 0
z01 1 0
z02 0 1



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(that is, Ñi = TNiT
−1, γ̃ = Tγ and λ̃ = λT−1) applied to the

representation found in part (b) produces the linear representation
of c:

N0 =




0 0 0

0 0 −(ã, ∅)
0 1 −(ã, x0)


 , N1 =




0 0 0

1 0 0
0 0 0




λ =
[

0 (c, x1) (c, x0x1)
]
, γ =




1

z01
z02


 .

Problem 4.4.5 Consider the linear representation

N0 =

[
0 1
0 0

]
, N1 =

[
0 0
1 0

]
, λ =

[
1 0

]
, γ =

[
0
1

]
.

(a) Compute the corresponding rational series c.
(b) Verify that c is rational without using the fact that it has a linear

representation.
(c) Determine whether the given linear representation of c is minimal.

Remark: See Problem 1.4.2.

Problem 4.4.6 Give a specific example of a rational series c ∈ R〈〈X〉〉
and two corresponding representations, one which is minimal and the
other which is not.

Problem 4.4.7 Provide an example, if possible, for each scenario de-
scribed below. If no such example exists, give a justification.

(a) A series c which is linear but not rational.
(b) A series d which is rational but not linear.
(c) A series e which is both rational and linear.
(d) A series f which is rational but not globally convergent.
(e) A series g which is globally convergent but not rational.

Section 4.5

Problem 4.5.1 Show that the shuffle inverse as defined in Prob-
lem 2.4.11 is not a rational operation.

Remark: See Problem 3.5.4.
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yyy: More identities

available in 12/08 notes.Problem 4.5.2 Let X = {x0, x1}. Verify the following identities:

(a) (x∗i )
⊔⊔ k = (kxi)

∗, k ≥ 1
(b) x∗0 ⊔⊔ x∗1 = char(X∗)
(c) (x0x1)∗ ⊔⊔ (−x0x1)∗ = (−4x20x

2
1)
∗

(d) x0(x
∗
1 ⊔⊔ (x0(x∗1 ⊔⊔ 1))) = x0x

∗
1x0(2x1)∗

(e) x0(x
∗
1 ⊔⊔ (x0(x∗1 ⊔⊔ · · · (x0(x∗1 ⊔⊔ 1)) · · · )))

= x0x
∗
1x0(2x1)∗ · · · x0(kx1)∗.

The series x∗1 appears k times on the left-hand side of the last equation.

Problem 4.5.3 Consider a linear series c = x∗0x1.

(a) Verify that c ⊔⊔ c 6= c2.
(b) Show that supp(c ⊔⊔ c) = supp(c2).

Problem 4.5.4 Provide an example of two rational series c and d
where c is not input-limited, but c ◦ d is still rational.

Remark: See Lemma 2.5.

Problem 4.5.5 Let X = {x0, x1}. Show that the case where c =
(1 − x1)−1 = x∗1 and d = x1 provides an example where the right
argument of the composition product is input-limited but rationality
is not preserved.

Remark: See Problem 3.6.4.

Problem 4.5.6 In this problem, the analysis of the series c ◦ c, where
c = (1 − x1)−1 = (x1)

∗, presented in Example 4.12 is expanded.

(a) Establish the identity

(c ◦ c, xk00 xk11 · · · xkl−1

0 xkl1 ) = (k0)k1(k0 + k2)k3 · · ·
(k0 + k2 + · · · + kl−1)

kl (4.15)

for all odd l ≥ 1 and ki ≥ 0, i = 0, 1, . . . , l. (Assume 00 := 1.)
(b) Using the solution from part (a) verify that:

(c ◦ c, xn0
0 x1x

n1
0 x1 · · · x

nj−1

0 x1x
nj

0 ) = n0(n0 + n1) · · ·
(n0 + n1 + · · · + nj−1)

(c ◦ c, xm0
1 x0x

m1
1 · · · x0xmk

1 ) = 0m01m12m2 · · · kmk

for all j ≥ 0 and ni ≥ 0, i = 0, 1, . . . , j; and all k ≥ 0 and mi ≥ 0,
i = 0, 1, . . . , k.
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(c) Using a result from part (b), show that

c ◦ c = 1 +
∞∑

k=1

x0x
∗
1x0(2x1)∗ · · · x0(kx1)∗.

(d) Demonstrate that the identity above can also be written in the
form

c ◦ c =

∞∑

k=0

Ψxk1
(1), (4.16)

where the operator Ψxk1
: R〈〈X〉〉 → R〈〈X〉〉 is defined by applying

the following operator k times

Ψx1(e) = x0(x
∗
1 ⊔⊔ e)

when k ≥ 1 and Ψ∅(1) = 1.

Problem 4.5.7 Suppose c and d are two globally convergent series,
not necessarily rational, where c is input-limited. Is this latter con-
dition sufficient to guarantee that c ◦ d is also globally convergent?
Provide either a proof or a counterexample.

Problem 4.5.8 For any c, d ∈ R〈〈X〉〉 define the Hadamard product
to be

c⊙ d =
∑

η∈X∗

(c, η)(d, η)η.

(a) Show that the Hadamard product preserves rationality.
(b) Show that the projection operator

P0 : R〈〈X〉〉 → R[[X0]], c 7→ c0 = c⊙ x∗0

preserves rationality.
(c) Prove that c@d is rational only if (c@d)0 := P0(c@d) is rational.

Specifically, there must exist a linear representation (λ0, N0, γ0)
such that (c@d)0 =

∑
k≥0 λ0N

k
0 γ0, or equivalently, Fc@d[0](t) =

λ0 exp(N0t)γ0, t ≥ t0.
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5. Lie Series and Universal Representations

Lie groups and Lie algebras plays an important role in the theory of
nonlinear control systems. In this chapter, key elements of Lie the-
ory are systematically developed leading to the notions of a universal
realization of a Fliess operator and a universal representation of its
generating series. These latter concepts are intrinsically infinite di-
mensional but exhibit many of the same algebraic properties as their
finite dimensional counterparts presented in the next chapter. So it is
instructive to examine these ideas independently. In this context, it is
possible to describe two concepts that are central to control theory,
namely, relative degree and zero dynamics.

The approach is incremental. First, the free Lie algebra is intro-
duced and Lie polynomials are characterized. Then the definitions of
a Lie series and an exponential Lie series are presented. Given a Lie
algebra, there is often an associated group whose linearization near the
identity element corresponds to this Lie algebra. So a brief digression is
taken on free groups, groups of formal power series, and Lie groups. Of
particular importance is the Chen series, which is an exponential Lie
series associated with a given input function. They form a group under
certain conditions. These ideas are then utilized to develop the notions
of a universal realization and a universal representation. Finally, the
definition of relative degree of a generating series is presented along
with conditions under which universal zero dynamics are well defined.

5.1 Lie Polynomials

Consider an R-vector space L with an R-bilinear mapping

L × L → L : (x, y) 7→ [x, y]

satisfying the identities:
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ρ σ

✲L A0

ρ0

A

❅
❅
❅
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❅❘

�
�

�
��✠

Fig. 5.1. The algebra homomorphism σ describing the universal property of the
enveloping algebra A0.

[x, x] = 0 (5.1)

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (5.2)

for every x, y, z ∈ L. This non-associative product [·, ·] is called the Lie
bracket on L, and the space L with this product is called a Lie algebra.
It is easily verified using the bilinearity of the product and (5.1) that
the Lie bracket is anti-symmetric, i.e., [y, x] = −[x, y]. From property
(5.2), which is known as the Jacobi identity, it can be shown that the
R-linear adjoint map adx : L → L, y 7→ [x, y] acts as a derivation on
the Lie bracket, that is,

adx([y, z]) = [adx(y), z] + [y, adx(z)] (5.3)

(see Problem 5.1.1).

Example 5.1 For any alphabet X, the set of polynomials R〈X〉 forms
a Lie algebra, where the Lie bracket is defined as [p1, p2] = p1p2−p2p1
for any p1, p2 ∈ R〈X〉.

For any associative R-algebra A with unit element 1, there is a
corresponding Lie algebra whose bracket operation is

[x, y] = xy − yx, ∀x, y ∈ A.

Given any two Lie algebras, L and L′, a Lie algebra homomorphism,
ρ : L → L′, is any R-vector space homomorphism which satisfies

ρ([x, y]) = [ρ(x), ρ(y)], ∀x, y ∈ L.

Consider a Lie algebra L and a Lie algebra homomorphism ρ : L →
A which maps L to a Lie algebra on A. Among all such associative
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algebras, there exists a largest algebra A0 and associated Lie algebra
homomorphism ρ0 : L → A0 known as the enveloping algebra of L.
It is unique modulo an isomorphism and has a universal property in
that there always exists a unique algebra homomorphism σ : A0 → A
which satisfies the commutative diagram in Figure 5.1. A classic result
from the theory of Lie algebras is that given a totally ordered basis for
L (when viewed as a vector space), one can construct a corresponding
ordered basis for its enveloping algebra.

Theorem 5.1 (Poincaré, Birkhoff & Witt) Let {e1, e2, . . .} be a totally
ordered basis for L. Then the elements

ej1ej2 · · · ejn , 0 < j1 ≤ j2 ≤ · · · ≤ jn, n ≥ 1 (5.4)

along with the identity element 1 form a basis for the enveloping alge-
bra of L.

Sometimes it is convenient to group like terms and express (5.4) as

ei1j1e
i2
j2
· · · eirjr , 0 < j1 < · · · < jr, ik > 0, r ≥ 1.

Example 5.2 Consider the one letter alphabet X0 = {x0} in the
context of the previous example. In this case, L is the one dimen-
sional vector space span{x0}. Since e1 = x0 is clearly a basis for L,
its corresponding enveloping algebra is the unital associative algebra
on R[X0] under the Cauchy product. Observe any element in R[X0]
can be written in terms of a finite number of elements from the basis
{1, x0, x20, . . .}.

Given an alphabet X = {x0, x1, . . . , xm}, consider the smallest R-
vector subspace of R〈X〉 containing X which is closed under the Lie
bracket operation. This Lie algebra, denoted by L(X), is clearly a
proper subset of R〈X〉.

Definition 5.1 Any polynomial in L(X) is called a Lie polynomial.

The Lie algebra L(X) is free on X in the sense that given any other
Lie algebra L and a mapping ī : X → L, there exists a unique Lie al-
gebra homomorphism ρ : L(X) → L such that ī = ρ ◦ i, where i is
the natural injection of X into L(X) (see Figure 5.2). So in particu-
lar, there exists a unique Lie algebra homomorphism taking the free
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ī ρ

✲X L(X )
i

L

❅
❅
❅
❅
❅❘

�
�

�
��✠

Fig. 5.2. The Lie algebra homomorphism taking the free Lie algebra L(X) into L.

Lie algebra L(X) into the Lie algebra associated with R〈X〉. More-
over, R〈X〉 is the enveloping algebra of L(X). Some examples of Lie
polynomials include:

p0 = [xi, xi] = 0

p1 = x0

p2 = x1

p3 = [x0, x1] = x0x1 − x1x0

p4 = [x1, x0] = −p3
p5 = [x0, [x0, x1]] = x20x1 − 2x0x1x0 + x1x

2
0

p6 = [x0, [x1, x0]] = −p5
p7 = [x1, [x1, x0]] = x21x0 − 2x1x0x1 + x0x

2
1

p8 = [x1, [x0, x1]] = −p7
...

and their linear combinations.

Example 5.3 Suppose X∗ is ordered lexicographically with xi <
xi+1. A word η ∈ X+ is called a Lyndon word if all factorizations
η = ξν with ξ, ν ∈ X+ have the property that η < νξ. Let L de-
note the set of all Lyndon words. For example, if X = {x0, x1}, then
L = {x0, x1, x0x1, x20x1, x0x21, x30x1, x20x21, x0x31, . . .}.1 Any word η ∈ L
can be written as a product of two words l, l′ ∈ L with l < l′. For
example,

x20x
2
1 = (x0)(x0x

2
1) = (x20x1)(x1).

1 Note this list is not lexicographically ordered, e.g., x1 > x0x1.
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A factorization η = ll′ is called standard when l′ has maximal length.
Standard factorizations are known to be unique. Thus, (x0)(x0x

2
1) is

the unique standard factorization of x20x
2
1. Given any η ∈ L, let σ(η) =

(l, l′) denote its standard factorization. Define a mapping λ : L →
L(X) inductively by letting λ(xi) = xi when xi ∈ X and

λ(η) = [λ(l), λ(l′)],

with σ(η) = (l, l′) for any η ∈ L\X. The following theorem is well
known in the theory of free Lie algebras.

Theorem 5.2 For any ordered X with Lyndon words L, λ(L) is an
ordered basis for L(X).

For example, all the Lie polynomials p1 to p8 above can be written
in terms of the basis λ(L):

p1 = x0 = λ(x0)

p2 = x1 = λ(x1)

p3 = [x0, x1] = λ(x0x1)

p4 = [x1, x0] = −λ(x0x1)

p5 = [x0, [x0, x1]] = [λ(x0), λ(x0x1)] = λ(x20x1)

p6 = [x0, [x1, x0]] = −λ(x20x1)

p7 = [x1, [x1, x0]] = [[x0, x1], x1] = [λ(x0x1), λ(x1)] = λ(x0x
2
1)

p8 = [x1, [x0, x1]] = −λ(x0x
2
1).

Since Lie polynomials play a central role in this chapter, it is im-
portant to develop some tests to determine when a given p ∈ R〈X〉 is
also in L(X). It is easily verified that if p ∈ L(X), then p is proper,
i.e., (p, ∅) = 0 (see Problem 5.1.2). So consider the subspace Rp〈X〉 ⊂
R〈X〉 of all proper polynomials. Suppose X = {x0, x1, . . . , xm} and
X ′ = {x′0, x′1 . . . , x′m} are two distinct alphabets. Define X + X ′ =
{x0 + x′0, x1 + x′1, . . . , xm + x′m}, which can be thought of simultane-
ously as both an alphabet and the set of polynomials over X ∪X ′. Let
p(X), p(X ′) and p(X +X ′) denote a polynomial p over the respective
alphabets X, X ′, and X + X ′. The following theorem provides one
characterization of a Lie polynomial.
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Theorem 5.3 (Friedrichs’ Criterion) A polynomial p ∈ Rp〈X〉 is a
Lie polynomial if and only if

p(X +X ′) = p(X) + p(X ′), (5.5)

where the letters in X commute with those in X ′.

Before pursuing the proof of this important theorem, some exam-
ples and preliminary results are presented.

Example 5.4 Suppose X0 = {x0} so that L(X0) = span{x0}. In light
of the above theorem, the polynomial p = (p, x0)x0 should satisfy
identity (5.5), and indeed

p(X0 +X ′0) = (p, x0)(x0 + x′0)

= (p, x0)x0 + (p, x0)x
′
0

= p(X0) + p(X ′0),

using the natural correspondence between x0 and x′0. On the other
hand, clearly p = (p, x20)x20 6∈ L(X0), and, as expected,

p(X0 +X ′0) = (p, x20)(x0 + x′0)
2

= (p, x20)[x20 + 2x0x
′
0 + (x′0)2]

6= (p, x20)x20 + (p, x20)(x′0)2

= p(X0) + p(X ′0).

What is true, however, is that

p(X0 +X ′0) = (p, x20)x20 + (p, x0 ⊔⊔ x0)x0x
′
0 + (p, x20)(x′0)2.

In this form it is evident that this p would have been a Lie polynomial
if it had been the case that (p, x0 ⊔⊔ x0) = 0. This observation motivates
the following theorem.

Theorem 5.4 (Ree’s Criterion) A polynomial p ∈ Rp〈X〉 satisfies
(5.5) if and only if

(p, ξ ⊔⊔ ν) = 0, ∀ξ, ν ∈ X+. (5.6)
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Proof: Suppose it can be shown that for any polynomial p

p(X +X ′) =
∞∑

n=0

∑

xin ···xi1
∈Xn

x′
in

···x′
i1

∈(X′)n

(p, xin · · · xi1)(xin + x′in) · · · (xi1 + x′i1)

=
∑

ξ∈X∗

ν′∈(X′)∗

(p, ξ ⊔⊔ ν) ξν ′, (5.7)

where ν always denotes the unique word in X∗ associated with ν ′ ∈
(X ′)∗. If (5.6) also holds, then directly

p(X +X ′) =
∑

ξ∈X∗

ν′∈(X′)∗

(p, ξ ⊔⊔ ν) ξν ′

=
∑

ξ∈X+

(p, ξ) ξ +
∑

ν′∈(X′)+

(p, ν) ν ′

= p(X) + p(X ′),

i.e., (5.5) is satisfied. Conversely, if (5.5) holds then via (5.7) observe

p(X +X ′) =
∑

ξ∈X+

(p, ξ) ξ +
∑

ν′∈(X′)+

(p, ν) ν ′

=
∑

ξ∈X∗

ν′∈(X′)∗

(p, ξ ⊔⊔ ν) ξν ′,

implying that (5.6) must be true.
So consider the following inductive proof of (5.7) using word length.

Specifically, it will be shown for each n ≥ 0 that
∑

xin ···xi1
∈Xn

x′
in

···x′
i1

∈(X′)n

(p, xin · · · xi1)(xin + x′in) · · · (xi1 + x′i1)

=

n∑

j=0

∑

ξ∈Xj

ν′∈(X′)n−j

(p, ξ ⊔⊔ ν) ξν ′,

from which (5.7) follows immediately. The identity above is trivial
when n = 0. When n = 1, clearly

∑

xi∈X, x′i∈X
′

(p, xi)(xi + x′i) =
∑

xi∈X

(p, xi ⊔⊔ ∅)xi +
∑

x′i∈X
′

(p, ∅ ⊔⊔ xi)x
′
i.
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Now suppose the claim holds up to some fixed n ≥ 0. Then

∑

xin+1
···xi1

∈Xn+1

x′
in+1

···x′
i1

∈(X′)n+1

(p, xin+1 · · · xi1)(xin+1 + x′in+1
) · · · (xi1 + x′i1)

=
∑

xin+1
∈X

xin+1

∑

xin ···xi1
∈Xn

x′
in

···x′
i1

∈(X′)n

(x−1in+1
(p), xin · · · xi1)

(xin + x′in) · · · (xi1 + x′i1)+
∑

xi′n+1
∈X′

x′in+1

∑

xin ···xi1
∈Xn

x′
in

···x′
i1

∈(X′)n

(x−1in+1
(p), xin · · · xi1)

(xin + x′in) · · · (xi1 + x′i1)

=
∑

xin+1
∈X

xin+1

n∑

j=0

∑

ξ∈Xj

ν′∈(X′)n−j

(x−1in+1
(p), ξ ⊔⊔ ν) ξν ′+

∑

x′in+1
∈X′

x′in+1

n∑

j=0

∑

ξ∈Xj

ν′∈(X′)n−j

(x−1in+1
(p), ξ ⊔⊔ ν) ξν ′

=
∑

xin+1
∈X

n∑

j=0

∑

ξ∈Xj

ν′∈(X′)n−j

(p, xin+1(ξ ⊔⊔ ν))xin+1ξν
′ +

∑

x′in+1
∈X′

n∑

j=0

∑

ξ∈Xj

ν′∈(X′)n−j

(p, xin+1(ξ ⊔⊔ ν)) ξx′in+1
ν ′.

In the boxed set of summations directly above, the j = n term is
now pulled out separately. In the remaining summation from j = 0
to j = n − 1, the word ν ′ is never empty. So its leading letter x′in is
factored to the left to give

∑

xin+1
∈X

ξ∈Xn

(p, xin+1(ξ ⊔⊔ ∅))xin+1ξ+

∑

xin+1
∈X

x′
in

∈X′

n−1∑

j=0

∑

ξ∈Xj

ν′∈(X′)n−1−j

(p, xin+1(ξ ⊔⊔ xinν))xin+1ξx
′
inν
′. (5.8)



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

5.1 Lie Polynomials 287

Similarly, a dual procedure is applied to the second set of summations,
but it is the j = 0 term that is set aside to produce

∑

x′
in+1

∈X′

ν′∈(X′)n

(p, xin+1(∅ ⊔⊔ ν))x′in+1
ν ′+

∑

xin∈X

x′
in+1

∈X′

n∑

j=1

∑

ξ∈Xj−1

ν′∈(X′)n−j

(p, xin+1(xinξ ⊔⊔ ν))xinξx
′
in+1

ν ′.

In this last set of summations, the symbol xin is now renamed xin+1 ,
xin+1 (x′in+1

) is renamed xin (x′in), and the sum over j is re-indexed to
run from j = 0 to j = n− 1 so that the expression becomes

∑

x′
in+1

∈X′

ν′∈(X′)n

(p, xin+1(∅ ⊔⊔ ν))x′in+1
ν ′+

∑

xin+1
∈X

x′
in

∈X′

n−1∑

j=0

∑

ξ∈Xj

ν′∈(X′)n−1−j

(p, xin(xin+1ξ ⊔⊔ ν))xin+1ξx
′
inν
′. (5.9)

Next observe that (5.8) and (5.9) can be directly combined to give

∑

xin+1
∈X

ξ∈Xn

(p, xin+1(ξ ⊔⊔ ∅))xin+1ξ+

∑

xin+1
∈X

x′
in

∈X′

n−1∑

j=0

∑

ξ∈Xj

ν′∈(X′)n−1−j

(p, (xin+1ξ) ⊔⊔ (xinν))xin+1ξx
′
inν
′+

∑

x′
in+1

∈X′

ν′∈(X′)n

(p, xin+1(∅ ⊔⊔ ν))x′in+1
ν ′.

Therefore, when these three sets of summations are recombined, it
follows that

∑

xin+1
···xi1

∈Xn+1

x′
in+1

···x′
i1

∈(X′)n+1

(p, xin+1 · · · xi1)(xin+1 + x′in+1
) · · · (xi1 + x′i1)
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=
n+1∑

j=0

∑

ξ∈Xj

ν′∈(X′)n+1−j

(p, ξ ⊔⊔ ν) ξν ′

and desired, and thus, the identity in question holds for all n ≥ 0.

The proof of Theorem 5.3 requires the following two lemmas. Both
utilize two R-linear mappings defined on Rp〈X〉, namely,

̺(xi) = xi, xi ∈ X (5.10)

̺(xiξxj) = xi̺(ξxj) − xj̺(xiξ), xi, xj ∈ X, ξ ∈ X∗ (5.11)

and

λ(xi) = xi, xi ∈ X (5.12)

λ(xiξ) = [xi, λ(ξ)], xi ∈ X, ξ ∈ X+. (5.13)

Clearly, ̺ : Rp〈X〉 → Rp〈X〉, and λ : Rp〈X〉 → L(X) with λ(xi1xi2 · · · xik) =
adxi1 adxi2 · · · adxik−1

(xik).

Lemma 5.1 For any η ∈ Xn with n > 0

nη =
∑

η=ξν
ξ 6=∅

̺(ξ) ⊔⊔ ν.

Proof: Suppose n = 1. Trivially, if η = xi1 then

∑

ξ=xi1 , ν=∅

̺(ξ) ⊔⊔ ν = 1xi1 .

Likewise, when n = 2 and η = xi2xi1 ,

∑

ξ=xi2
xi1

, ν=∅

ξ=xi2
, ν=xi1

̺(ξ) ⊔⊔ ν = ̺(xi2xi1) ⊔⊔ ∅ + ̺(xi2) ⊔⊔ xi1

= (xi2xi1 − xi1xi2) + (xi2xi1 + xi1xi2)

= 2xi2xi1 .

Now suppose the claim holds up to some fixed n − 1 > 0. If η =
xinxin−1 · · · xi1 then for any xk ∈ X it follows from the linearity and
derivation property of the left-shift operator (Theorem 2.5) that
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x−1k



∑

η=ξν
ξ 6=∅

̺(ξ) ⊔⊔ ν




= x−1k (̺(xin) ⊔⊔ (xin−1 · · · xi1)) + x−1k




n∑

j=2

∑

η=ξν

ξ∈Xj, ν∈Xn−j

̺(ξ) ⊔⊔ ν




= δkin(xin−1 · · · xi1) + xin ⊔⊔ δkin−1(xin−2 · · · xi1)+
n∑

j=2

∑

xin ···xin−j+1
∈Xj

xin−j
···xi1

∈Xn−j

x−1k (̺(xin · · · xin−j+1)) ⊔⊔ (xin−j · · · xi1)+

̺(xin · · · xin−j+1) ⊔⊔ x−1k (xin−j · · · xi1)

= δkin(xin−1 · · · xi1) +
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

xin ⊔⊔ δkin−1(xin−2 · · · xi1)+

j=2





δkin̺(xin−1) ⊔⊔ (xin−2 · · · xi1) −

✭
✭
✭
✭
✭
✭
✭
✭
✭

✭
✭
✭✭

δkin−1xin ⊔⊔ (xin−2 · · · xi1)+
̺(xinxin−1) ⊔⊔ δkin−2(xin−3 · · · xi1)+

j=3





δkin̺(xin−1xin−2) ⊔⊔ (xin−3 · · · xi1) −
δkin−2̺(xinxin−1) ⊔⊔ (xin−3 · · · xi1)+
̺(xinxin−1xin−2) ⊔⊔ δkin−3(xin−4 · · · xi1)−

...

j=n−1

{
δkin̺(xin−1 · · · xi2) ⊔⊔ xi1 − δki2̺(xin · · · xi3) ⊔⊔ xi1+

̺(xin · · · xi2) ⊔⊔ δki1−
j=n

{
δkin̺(xin−1 · · · xi1) − δki1̺(xin · · · xi2)

= δkin
[
(xin−1 · · · xi1) + ̺(xin−1) ⊔⊔ (xin−2 · · · xi1)+

̺(xin−1xin−2) ⊔⊔ (xin−3 · · · xi1) + · · ·+
̺(xin−1 · · · xi2) ⊔⊔ xi1 + ̺(xin−1 · · · xi1)

]

= δkin


(xin−1 · · · xi1) +

n−1∑

j=1

∑

η=ξν

ξ∈Xj,ν∈Xn−1−j

̺(ξ) ⊔⊔ ν


 .

The boxed terms above are those that remain after cancellation. (The
first cancellation is shown explicitly.) Applying the induction hypoth-
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esis gives

x−1k



∑

η=ξν
ξ 6=∅

̺(ξ) ⊔⊔ ν


 = δkin

[
(xin−1 · · · xi1) + (n− 1)(xin−1 · · · xi1)

]

= x−1k (nη).

This implies that

x−1k


nη −

∑

η=ξν
ξ 6=∅

̺(ξ) ⊔⊔ ν


 = 0, ∀xk ∈ X.

Therefore,

nη =
∑

η=ξν
ξ 6=∅

̺(ξ) ⊔⊔ ν

(see Problem 2.2.3(b)) for the given value of n, and thus, by induction,
for all n > 0.

Lemma 5.2 For any p ∈ R〈X〉 of degree n > 0

∑

η∈Xn

(p, ̺(η))η =
∑

η∈Xn

(p, η)λ(η). (5.14)

Proof: It is sufficient to prove the lemma for the case where p is any
monomial ν of degree n. In which case, identity (5.14) is equivalent to
the condition

(ν, ̺(ξ)) = (λ(ν), ξ), ∀ξ, ν ∈ Xn (5.15)

(see also Problem 5.1.3). This equality is trivially true when n = 1.
Suppose it holds up to some fixed n ≥ 1. Then for any x ∈ X, ν ∈ Xn

and ξ ∈ Xn+1:

(λ(xν), ξ) = ([x, λ(ν)], ξ)

= (xλ(ν), ξ) − (λ(ν)x, ξ)

= (λ(ν), x−L(ξ)) − (λ(ν), x−R(ξ))

= (ν, ̺(x−L(ξ))) − (ν, ̺(x−R(ξ)))

= (ν, x−1(̺(ξ)))
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= (xν, ̺(ξ)).

Here x−L(·) is the usual left-shift operator, and x−R(·) is its right-shift
counterpart. The property

x−1(̺(ξ)) = ̺(x−L(ξ) − x−R(ξ)), x ∈ X, ξ ∈ Xk, k ≥ 2 (5.16)

has also been used (see Problem 5.1.4).

Now the proof of Friedrichs’ criterion can be presented.
Proof of Theorem 5.3: Consider first the only if direction. Assume that
p is a Lie polynomial of degree n = 1. Then trivially,

p(X) + p(X ′) =
∑

x∈X

(p, x)x +
∑

x′∈X′

(p, x′)x′

=
∑

x∈X

(p, x) (x + x′)

= p(X +X ′).

Now assume the identity (5.5) holds up to some fixed n ≥ 1, and
suppose p is a Lie polynomial of degree n+1. Clearly p can be written
as a linear combination of polynomials of the form pipj − pjpi, where
pi and pj are Lie polynomials of degree i and j, respectively, with
1 ≤ i, j ≤ n. It therefore follows from the induction hypothesis that

pi(X +X ′)pj(X +X ′) − pj(X +X ′)pi(X +X ′)

= (pi(X) + pi(X
′))(pj(X) + pj(X

′))

− (pj(X) + pj(X
′))(pi(X) + pi(X

′))

= [pi(X)pj(X) − pj(X)pi(X)] +
[
pi(X

′)pj(X
′) − pj(X

′)pi(X
′)
]
.

Thus, equality (5.5) must hold for any Lie polynomial of degree n+ 1,
and, by induction, for any Lie polynomial.

Conversely, suppose identity (5.5) holds, or equivalently, that iden-
tity (5.6) is satisfied by p. First assume that supp(p) ⊆ Xn, n > 0.
Using identity (5.6) and Lemma 5.1, it follows for any η ∈ Xn that

(p, ̺(η)) = (p, ̺(η)) +
∑

η=ξν
ξ 6=∅,ν 6=∅

(p, ̺(ξ) ⊔⊔ ν)

=
∑

η=ξν
ξ 6=∅

(p, ̺(ξ) ⊔⊔ ν)
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= (p, nη)

= n(p, η).

In which case, applying Lemma 5.2, p is a Lie polynomial since

np =
∑

η∈Xn

n(p, η)η

=
∑

η∈Xn

(p, ̺(η))η

=
∑

η∈Xn

(p, η)λ(η). (5.17)

Now assume that p is an arbitrary polynomial of degree ℓ > 0 satisfying
(5.6). Then clearly,

p =
ℓ∑

n=1

∑

η∈Xn

(p, η)η =
ℓ∑

n=1

1

n

∑

η∈Xn

(p, η)λ(η). (5.18)

In other words, when a Lie polynomial is decomposed into it homoge-
neous components p =

∑ℓ
n=1 pn, each pn is a Lie polynomial according

to (5.17). The latter is usually called the Dynkin-Specht-Wever Theo-
rem.

The following theorem provides a summary of all the characteriza-
tions of Lie polynomials developed above.

Theorem 5.5 The following statements are equivalent:

i. p is a Lie polynomial;

ii. p(X +X ′) = p(X) + p(X ′);

iii. (p, ξ ⊔⊔ ν) = 0 for all ξ, ν ∈ X+;

iv. p =
∑ℓ

n=1
1
n

∑
η∈Xn(p, η)λ(η), ℓ = deg(p) > 0;

v. sh∗(p) = p⊗ 1 + 1⊗ p,

where the letters of X commute with the letters of X ′, and sh∗(·) is
defined by equation (2.16).

Item v is also called Friedrichs’ criterion, as it is basically stating
the same additive property ii in a different notation. That is, the
commuting letters xi ∈ X and x′j ∈ X ′ are mapped to xi ⊗ 1 and
1⊗ xj , respectively, whereupon
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(xi ⊗ 1)(1⊗ xj) = (xi ⊗ xj) = (1⊗ xj)(xi ⊗ 1)

even though the letters xi and xj do not commute. This will become
more evident in the following proof.

Proof: Only the following equivalences remain to be verified:
i ∼ iv: If statement iv holds then trivially statement i is true. Con-
versely, if statement i holds then iv is true in light of the second half
of the proof of Theorem 5.3, namely, equation (5.18).
iii ∼ v: Suppose statement iii holds. Then for any η, ξ ∈ X+ observe

(sh∗(p), η ⊗ ξ) = (p, sh(η ⊗ ξ))

= (p, η ⊔⊔ ξ)

= 0.

Thus,

sh∗(p) =
∑

η,ξ∈X∗

(sh∗(p), η ⊗ ξ) η ⊗ ξ

=
∑

η∈X∗

(sh∗(p), η ⊗ 1) η ⊗ 1 +
∑

ξ∈X∗

(sh∗(p),1⊗ ξ)1⊗ ξ

=
∑

η∈X∗

(p, η) (η ⊗ 1) +
∑

ξ∈X∗

(p, ξ) (1⊗ ξ)

= p⊗ 1 + 1⊗ p,

using the identity

(sh∗(p), η ⊗ 1) = (p, sh(η ⊗ 1))

= (p, η ⊔⊔ 1)

= (p, η).

The converse claim can be proved by making the above argument in
reverse order (see Problem 5.1.5).

The following result, which will used in Section 6.1, is a generaliza-
tion of Ree’s criterion.

Lemma 5.3 If ci ∈ Rp〈X〉, i = 1, 2, . . . , ℓ and pj, j = 1, 2, . . . , n are
Lie polynomials in L(X) with ℓ > n, then

(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ cℓ, p1p2 · · · pn) = 0.
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Proof: From the identity (2.24) it is clear that

(c1 ⊔⊔ c2 ⊔⊔ · · · cℓ, p1p2 · · · pn)

= (c1 ⊗ c2 ⊗ · · · ⊗ cℓ, sh
∗
ℓ(p1p2 · · · pn))

= (c1 ⊗ c2 ⊗ · · · ⊗ cℓ, sh
∗
ℓ(p1)sh∗ℓ(p2) · · · sh∗ℓ(pn))

=


c1 ⊗ c2 ⊗ · · · ⊗ cℓ,

ℓ∑

i1,...,in=1

p⊗i11 p⊗i22 · · · p⊗inn




=
ℓ∑

i1,...,in=1

(
c1 ⊗ c2 ⊗ · · · ⊗ cℓ, p

⊗i1
1 p⊗i22 · · · p⊗inn

)

=
ℓ∑

i1,...,in=1

(
c1, p

δ1,i1
1 p

δ1,i2
2 · · · pδ1,inn

)
· · ·

(
cℓ, p

δℓ,i1
1 p

δℓ,i2
2 · · · pδℓ,inn

)
. (5.19)

Each term in the summation above can be interpreted combinatorially
as a placement of the n polynomials p1, p2, . . . , pn into ℓ bins labeled
c1, c2, . . . , cℓ. More than one polynomial can go into a bin. For example,
a typical term when ℓ = 4 and n = 3 is

(c1 ⊗ c2 ⊗ c3 ⊗ c4, p
⊗3
1 p⊗22 p⊗23 ) = (c1,1)(c2, p2p3)(c3, p1)(c4,1).

In this analogy, the empty bins contain only the trivial polynomial 1.
The key observation is that since there are more bins than polynomials,
at least one bin will always be empty, i.e, every term in the summation
above will always have a factor of the form (ci,1). But, by assumption,
the series ci, i = 1, 2, . . . , ℓ are proper. Hence, (ci,1) = 0 for every i,
and the theorem is proved.

5.2 Lie Series and Exponential Lie Series

One way to introduce the notion of a Lie series is as a generalization
of item iv in Theorem 5.5 for Lie polynomials as presented in the
previous section. There it was shown that every Lie polynomial can be
decomposed into a sum of its homogeneous components, where each
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component is a Lie polynomial. A Lie series, loosely speaking, is this
idea taken to the limit.2

Definition 5.2 A series d ∈ R〈〈X〉〉 is called a Lie series if it can be
decomposed as d =

∑
n≥1 pn, where each pn is a Lie polynomial whose

support resides in Xn.

The set of all Lie series will be denoted by L̂(X). It clearly forms a Lie
algebra under the bracket operation [d, d̃] = dd̃− d̃d. In light of Defini-
tion 5.2, one can characterize a Lie series in ways that are completely
analogous to those given in Theorem 5.5 for Lie polynomials.

Theorem 5.6 The following statements are equivalent:

i. d is a Lie series;

ii. d(X +X ′) = d(X) + d(X ′);

iii. (d, ξ ⊔⊔ ν) = 0 for all ξ, ν ∈ X+;

iv. d =
∑

n≥1
1
n

∑
η∈Xn(d, η)λ(η),

v. sh∗(d) = d⊗ 1 + 1⊗ d,

where the letters of X commute with the letters of X ′, and sh∗(·) is
defined by equation (2.16).

Example 5.5 Let X be an arbitrary alphabet with xi, xj ∈ X. The
series

d = xj + [xi, xj] +
1

2!
[xi, [xi, xj ]] +

1

3!
[xi, [xi, [xi, xj ]]] + · · · ,

is a Lie series by design.

In Example 2.13, it was shown that if d is any proper series then
the exponential series

ed :=

∞∑

k=0

dk

k!

is well defined. Exponential series retain many of the familiar proper-
ties of exponential functions, for example, ed = 1 if and only if d = 0,
log(ed) = d, and elog(1+d) = 1+d, where log(1+d) :=

∑∞
i=1(−1)i−1di/i

2 This limit is called the Malcev completion of L(X) and can be defined precisely
in terms of a grading on L(X). See the bibliographic notes at the end of the
chapter for more information.
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(see Problem 5.2.1). But it can be easily verified by counterexample

that the familiar property eded̃ = ed+d̃ is not true without significant
restriction.

Theorem 5.7 Suppose d, d̃ are proper series in R〈〈X〉〉. If [d, d̃] = 0,
then:

i. eded̃ = ed+d̃;

ii. eded̃ = ed̃ed;

iii. log((1 + d)(1 + d̃)) = log(1 + d) + log(1 + d̃).

Proof:
i. Observe that

eded̃ =
∞∑

i,j=0

di

i!

d̃j

j!
,

so that if k = i+ j, then

eded̃ =

∞∑

k=0

k∑

i=0

di

i!

d̃k−i

(k − i)!

=
∞∑

k=0

1

k!

k∑

i=0

(
k

i

)
did̃k−i.

By assumption dd̃ = d̃d. Hence, the binomial theorem yields

(d+ d̃)k =
k∑

i=0

(
k

i

)
did̃k−i

for any k ≥ 0. In which case,

eded̃ =

∞∑

k=0

(d+ d̃)k

k!
= ed+d̃.

ii. This identity follows directly from i since d+ d̃ = d̃+ d.
iii. This identity follows from i and the elementary properties of ex-
ponential series. Observe:

log((1 + d)(1 + d̃)) = log
(

elog(1+d)elog(1+d̃)
)

= log
(

elog(1+d)+log(1+d̃)
)
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= log(1 + d) + log(1 + d̃),

using the fact that log(1 + d) and log(1 + d̃) commute since d and d̃
commute.

The following class of series appear naturally in the context of dif-
ferential equations.

Definition 5.3 A series c is called an exponential Lie series when
c = ed, where d is a Lie series.

Theorems 5.6 and 5.7 can be used to provide a set of characteriza-
tions for exponential Lie series.

Theorem 5.8 The following statements are equivalent:

i. c is an exponential Lie series;

ii. c(X +X ′) = c(X)c(X ′);

iii. (c, ξ ⊔⊔ ν) = (c, ξ)(c, ν) for all ξ, ν ∈ X∗,

where the letters of X commute with the letters of X ′.

Proof:
i ∼ ii: In light of the proof of Theorem 5.7, part iii, statement ii above
implies that

log(c(X +X ′)) = log(c(X)c(X ′))

= log(c(X)) + log(c(X ′)),

using the fact that c(X)c(X ′) = c(X ′)c(X). From Theorem 5.6 then
log(c) is a Lie series, and thus, c = elog(c) is an exponential Lie series.
Conversely, if statement i is true then from Theorems 5.6 and 5.7 there
exists a Lie series d so that

c(X +X ′) = ed(X+X′)

= ed(X)+d(X′)

= ed(X)ed(X
′)

= c(X)c(X ′).

Therefore, statement ii holds.
ii ∼ iii: Note that statement iii implies, using a direct generalization
of identity (5.7), that the series



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

298 5. Lie Series and Universal Representations

c(X +X ′) =
∑

ξ∈X∗

ν′∈(X′)∗

(c, ξ ⊔⊔ ν ′) ξν ′

=


∑

ξ∈X∗

(c, ξ) ξ




 ∑

ν′∈(X′)∗

(c, ν ′) ν ′




= c(X)c(X ′),

which proves that statement ii is true. The steps above are all re-
versible, so the converse claim holds as well (see Problem 5.2.2).

Example 5.6 Suppose X0 = {x0}, and c ∈ R[[X0]] with (c, ∅) = 1
and (c, ξ ⊔⊔ ν) = (c, ξ)(c, ν) for all ξ, ν ∈ X∗0 . Then using the identity

xi0 ⊔⊔ xj0 =

(
i+ j

i

)
xi+j0 , i, j ≥ 0

(see Problem 2.4.5(b)), it follows that

(c, xi0)(c, xj0) = (c, xi0 ⊔⊔ xj0) =

(
i+ j

i

)
(c, xi+j0 ).

Setting i = n ≥ 0 and j = 1 yields the difference equation

(c, xn+1
0 ) =

(c, x0)

n+ 1
(c, xn0 ),

whose solution for the initial condition (c, x00) = (c, ∅) = 1 is

(c, xn0 ) =
(c, x0)n

n!
, n ≥ 0.

Thus, as predicted by Theorem 5.8, it follows that c is an exponential
Lie series, in this case

c =
∞∑

n=0

(c, x0)n

n!
xn0 = e(c,x0)x0

= ep,

where p = (c, x0)x0 ∈ L(X0).
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Example 5.7 Let X be an arbitrary alphabet with xi, xj ∈ X being
distinct letters. Clearly, exi and exj are exponential Lie series, but by
assumption [xi, xj ] 6= 0. Therefore, log(exiexj ) is not equivalent to the
Lie polynomial xi +xj . Nevertheless, log(exiexj ) is a Lie series. To see
this, observe from Theorem 5.8 that

exi+x
′
i = exiex

′
i

exj+x
′
j = exjex

′
j .

Since the letters of X commute with the letters in X ′:

exi+x
′
iexj+x

′
j = exiex

′
i · exjex

′
j

= exiexj · ex
′
iex

′
j .

Thus, another application of Theorem 5.8 implies that exiexj must be
an exponential Lie series. The series log(exiexj ) is called the Hausdorff
series. The first few terms can be determined by direct computation
to be

log(exiexj ) = (xi + xj) +
1

2
[xi, xj]+

1

12
[[xi, xj ], xj ] +

1

12
[xi, [xi, xj ]] + · · · (5.20)

(see Problem 5.2.3) from which it is now obvious that log(exiexj ) =
xi + xj would be true if [xi, xj ] = 0. Expression (5.20) is known as the
Campbell-Baker-Hausdorff formula.

Example 5.8 Given any xi, xj ∈ X, define the iterated ad operator
by

adn+1
xi (xj) = [xi, adnxi(xj)], n ≥ 0,

where ad0
xi(xj) = xj. It is easily verified by induction that

adnxi(xj) =

n∑

k=0

(
n

k

)
xki xj(−xi)n−k, n ≥ 0 (5.21)

(see Problem 5.2.4). In which case,

eadxi (xj) :=

∞∑

n=0

adnxi(xj)
1

n!
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=

∞∑

n=0

n∑

k=0

(
n

k

)
xki xj(−xi)n−k

1

n!

=

∞∑

n,k=0

xni
n!
xj

(−xi)k
k!

= exixj e−xi .

(See also Problem 5.2.5.) The composition of two such maps yields

eadxi eadxj (xk) = exieadxj (xk)e−xi = exiexjxke−xje−xi . (5.22)

It is clear that eadxi : X → L̂(X) can be extended to an R-linear
mapping eadxi : L̂(X) → L̂(X). Furthermore, given any series c ∈
R〈〈X〉〉, both adc and eadc can be defined in a completely analogous
fashion.

The most common occurrence of exponential Lie series is in the con-
text of differential equations. Recall that the linear differential equa-
tion

dz

dt
= Az, z(0) = z0,

where A ∈ Rn×n, has the solution z(t) = eAtz0, t ≥ 0. The matrix
exponential is defined by

eAt =

∞∑

n=0

An
tn

n!

and is differentiable with respect to t. Specifically,

d

dt
eAt = AeAt = eAtA.

To describe a generalization of this concept, first consider the power
series in one variable

ex − 1

x
= 1 +

x

2!
+
x2

3!
+ · · ·

=

∞∑

n=0

xn

(n+ 1)!
.

As with the matrix exponential, this series still makes mathematical
sense when x is replaced by any linear operator, for example, adc, if
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powers are interpreted in terms of operator composition. This nota-
tional device provides a compact way of expressing a differentiation
formula for the exponential series eU(t), where U is a family of formal
power series in R〈〈X〉〉 parameterized by t ∈ [0,∞). In the most gen-
eral context, U(t) is not necessarily a Lie series, but it is assumed to
be differentiable in the sense that (U, η) : [0,∞) → R is differentiable
for each η ∈ X∗.

Theorem 5.9 For any differentiable mapping U : [0,∞) → R〈〈X〉〉

d

dt
eU =

eadU − I

adU

(
dU

dt

)
eU

=

∞∑

n=0

adnU

(
dU

dt

)
1

(n+ 1)!
eU .

Proof: For brevity, let U = a and dU/dt = b. It is first shown by
induction that

d

dt
Un =

n∑

k=1

(
n

k

)
adk−1a (b) an−k, n ≥ 1.

This formula reduces for commutative series to nan−1b. The n = 1
cases is immediate. Suppose the identity holds up to some fixed n ≥ 1.
Then

d

dt
Un+1 =

d

dt
UUn

= ban +
n∑

k=1

(
n

k

)
a adk−1a (b) an−k.

Since
a adk−1a (b) = [a, adk−1a (b)] + adk−1a (b) a,

it follows directly that

d

dt
Un+1 = ban +

n∑

k=1

(
n

k

)
adka(b) a

n−k +

n∑

k=1

(
n

k

)
adk−1a (b) an+1−k

= ban +

n+1∑

k=2

(
n

k − 1

)
adk−1a (b) an+1−k+
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n∑

k=1

(
n

k

)
adk−1a (b) an+1−k

= ban +

n∑

k=2

[(
n

k − 1

)
+

(
n

k

)]
adk−1a (b) an+1−k+

(
n

n

)
adna(b) +

(
n

1

)
ban

=

(
n+ 1

n+ 1

)
adna(b) +

n∑

k=2

(
n+ 1

k

)
adk−1a (b) an+1−k+

(
n+ 1

1

)
ban

=

n+1∑

k=1

(
n+ 1

k

)
adk−1a (b) an+1−k.

Hence, the identity in question holds for all n ≥ 1. Since dU0/dt = 0,
observe that

d

dt
eU =

∞∑

n=0

d

dt
Un

1

n!

=

∞∑

n=1

[
n∑

k=1

(
n

k

)
adk−1a (b) an−k

]
1

n!

=

∞∑

n=1

n∑

k=1

adk−1a (b)
1

k!

an−k

(n− k)!

=
∞∑

n=0

adna(b)
1

(n + 1)!

∞∑

k=0

ak

k!

=
∞∑

n=0

adnU

(
dU

dt

)
1

(n+ 1)!
eU ,

and the theorem is proved.

Example 5.9 If xi ∈ X then

d

dt
etxi =

eadtxi − I

adtxi
(xi) etxi

=

{
xi +

1

2!
[xi, xi]t+

1

3!
[xi, [xi, xi]]t

2 + · · ·
}

etxi
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= xie
txi = etxixi.

It is clear that z(t) = etxi can be viewed as a solution to the formal
differential equation

dz

dt
= xiz, z(0) = 1,

as well as,
dz

dt
= zxi, z(0) = 1.

This is the model for the matrix exponential, where R-vector space
Rn×n is a Lie algebra under the bracketing operation [A,B] = AB −
BA.

Example 5.10 If xi, xj ∈ X then

d

dt
exi+txj

∣∣∣∣
t=0

=
eadxi − I

adxi
(xj) exi

=

{
xj +

1

2!
[xi, xj ] +

1

3!
[xi, [xi, xj ]] + · · ·

}
exi .

It can also be shown by an alternative formula that an equivalent
expression is

d

dt
exi+txj

∣∣∣∣
t=0

= exi
I − e−adxi

adxi
(xj)

= exi
{
xj −

1

2!
[xi, xj ] +

1

3!
[xi, [xi, xj ]] − · · ·

}

(see Problem 5.2.6). Unlike the previous example, there is no commu-
tativity between the factor exi and the Lie series that appear.

One immediate application of the differentiation formula in The-
orem 5.9 is providing a more explicit expression for the Campbell-
Baker-Hausdorff formula. The following corollary is helpful. It utilizes
the Bernoulli numbers Bn, n ≥ 0, which have the generating function

x

ex − 1
=

∞∑

n=0

Bn
xn

n!
.
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They are known to satisfy the recursion

n∑

i=0

(
n+ 1

i

)
Bi = 0, B0 = 1.

The first five Bernoulli numbers are 1, −1/2, 1/6, 0 and −1/30, and
Bn = 0 for all odd integers n ≥ 3.

Corollary 5.1 For any differentiable mapping U : [0,∞) → R〈〈X〉〉
and P = eU

dU

dt
=

adU
eadU − I

(
dP

dt
e−U

)

=
∞∑

n=0

adnU

(
dP

dt
e−U

)
Bn

n!
.

Proof: The result follows directly from Theorem 5.9 by noting that

(
eadU − I

adU

)−1
=

adU
eadU − I

and solving for dU/dt.

Theorem 5.10 For any xi, xj ∈ X

log(exiexj ) = xj +

∫ 1

0
g(etadxieadxj )(xi) dt,

where g(z) = log(z)/(z − I).

Proof: First note that if

P (t) := etxiexj = eU(t),

where U = log(P ), then

d

dt
P (t) = xie

txiexj = xie
U(t)

or
dP

dt
e−U = xi.

From the first identity in Corollary 5.1, it follows directly that
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dU

dt
=

adU
eadU − I

(xi). (5.23)

Now in light of (5.22) observe that

eadU(t)(xi) = eU(t)xie
−U(t)

= etxiexjxie
−xje−txi

= etxieadxj (xi)e
−txi

= (eadxie
1
t
adxj (xi))

t

= etadxieadxj (xi),

and therefore,

log(eadU(t)) = adU(t) = log(et adxi eadxj ).

Direct substitution of these identities into (5.23) gives

dU

dt
=

log(et adxi eadxj )

et adxi eadxj − I
(xi).

Integrating the above equation over [0, 1] and noting that U(1) =
log(exiexj) and U(0) = xj produces the desired result

log(exiexj ) = xj +

∫ 1

0
g(et adxieadxj )(xi) dt.

It is a straightforward exercise to expand g(x) and perform the
operations indicated in Theorem 5.10 to recover equation (5.20) (see
Problem 5.2.7).

5.3 Formal Power Series Groups

In this section, two special subsets of R〈〈X〉〉 are considered, each forms
a group. The first subset is called the Magnus group. Roughly speaking,
it is the ambient group in which all other groups of interest reside. It
is particularly useful for representing groups that are generated by a
finite set of free elements. In order to understand this idea precisely,
the notion of a free group will be introduced first. Its relationship to
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the free Lie algebra L(X) in Section 5.1 is not so important to the
main goal of this chapter, so that topic will not be pursued here. The
second set of formal power series to form a group is called the Malcev
group. It has a more direct relationship to the Lie algebra L̂(X). To
put this idea in perspective, the classical notion of a finite dimensional
Lie group will be reviewed first. The Malcev group can then be viewed
as an infinite dimensional generalization of this concept.

Let G be a group and E be any subset of G not containing the
identity element I. The set of all finite products

G(E) = {gk11 gk22 · · · gknn : gi ∈ E, ki = ±1, i = 1, 2 . . . n, n ≥ 0}

defines a subgroup of G if the n = 0 case is formally taken to represent
I. In this case, G(E) is said to be generated by E, and the elements of E
are call the generators. In the event that E contains r < ∞ elements,
G(E) is said to be finitely generated with rank r . An element g ∈
G(E) when expressed as g = gk11 g

k2
2 · · · gknn is in reduced form whenever

the terms gi and g−1i do not appear consecutively. For example, the
element g2g1g

−1
2 is reduced, while g2g1g

−1
1 is not. In general, one can

not preclude that the generators might be related in some manner. For
example, it is possible that g3g2 = g2g1. In which case, the identity
element I can be represented in terms of the nontrivial reduced form
g−13 g2g1g

−1
2 . A special nomenclature is reserved for any situation where

this can never happen.

Definition 5.4 A group F(E) is called free if there is no nontrivial
relation between the generators in E.

If the free group F(E) is finitely generated with rank r, then it will
be denoted by F(r). It is straightforward to see that every element in
a free group can be uniquely associated with a reduced element. The
following theorem provides a useful characterization of a free group.
The proof is left as an exercise to the reader (see Problem 5.3.1).

Theorem 5.11 A group F(E) is free if and only if the identity ele-
ment has no nontrivial reduced form.

An interesting fact is that F(r) can be represented naturally using
formal power series. The following theorem is required in order to verify
this claim. It describes a group GM (X) called the Magnus group.
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Theorem 5.12 Let X = {x0, x1, . . . , xm}. The set of formal power
series

GM (X) = {c ∈ R〈〈X〉〉 : (c, ∅) = 1}
is a group under the Cauchy product and a closed subset of R〈〈X〉〉 in
the ultrametric topology.

Proof: The Cauchy product of any two series in GM (X) is clearly in
GM (X). The identity element for the group is 1. Given any c ∈ GM (X),
one can always write c = 1+c′, where c′ is proper. In which case, c−1 =
1 +

∑
n≥1(−1)n(c′)n = (−c′)∗, which is again an element in GM (X).

Thus, the group structure is verified. To show that GM (X) is closed,
consider a sequence ci, i = 1, 2, . . . in GM (X) with the property that
limi→∞ ci = c in the ultrametric topology. Assume c is not in GM (X).
Clearly, for every i ≥ 1 it holds that ci = 1 + c′i, where c′i is proper.
But c has no such decomposition. Thus, dist(c, ci) = σord(c−ci) = 1 for
every i ≥ 1. This contradicts the assumption that c is a limit of the
sequence. Therefore, c ∈ GM (X), and hence, GM (X) is closed.

The next example shows how the free group F(m+1) can be viewed
as a subgroup of GM (X).

Example 5.11 Any set of generators for F(m + 1) can be identified
with the letters of the alphabet X. However, one can only generate an
arbitrary element of F(m+1) using X if symbols like x−1i are formally
assigned the property x−1i xi = xix

−1
i = 1. Otherwise, the symbol x−1i

has no intrinsic meaning in the context of formal power series. A more
convenient choice is to identity a generating set of F(m+ 1) with the
set of polynomials

E = {1 + x0,1 + x1, . . . ,1 + xm}.

In this case, an arbitrary (reduced) element gk1i1 g
k2
i2

· · · gknin ∈ F(m+ 1)
is uniquely associated with the formal power series

(1 + xi1)k1(1 + xi2)k2 · · · (1 + xin)kn .

Since (1+xi)(1+xi)
−1 = (1+xi)

−1(1+xi) = 1, it is evident that the
set of all such products of formal power series forms a group contained
in Z〈〈X〉〉 ∩ GM (X), where Z denotes the ring of integers. Consider
now the case where n = 3 so that

(1 + xi1)k1(1 + xi2)k2(1 + xi3)k3
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= 1 + k1xi1 + k2xi2 + k3xi3 + k1k2xi1xi2 + k1k3xi1xi3+

k2k3xi2xi3 + k1k2k3xi1xi2xi3 + c(xi1 , xi2 , xi3)

= 1,

where c(xi1 , xi2 , xi3) is a series with order strictly greater than 3. This
implies that k1k2k3 = 0 and thus at least one of the ki must be zero,
for example, k1 = 0. Then the right-hand side simplifies to

(1 + xi1)k1(1 + xi2)k2(1 + xi3)k3 .

= 1 + k2xi2 + k3xi3 + k2k3xi2xi3 + c(xi1 , xi2 , xi3)

= 1,

which implies that k2k3 = 0. So at least one of the remaining ki must
be zero, say k2 = 0. The right-hand side further reduces to

(1 + xi1)k1(1 + xi2)k2(1 + xi3)k3 = 1 + k3xi3 + c(xi1 , xi2 , xi3)

= 1,

so that k3 = 0. Therefore, the unit cannot have the nontrivial reduced
form (1+xi1)k1(1+xi2)k2(1+xi3)k3 . Extending this argument induc-
tively and applying Theorem 5.11, the group generated by E must be
a free subgroup of GM (X), one that is isomorphic to F(m + 1). Put
another way, the monoid homomorphism M : X∗ → Z〈〈X〉〉 ∩ GM (X)
defined by M(xi) = 1+xi can be uniquely extended to a group homo-
morphism M : F(m+ 1) → Z〈〈X〉〉 ∩ GM (X) by identifying generator
gi with 1 + xi and defining M(x−1i ) = (1 + xi)

−1. M is usually called
the Magnus transformation, and M(F(m+ 1)) represents F(m+ 1) in
terms of formal power series (see Problem 5.3.2).

The next theorem provides a generalization of the core idea de-
scribed in the previous example. Its proof involves the same type of
calculations, so it is left to the reader (see Problem 5.3.3).

Theorem 5.13 Let s : X → R〈〈X〉〉 such that ord(s(xi)) ≥ 2 for all
xi ∈ X. Then the group homomorphism taking F(m+ 1) into GM (X)
uniquely defined byM(xi) = 1+xi+s(xi) for every xi ∈ X is injective.

Example 5.12 If M(xi) = exi = 1+xi+x
2
i /2!+ · · · for every xi ∈ X,

then the free group F(m+1) can be described in terms of the subgroup
of GM (X) generated by
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E = {ex0 , ex1 , . . . , exm}.

A typical element of M(F(m + 1)) can be written as

g = ek1xi1 ek2xi2 · · · eknxin ,

where ki = ±1. From a direct generalization of the Campbell-Baker-
Hausdorff formula, it follows that log(g) is always a Lie series.

One of the most useful concepts in group theory is that of a Lie
group. Loosely speaking, a Lie group is a mathematical structure that
is simultaneously a group and a manifold in such a way that their
fundamental properties combine in a natural manner. The concept
has its roots in both algebra and geometry and is widely applied in
physics and system theory. The definition is given below.

Definition 5.5 A Lie group G is a group and a smooth finite dimen-
sional manifold such that the mappings G × G → G : (g, h) 7→ gh and
G → G : g 7→ g−1 are smooth.

With any Lie group G there is an associated Lie algebra L(G). To
see how this comes about, first select a fixed g ∈ G and define the
left translation map by Lg : G → G, h 7→ gh. In particular, note that
Lg maps the identity element I to g. Since Lg is differentiable, its
differential evaluated at h ∈ G is a linear map of the form

dLg : ThG → TghG,

where ThG denotes the tangent space of G at h, and TghG is the tangent
space of G at gh. A vector fieldX : G → T (G) is said to be left-invariant
when

dLg(Xh) = Xgh, ∀g, h ∈ G.
So, in particular, given any fixed v ∈ TIG, the vector field g 7→ Xv

g :=
dLg(v) is left-invariant. It is straightforward to show that the set of
all left-invariant vector fields on G forms a vector space over R. In
addition, if one defines the Lie bracket of any two vector fields X and
Y on G by [X,Y ] = XY − Y X, using the usual interpretation of a
vector field as a first-order differential operator X =

∑
i αi∂/∂zi with

each αi a differentiable real-valued function of z, then it follows that

[dLg(X), dLg(Y )] = dLg([X,Y ]). (5.24)
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Fig. 5.3. The Lie group G containing the integral curve Φv.

That is, the set of all left-invariant vector fields is invariant under
bracketing, and thus, defines a Lie algebra L(G) (see Problem 5.3.4).
The vector space L(G) is isomorphic to TIG, and therefore, the di-
mension of L(G) is the same as the dimension of G when viewed as a
manifold.

Given that L(G) can be identified with TIG, there is a natural way
to define the exponential mapping so that exp : L(G) → G. For any
vector v ∈ TIG, let Xv be the unique left-invariant vector field in L(G)
such that Xv

I = v. Consider, as shown in Figure 5.3, the corresponding
integral curve in G, Φv : R × G → G. That is, Φv has the properties
that Φv(0, I) = I and

d

dt
Φv(t, I)

∣∣∣∣
t=0

= Xv
I = v.

Definition 5.6 The exponential map of a Lie group G is the smooth
function

exp : TIG → G, v 7→ Φv(1, I).

That is, exp(v) = Φv(1, I) is defined to be the point reached on
G by following the integral curve of Xv for one unit of time start-
ing from the identity element I. The subset of G containing the el-
ements exp(tv), t ∈ R forms a one-parameter subgroup of G so that
exp(sv) exp(tv) = exp((s+ t)v) and (exp(tv))−1 = exp(−tv). The dif-
ferential of exp evaluated at the origin is clearly the identity map on
TI . Thus, by the inverse function theorem, exp : L(G) → G maps suf-
ficiently small neighborhoods of the origin in L(G) diffeomorphically
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to neighborhoods of the identity I in G. Put another way, there exists
{X1,X2, . . . ,Xn} in L(G) such that for small ti

g = exp(t1X1 + t2X2 + · · · + tnXn) ∈ G.

In this case, g is said to be expressed in terms of Lie-Cartan coordinates
of the first kind. Using the differential structure of the manifold, one
can show in terms of local coordinates z on a neighborhood W ⊆ Rn
about I, that reachable points z(t) ∈ G from I can be written in terms
of an initial value problem

ż = f1(z)u1 + f2(z)u2 + · · · + fn(z)un, z(0) = I, (5.25)

where the fi are smooth vector fields, and the ui are piecewise constant
functions with a finite number of switchings. Alternatively, it is also
clear that some elements of G can be written as a composition of
integral curves, that is,

g = exp(t1X1) exp(t2X2) · · · exp(tnXn) (5.26)

(recall Example 5.9). Here g is said to be written in terms Lie-Cartan
coordinates of the second kind. This corresponds to solving a sequence
of initial value problems (5.25) where only one ui is nonzero at a time.
In light of the Campbell-Baker-Hausdorff formula, it is not immedi-
ately apparent whether these two types of representations are always
available for any given g ∈ G. This topic will not be pursued here, but
the interested reader should consult the literature on Chow’s Theorem,
which addresses this issue. Finally, it should be noted that the above
development, starting with the definition of the left-translation map,
can also be repeated in a completely dual sense for the right-translation
map Rg : G → G, x 7→ xg. For example, g in (5.26) is written in the
dual form

g = exp(tnXn) exp(tn−1Xn−1) · · · exp(t1X1).

In the context of formal power series, one can formally associate a
group with the Lie algebra L̂(X).

Definition 5.7 Let X = {x0, x1, . . . , xm}. The set of formal power
series

Ĝ(X) = {c ∈ GM (X) : log(c) ∈ L̂(X)}
is called the Malcev group.
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Theorem 5.14 Ĝ(X) is a closed subgroup of GM (X) in the ultramet-
ric topology.

Proof: First it is shown that Ĝ(X) is a subgroup of GM (X). Trivially,
1 ∈ Ĝ(X) since log(1) = 0 ∈ L̂(X). Using Theorem 5.8, item ii, if
c, c̃ ∈ Ĝ(X) then observe that

(cc̃)(X +X ′) = c(X +X ′)c̃(X +X ′)

= c(X)c(X ′) c̃(X)c̃(X ′)

= c(X)c̃(X) c(X ′)c̃(X ′)

= (cc̃)(X)(cc̃)(X ′).

Thus, cc̃ ∈ Ĝ(X). Similarly, if c ∈ Ĝ(X) then

c−1(X +X ′) = (c(X)c(X ′))−1

= c−1(X ′)c−1(X)

= c−1(X)c−1(X ′).

Hence, c−1 ∈ Ĝ(X).
To show that Ĝ(X) is a closed subset of GM (X), consider a sequence

ci, i = 1, 2, . . . in Ĝ(X) with limi→∞ ci = c. Theorem 5.8, item iii will
be used to show that c must be an exponential Lie series, and thus,
c ∈ Ĝ(X). Select any ξ, ν ∈ X∗ and define k = |ξ| + |ν|. Since the
sequence ci, i = 1, 2 . . . approaches c in the ultrametric sense, there
must exist an i ∈ N such that

(ci, η) = (c, η), ∀η ∈ X∗, |η| ≤ k.

Using the fact that ci ∈ Ĝ(X), it then follows that

(c, ξ ⊔⊔ ν) = (ci, ξ ⊔⊔ ν)

= (ci, ξ)(ci, ν)

= (c, ξ)(c, ν).

Since ξ, ν are arbitrary, this implies that indeed c ∈ Ĝ(X), and the
theorem is proved.

By design Ĝ(X) is the group of all exponential Lie series associated
with the Lie algebra L̂(X). For example, any element generated by
{et0x0 , et1x1 , . . . , etmxm}, ti ∈ R, belongs to Ĝ(X). But since the vector
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space L̂(X) is not finite dimensional, Ĝ(X) has no hope of being a
Lie group as described in Definition 5.5.3 Nevertheless, many concepts
associated with Lie groups have formal versions in the present context
that are quite useful. Of particular interest are those connected with
adjoint maps.

Theorem 5.15 For any c ∈ Ĝ(X) and d ∈ L̂(X),

Adc(d) := cdc−1 =

∞∑

n=0

adnlog(c)(d)
1

n!
=: eadlog(c)(d),

and therefore, Adc : L̂(X) → L̂(X), d 7→ cdc−1 is an invertible trans-
formation on L̂(X).

Proof: The proof follows the same steps as that given in Example 5.8
where c and d take the place of exi and xj , respectively.

It is easily verified that Adc is a Lie algebra homomorphism, that
is,

Adc([d, d̃]) = [Adc(d),Adc(d̃)], ∀d, d̃ ∈ L̂(X) (5.27)

(see Problem 5.3.5). Let the group of invertible R-linear maps on L̂(X)
be denoted by GL(L̂(X)). In this case, the group product of Adc and
Adc̃ as elements of GL(L̂(X)) is the composition

Adc Adc̃(d) = Adc(c̃dc̃
−1)

= cc̃ d c̃−1c−1

= Adcc̃(d).

The group inverse is Ad−1c = Adc−1 . Thus, it follows that the mapping
Ad : Ĝ(X) → GL(L̂(X)) is a group homomorphism. This result mirrors
a well known result from the theory of finite dimensional Lie groups
which says that a group homomorphism in this context will always
induce a unique Lie algebra homomorphism between the corresponding
Lie algebras, in this case, L̂(X), and say gl(L̂(X)), respectively.

A dual version of this construction is also useful. Specifically, for
di ∈ L̂(X)

(d2)Ãded1 := e−d1d2ed1 = (d2)eãdd1 ,

3 The notion of an infinite dimensional Lie group is a relatively new idea compared
to its finite dimensional counterpart.
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where (d2)ãd
0

d1 = d2, and (d2)ãd
n+1

d1 = [(d2)ãd
n

d1 , d1], n ≥ 0. It is more
natural to think of add1 , for example, as an operator acting on an

argument to its right, while ãdd1 is one that act on an argument to its

left. Hence, it is customary to place the arguments for ãdd1 , eãdd1 and

Ãded1 on the left (see Problem 5.3.6). Similarly, operator composition

involving eãddi is described by

e−d2e−d1d3e
d1ed2 = e−d2(d3)eãdd1 ed2 = (d3)eãdd1 eãdd2 .

5.4 Chen Series

An important class of exponential Lie series are Chen series. They are
closely related to Fliess operators and in some cases form a subgroup
of the Malcev group. Two definitions are considered in this section.
They differ only by their set of admissible inputs. The first definition
below is for inputs from Lm1 [0, T ] with T finite. The second definition
to follow shortly will be for formal inputs.

Definition 5.8 Let X = {x0, x1, . . . , xm}. For any finite T > 0, u ∈
Lm1 [0, T ] and t ∈ [0, T ], the associated Chen series is the formal
power series in R〈〈X〉〉 given by

P [u](t) =
∑

η∈X∗

η Eη[u](t). (5.28)

Example 5.13 Suppose X = {x0, x1} and u = α ∈ R on [0, T ]. It
follows directly, as in Theorem 3.6, that P [u](0) = 1 and

d

dt
P [u](t) =

∑

η∈X∗

η
d

dt
Eη[u](t)

=
∑

η∈X∗

η u0(t)Ex−1
0 (η)[u](t) + η u1(t)Ex−1

1 (η)[u](t)

=
∑

η∈X∗

x0η Eη[u](t) + x1η αEη [u](t)

= (x0 + x1α)P [u](t). (5.29)

Similarly,
dn

dtn
P [u](0) = (x0 + x1α)n, n ≥ 0,
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and, therefore

P [u](t) =
∞∑

n=0

(x0 + x1α)n
tn

n!

= e(x0+x1α)t

is the solution to the formal differential equation (5.29).

The set of all Chen series in X will be denoted by

GC(X) = {P [u](t) ∈ R〈〈X〉〉 : u ∈ Lm1 [0, T ], 0 ≤ t ≤ T <∞}.

As will become apparent, the use of the symbol ‘G’ is an abuse of
notation since GC(X) is not a group. But a slight modification to the
set-up will be introduced shortly to yield a group structure. The idea
of a Chen series is implicit in the definition of a Fliess operator Fc with
c ∈ R〈〈X〉〉 if one considers that

y(t) =
∑

η∈X∗

(c, η)Eη [u](t) =
∑

η∈X∗

(c, η)(P [u](t), η)

= (c, P [u](t)),

where (·, ·) in the last line is a scalar product on R〈〈X〉〉 × R〈〈X〉〉.
It follows directly from Lemma 3.1 that for sufficiently small u (in
the L1-norm sense) and T this scalar product will be well defined
when c is locally convergent. (Recall in general that |(P [u](t), η)| =
|Eη [u](t)| ≤ R|η|/ |η|! for some real number R > 0). The series P [u](t),
however, is an interesting concept independent of its connection to
Fliess operators.

The first objective is to show that the Cauchy product of any two
Chen series is another Chen series. That is, the set GC(X) forms a
semigroup residing in the associative algebra on R〈〈X〉〉 under the
Cauchy product. Consider two input functions (u, v) ∈ Lm1 [ta, tb] ×
Lm1 [tc, td]. The durations of u and v are taken to be tb − ta ≥ 0 and
td − tc ≥ 0, respectively. These functions are not defined outside their
corresponding intervals. The catenation of u and v at τ ∈ [ta, tb] is
defined to be

(v#τu)(t) =

{
u(t) : ta ≤ t ≤ τ

v((t− τ) + tc) : τ < t ≤ τ + (td − tc),
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ta

t 

0 tb

u

v# u 

v

tc td ta

t 

0 tb

u

v

tc td +(td-tc )

Fig. 5.4. The catenation of two inputs u and v at t = τ .

as shown in Figure 5.4. It is immediately evident that the set of func-
tions

Lm1 (0) :=
⋃

0≤T<∞

Lm1 [0, T ]

(not to be confused with the extended space Lm1,e(0) in Chapter 3)
is a monoid under the catenation operator. The identity element in
this case is denoted by 0 and is equivalent to the set of functions
having exactly zero duration. A key identity concerning the catenation
operator in the context of iterated integrals is given next.

Lemma 5.4 Let η ∈ X∗, (u, v) ∈ Lm1 [0, T1] × Lm1 [0, T2], and (t1, t2) ∈
[0, T1] × [0, T2]. Then

Eη[v#t1u](t2 + t1) =
∑

η=ξν

Eξ[v](t2)Eν [u](t1).

Proof: The proof is by induction using word length. Trivially, the
identity holds when η = ∅. For any xj ∈ X, observe

Exj [v#t1u](t2 + t1) =

∫ t1

0
uj(τ) dτ +

∫ t2

0
vj(τ) dτ

= Exj [u](t1) + Exj [v](t2).

Hence, the claim holds for words of length one. Now assume the iden-
tity in question holds for all words up to length k ≥ 1. Then for any
xj ∈ X and η ∈ Xk it follows that

Exjη[v#t1u](t2 + t1) =

∫ t2+t1

0
(vj#t1uj)(τ)Eη [v#t1u](τ) dτ

=

∫ t1

0
uj(τ)Eη[v#t1u](τ) dτ+
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∫ t2

0
vj(τ)Eη [v#t1u](τ + t1) dτ

= Exjη[u](t1) +

∫ t2

0
vj(τ)

∑

η=ξν

Eξ[v](τ)Eν [u](t1) dτ

= Exjη[u](t1) +
∑

η=ξν

Exjξ[v](t2)Eν [u](t1)

=
∑

xjη=ξν

Eξ[v](t2)Eν [u](t1).

Thus, the claim holds for words up to length of k + 1, and therefore,
by induction, it holds for all words in X∗.

An immediate consequence of this lemma is Chen’s identity.

Theorem 5.16 (Chen’s identity) Given (u, v) ∈ Lm1 [0, T1]×Lm1 [0, T2]
and any (t1, t2) ∈ [0, T1] × [0, T2] it follows that

P [v](t2)P [u](t1) = P [v#t1u](t2 + t1).

Proof: The identity follows directly from Lemma 5.4. Observe

P [v#t1u](t2 + t1) =
∑

η∈X∗

η Eη[v#t1u](t2 + t1)

=
∑

ξ,ν∈X∗

ξν Eξ[v](t2)Eν [u](t1)

=
∑

ξ∈X∗

ξ Eξ[v](t2)
∑

ν∈X∗

ν Eν [u](t1)

= P [v](t2)P [u](t1).

In light of the fact that P [0](0) = 1, it is clear from Chen’s identity
that GC(X) forms a monoid and that the mapping P : Lm1 (0) → GC(X)
is a monoid homomorphism. This theorem is sometimes expressed in
a slightly different notation. Suppose (u, v) ∈ Lm1 [t0, t1] × Lm1 [t1, t2].
Define the input ū such that ū(t) = u(t) on [t0, t1] and ū(t) = v(t) on
[t1, t2]. If the Chen series over [t0, t1] is denoted by

P [ū](t1, t0) =
∑

η∈X∗

η Eη[ū](t1, t0),
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then it is easy to verify that Chen’s identity can be written equivalently
as

P [ū](t2, t1)P [ū](t1, t0) = P [ū](t2, t0)

(see Problem 5.4.2).

Example 5.14 Consider an alphabet for a two input system having
no letter x0, i.e., X = {x1, x2}. Assume u(t) = [1 0]T and v(t) =
[0 1]T on [0, T ]. Then the Chen series for u#t1v is

P [v#t1u](t2 + t1) =

∞∑

j,k=0

xk2x
j
1Exk2

[v](t2)E
xj1

[u](t1)

=

∞∑

k=0

xk2
tk2
k!

∞∑

j=0

xj1
tj1
j!

= et2x2et1x1 ,

where t1, t2 ∈ [0, T ]. From the Campbell-Baker-Hausdorff formula it
follows directly that P [v#t1u] is an exponential Lie series. Also note
that etxi is the solution to the differential equation

d

dt
P [u] = xiP [u], P [u](0) = 1.

Example 5.15 Consider a generalization of the previous example,
where X = {x1, x2, . . . , xm} and

u(t) = αj, t ∈
[
j−1∑

l=0

tl,

j∑

l=0

tl

)

with αj = [α1j α2j · · ·αmj ]T ∈ Rm and tl > 0, j, l = 1, 2, . . . , k. Then
it follows that

P [u](t0 + t1 + . . . + tk) =

←∏

i=1,...,k

e(α1ix1+α2ix2+···+αmixm)ti ,

where
←∏

denotes the directed (i.e., noncommutative) product. For ex-
ample, if m = 2 and k = 2, then
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P [u](t0 + t1 + t2) = e(α12x1+α22x2)t2e(α11x1+α21x2)t1 .

Therefore, given some c ∈ RLC〈〈X〉〉, it clear that

Fc[u](t0 + t1 + · · · + tk) = (c, P [u](t0 + t1 + . . .+ tk))

=


c,

←∏

i=1,...,k

e(α1ix1+α2ix2+···+αmixm)ti


 .

From this identity, it can be verified that

∂k

∂t1∂t2 · · · ∂tk
Fc[u](t0 + t1 + · · · + tk)

∣∣∣∣ tj=0+,

j=1,2,...,k

=
∑

ξ∈Xk

αξk (c, ξ),

(5.30)
where

αξk := αikkαik−1k−1 · · ·αi11
when ξ = xikxik−1

· · · xi1 ∈ Xk. Again, if m = 2 and k = 2, then
directly

∂2

∂t1∂t2
Fc[u](t0 + t1 + t2) =

(
c,

∂2

∂t1∂t2
P [u](t0 + t1 + t2)

)

=

(
c,

∂2

∂t1∂t2
e(α12x1+α22x2)t2e(α11x1+α21x2)t1

)
,

so that

∂2

∂t1∂t2
Fc[u](t0 + t1 + t2)

∣∣∣∣ t2=0+

t1=0+

=

(
c,

∂2

∂t1∂t2
e(α12x1+α22x2)t2e(α11x1+α21x2)t1

)∣∣∣∣ t2=0+

t1=0+

= (c, (α12x1 + α22x2)(α11x1 + α21x2))

= α12α11(c, x1x1) + α22α11(c, x2x1) + α12α21(c, x1x2)

+ α22α21(c, x2x2)

=
∑

ξ∈X2

αξ2(c, ξ).

Recall, that (5.30) was the central formula in the proof of the unique-
ness of generating series for Fliess operators (Theorem 3.7). The
present context makes that argument more transparent.
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It is evident from Example 5.14 that the Chen series P [u](t) cor-
responding to a constant input function u is an exponential Lie series
satisfying a formal differential equation. The following theorem states
that this is the case for any u ∈ Lm1 [0, T ].

Theorem 5.17 Let X = {x0, x1, . . . , xm}. For any finite T > 0 let
u ∈ Lm1 [0, T ]. Then the Chen series P [u](t) is an exponential Lie series
for every t ∈ [0, T ], and

d

dt
P [u] =

[
x0 +

m∑

i=1

xiui

]
P [u], P [u](0) = 1.

Proof: As in Example 5.13, P [u](0) = 1 and

d

dt
P [u](t) =

∑

η∈X∗

η
d

dt
Eη[u](t)

=
∑

η∈X∗

η
m∑

i=0

ui(t)Ex−1
i (η)[u](t)

=

[
x0 +

m∑

i=1

xiui(t)

]
P [u](t).

To see that P [u](t) is always an exponential Lie series, apply the
criterion from Theorem 5.8, item iii. Specifically, for any fixed t ∈ [0, T ]
and ξ, ν ∈ X∗

(P [u](t), ξ ⊔⊔ ν) =
∑

η∈X∗

Eη[u](t)(η, ξ ⊔⊔ ν)

= Eξ ⊔⊔ ν [u](t)

= Eξ[u](t)Eν [u](t)

=


 ∑

ξ′∈X∗

ξ′Eξ′ [u](t), ξ



(
∑

ν′∈X∗

ν ′Eν′ [u](t), ν

)

= (P [u](t), ξ) (P [u](t), ν).
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Example 5.16 Let c ∈ RLC〈〈X〉〉 and u ∈ L1[0, T ]. Since P [u](t) is
in general an exponential Lie series, it follows that the Fliess operator
corresponding to c can always be written in the form y(t) = Fc[u](t) =
(c, eU(t)), where U(t) = log(P [u](t)), t ∈ [0, T ].

Example 5.17 Reconsider Example 5.14 in the special case where
v = −u and t2 = t1 = t. Clearly,

P [(−u)#tu](t + t) = e−tx1etx1 = 1,

or equivalently,
P [−u](t)P [u](t) = 1.

Contrast this with what would happen if x1 were replaced with the
drift letter x0, namely,

P [−u](t)P [u](t) = etx0etx0 = e2tx0 6= 1.

This suggests that the set of Chen series defined over the drift-free
alphabet X = {x1, x2, . . . , xm} is a group under the Cauchy product.
This is called the Chen group GC(X).

Theorem 5.18 If X = {x1, . . . , xm}, then GC(X) is a subgroup of
Ĝ(X) (see Figure 5.5).

Proof: In light of Theorem 5.17 (which holds for any alphabet), GC(X)
is clearly a subset of the group Ĝ(X). Trivially, 1 ∈ GC(X), and Chen’s
identity (which also holds for any alphabet) implies that GC(X) is
algebraically closed under the Cauchy product. Thus, to show that
GC(X) is a subgroup of Ĝ(X) it only remains to be shown that GC(X)
is closed under inversion. For any given u ∈ L1[0, T ] and fixed t ∈
[0, T ] define as in Lemma 2.4 the input function uS(τ) = −u(t − τ)
restricted to [0, t]. Thus, for any ξ ∈ X∗ it follows that Eξ[uS ](τ, 0) =
ES(ξ)[u](τ, 0) for all τ ∈ [0, t], where S(ξ) := (−1)|ξ|ξ̃, and ξ̃ denotes
the word ξ with the letters written in reverse order. In which case, for
any P [u](t) ∈ GC(X) and fixed t ∈ [0, T ]

P [u](t)P [uS ](t) =
∑

η,ξ∈X∗

ηξ Eη[u](t)Eξ [uS ](t)
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Fig. 5.5. The set inclusions involving GM (X), Ĝ(X), and GC(X) for a drift-free
alphabet X.

=
∑

η,ξ∈X∗

(−1)|ξ|ηξ Eη ⊔⊔ ξ̃[u](t).

Given any ν ∈ X∗, observe that

(P [u](t)P [uS ](t), ν) =
∑

η,ξ∈X∗

(−1)|ξ|(ηξ, ν)Eη ⊔⊔ ξ̃[u](t)

=

{
1 : |ν| = 0
0 : |ν| > 0,

where the identity in Problem 2.4.3(d) has been used. Thus, P [u](t)
P [uS ](t) = 1. Similarly, one can show that P [uS ](t)P [u](t) = 1, and
thus, (P [u](t))−1 = P [uS ](t) ∈ GC(X).

A few remarks are in order concerning this result. First, no claim is
being made that GC(X) is a proper subset of Ĝ(X), but this is the case
(see Problem 5.4.6). Second, in light of Example 5.16, observe that
any Fliess operator Fc, where c ∈ RmLC〈〈X〉〉 with X being drift-free,
can be viewed as a control system on the Chen group. That is, Fc is
realized by

d

dt
P [u] = V [u]P [u], P (0) = 1
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y = (c, P [u]),

where V [u] :=
∑m

i=1 xiui is an element of the Lie algebra L(X) for any
admissible u, and the solution evolves on GC(X). (This proposition
will be fully developed in the next section.) Finally, the appearance
above of the antipode S for the Hopf algebras described in Theo-
rem 2.9 requires some explanation. Using the group GC(X), one can
construct what is called the group algebra over R, denoted RGC(X),
by first defining a vector space using GC(X) as a basis. For example,
if P1, P2 ∈ GC(X), then 2P1, P1 − P 2

2 ∈ RGC(X). The group prod-
uct is then extended on this vector space by linearity. Continuing the
example,

2P1(P1 − P 2
2 ) = 2P 2

1 − 2P1P
2
2 .

Consider next the vector space dual of RGC(X), namely the linear
space of maps RGC(X) taking GC(X) into R so that for any polynomial
P̃ =

∑
P∈GC(X)(P̃ , P )P ∈ RGC(X) and F ∈ RGC(X)

〈
P̃ , F

〉
=

〈
∑

P∈GC(X)

(P̃ , P )P,F

〉

:=
∑

P∈GC(X)

(P̃ , P )F (P ).

The vector space operations on RGC(X) are defined pointwise by

(F1 + F2)(P ) = F1(P ) + F2(P )

(kF )(P ) = kF (P )

for all k ∈ R and P ∈ GC(X). In addition, RGC(X) is a commutative
R-algebra under the product

(F1F2)(P ) = F1(P )F2(P ).

Consider now the special case of linear maps in RGC(X) of the form
Fc(P ) = (c, P ), where c ∈ RLC〈〈X〉〉. Then for any P1, P2 ∈ GC(X)

F (P1P2) = (c, P1P2) = (c, cat(P1 ⊗ P2)). (5.31)

Dually, given Fci ∈ RLC〈〈X〉〉 and P ∈ GC(X)

(Fc1Fc2)(P ) = (c1, P )(c2, P ) = (sh(c1 ⊗ c2), P ). (5.32)
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Equation (5.31) suggests that the Hopf algebra on R〈X〉 described
in Theorem 2.9 with cat as the product can be naturally extended
to the group algebra RGC(X). Analogously, (5.32) intimates that the
Hopf algebra on R〈X〉 with sh as the product can be extended to
RLC〈〈X〉〉. Recall that the antipode of both of these Hopf algebras on
R〈X〉 is given by S as defined above. So its appearance in computing
the group inverse in not entirely unexpected.

Next the focus is shifted to Chen series defined for formal inputs.
Recall in Section 3.8 that the notion of a formal Fliess operator was
defined as a mapping between two formal powers in one variable, one
series representing the input and the other series representing the out-
put. The input series could be convergent (analytic) or not. But in
either case, many of the concepts introduced originally for convergent
Fliess operators on Lm1 [0, T ] were directly adapted to the formal case.
The same is true here in the context of Chen series as illustrated in
the next definition. However, it needs to be said that the set of all
Chen series for this input class does not in general form a group since
concatenation of formal inputs in the sense of the # product is not
well defined, and in the analytic case, it is not true in general the u#tv
is analytic when both u and v are analytic.

Definition 5.9 Given any formal input u represented by the series
cu ∈ Rm[[X0]], the corresponding Chen series is defined by the formal
function

P [u](t) =

∞∑

n=0

Pcu(n)
tn

n!
,

where
Pcu(n) =

∑

η∈X∗

η (η ◦ cu, xn0 ).

The reader will recall that the polynomials {Pcu(n), n ≥ 0} first
made their appearance in describing the uniqueness of the generating
series for a formal Fliess operator (see equation (3.48)). There it was
shown that

Pcu(n) = xn0 +

n∑

k=1

∑

Sk

1

s1! · · · sp!
P j1···jki1···ik

(n)(cui1 , x
j1
0 ) · · · (cuik , x

jk
0 ).

The formal counterpart to Theorem 5.17 is given below.
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Theorem 5.19 Let cu ∈ Rm[[X0]]. Then the corresponding Chen se-
ries P is an exponential Lie series satisfying the formal differential
equation

d

dt
P [u] =

[
x0 +

m∑

i=1

xiui

]
P [u], P [u](0) = 1, (5.33)

where

u(t) =

∞∑

k=0

(cu, x
k
0)
tk

k!
.

If cu is locally convergent, then both P and u are analytic, as is the
system (5.33).

Proof: Trivially, P [u](0) = Pcu(0) = 1. To establish (5.33), it is first
shown that for any n ≥ 0

Pcu(n+ 1) = x0Pcu(n) +

m∑

i=1

xi

n∑

k=0

(
n

k

)
Pcu(k)(cui , x

n−k
0 ), (5.34)

using the identity

x−10 (c ◦ cu) = x−10 (c) ◦ cu +
m∑

i=1

cui ⊔⊔ (x−1i (c) ◦ cu).

Observe for arbitrary c ∈ R〈〈X〉〉

(c, Pcu(n+ 1))

=


∑

η∈X∗

(c, η) η ◦ cu, xn+1
0




= (c ◦ cu, xn+1
0 )

= (x−10 (c) ◦ cu, xn0 ) +

m∑

i=1

(cui ⊔⊔ (x−1i (c) ◦ cu), xn0 )

= (x−10 (c) ◦ cu, xn0 ) +
m∑

i=1

n∑

k=0

(cui , x
n−k
0 )(x−1i (c) ◦ cu, xk0)·

(xn−k0 ⊔⊔ xk0, x
n
0 )

= (x−10 (c), Pcu(n)) +

m∑

i=1

n∑

k=0

(cui , x
n−k
0 )(x−1i (c), Pcu(k))

(
n

k

)
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= (c, x0Pcu(n)) +

m∑

i=1

n∑

k=0

(
n

k

)
(cui , x

n−k
0 )(c, xiPcu(k))

=

(
c, x0Pcu(n) +

m∑

i=1

xi

n∑

k=0

(
n

k

)
Pcu(k)(cui , x

n−k
0 )

)
,

from which (5.34) follows directly. Next note that the formal derivative
of P satisfies

d

dt
P [u](t)

=

∞∑

n=0

Pcu(n+ 1)
tn

n!

= x0

∞∑

n=0

Pcu(n)
tn

n!
+

m∑

i=1

xi

∞∑

n=0

n∑

k=0

Pcu(k)
tk

k!
(cui , x

n−k
0 )

tn−k

(n− k)!

= x0P [u](t) +
m∑

i=1

xiui(t)P [u](t),

which verifies (5.33).
To establish that P is an exponential Lie series, Theorem 5.8 is

utilized. Using the fact that composition distributes to the left over
the shuffle product (Problem 2.7.7(d)), it follows for any ξ, ν ∈ X∗

that

(P [u](t), ξ ⊔⊔ ν) =

(
∞∑

n=0

Pcu(n)
tn

n!
, ξ ⊔⊔ ν

)

=

∞∑

n=0

∑

η∈X∗

(ξ ⊔⊔ ν, η)(η ◦ cu, xn0 )
tn

n!

=

∞∑

n=0

((ξ ⊔⊔ ν) ◦ cu, xn0 )
tn

n!

=
∞∑

n=0

((ξ ◦ cu) ⊔⊔ (ν ◦ cu), xn0 )
tn

n!
.

Now view the right-hand side of the final equation as the output of
the product connection of two formal Fliess operators Fξ[u] and Fν [u]
so that

(P [u](t), ξ ⊔⊔ ν) =

∞∑

n=0

(ξ ◦ cu, xn0 )
tn

n!

∞∑

n=0

(ν ◦ cu, xn0 )
tn

n!
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=

∞∑

n=0

(
Pcu(n)

tn

n!
, ξ

) ∞∑

n=0

(
Pcu(n)

tn

n!
, ν

)

= (P [u](t), ξ)(P [u](t), ν).

Finally, suppose that cu is analytic, that is, there exists some
Ku,Mu > 0 such that |(cu, xn0 )| ≤ KuM

n
un! for all n ≥ 0. To show that

P is analytic, it is sufficient to show that there exists some M ≥ 0
such that |(Pcu(n), η)| ≤ Mnn! for all n ≥ 0 and every η ∈ X∗. Let
M := max(mKu,Mu, 1) ≥ 1. The inequality in question is trivially sat-
isfied for all n ≥ 0 when η = ∅ since (Pcu(0), ∅) = 1 and (Pcu(n), ∅) = 0
when n > 0 (recall, in general (Pcu(n), η) = 0 if |η| > n). Now assume
η is nonempty and that the inequality holds up to some fixed n ≥ 0.
Then from (5.34) it follows that

|(Pcu(n+ 1), η)| ≤ |(x0Pcu(n), η)| +

m∑

i=1

n∑

k=1

(
n

k

)
|(xiPcu(k), η)| ·

∣∣∣(cu, xn−k0 )
∣∣∣

=
∣∣(Pcu(n), x−10 (η))

∣∣ +
m∑

i=1

n∑

k=1

(
n

k

) ∣∣(Pcu(k), x−1i (η))
∣∣ ·

∣∣∣(cu, xn−k0 )
∣∣∣

≤Mn−1(n − 1)! +mKu

n∑

k=1

(
n

k

)
Mk−1(k − 1)!·

Mn−k
u (n− k)!

≤Mnn! +mKuM
n−1n!

n∑

k=1

1

k

≤Mnn!(1 + n)

≤Mn+1(n + 1)!.

Therefore, the inequality holds for all n ≥ 0.

Example 5.18 For an arbitrary alphabet X and V [u] =
∑m

i=0 xiui
observe that

P (0) = 1

P (1)(0) = V (0)P (0) = V (0)
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P (2) = V (1)P + V P (1) = (V (1) + V 2)P

P (2)(0) = V (1)(0) + V 2(0)

P (3) = (V (2) + V (1)V + V V (1))P + (V (1) + V 2)P (1)

= (V (2) + 2V (1)V + V V (1) + V 3)P

P (3)(0) = V (2)(0) + 2V (1)(0)V (0) + V (0)V (1)(0) + V 3(0),

...

where the u dependence has been suppressed. To compute the poly-
nomials Pcu(n), one only needs to substitute

V (j)[u](0) =

m∑

i=0

xiu
(j)
i =

m∑

i=0

xi(cui , x
j
0)

in the identities above. For example, suppose X = {x0, x1}. As usual,
assume that u0 = 1 and u1 = u. Then

Pcu(0) = P [u](0) = 1

Pcu(1) = P (1)[u](0) = V [u](0) = x0 + x1(cu, ∅)

Pcu(2) = P (2)[u](0) = V (1)[u](0) + V 2[u](0)

= x1(cu, x0) + [x0 + x1(cu, ∅)]2

= x20 + x1(cu, x0) + (x0x1 + x1x0)(cu, ∅) + x21(cu, ∅)2

Pcu(3) = P (3)[u](0) = V (2)[u](0) + 2V (1)[u](0)V [u](0)+

V [u](0)V (1)[u](0) + V 3[u](0)

= x1(cu, x
2
0) + 2x1(cu, x0)[x0 + x1(cu, ∅)]+

[x0 + x1(cu, ∅)]x1(cu, x0) + [x0 + x1(cu, ∅)]3

= x30 + x1(cu, x
2
0) + (x0x1 + 2x1x0)(cu, x0)+

3x21(cu, ∅)(cu, x0) + (x20x1 + x1x
2
0 + x0x1x0)(cu, ∅)+

(x0x
2
1 + x1x0x1 + x21x0)(cu, ∅)2 + x31(cu, ∅)3,

...

which is in agreement with Example 3.46. If cu = α ∈ R, then, as
expected,

P [u](t) =

∞∑

n=0

(x0 + x1α)n
tn

n!
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= e(x0+x1α)t.

Example 5.19 In light of the previous example, it is possible to com-
pute the first few terms of the Taylor series of U = log(P [u]) when u
is either a formal input or an analytic input. Observe

P [u](0) = eU(0) = Pcu(0) = 1

=⇒ U(0) = 0

d

dt
P [u](0) =

d

dt
eU(t)

∣∣∣∣
t=0

= U (1)(0)

= Pcu(1) = x0 + x1(cu, ∅)

=⇒ U (1)(0) = x0 + x1(cu, ∅)

d2

dt2
P [u](0) =

d2

dt2
eU(t)

∣∣∣
t=0

= U (2)(0) + (U (1)(0))2

= Pcu(2) = x20 + x1(cu, x0) + (x0x1 + x1x0)(cu, ∅)+

x21(cu, ∅)2

=⇒ U (2)(0) = x1(cu, x0)

d3

dt3
P [u](0) =

d3

dt3
eU(t)

∣∣∣∣
t=0

= U (3)(0) + 2U (2)(0)U (1)(0)+

U (1)(0)U (2)(0) + (U (1)(0))3

= Pcu(3) = x30 + x1(cu, x
2
0) + (x0x1 + 2x1x0)(cu, x0)+

3x21(cu, ∅)(cu, x0) + (x20x1 + x1x
2
0 + x0x1x0)(cu, ∅)+

(x0x
2
1 + x1x0x1 + x21x0)(cu, ∅)2 + x31(cu, ∅)3

=⇒ U (3)(0) = x1(cu, x
2
0).

Therefore,

U(t) = U(0) + U (1)(0)t + U (2)(0)
t2

2!
+ U (3)(0)

t3

3!
+ · · ·
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= x0t+ x1

[
(cu, ∅) t + (cu, x0)

t2

2!
+ (cu, x

2
0)
t3

3!
+ · · ·

]
+ · · ·

= x0Ex0 [u](t) + x1Ex1 [u](t) + · · ·

The calculations above suggest a generalization of the Campbell-
Baker-Hausdorff formula for a Chen series is

U =
∑

ξ∈X∗

π1(ξ)Eξ[u],

where π1 : X∗ → L(X). The next theorem provides an explicit formula
for the mapping π1 (see also Problem 5.4.7).

Theorem 5.20 The logarithm of the Chen series P [u] = eU , where u
is either a formal input or in L1[0, T ], can be written as

U =
∑

ξ∈X∗

π1(ξ)Eξ[u] (5.35)

with

π1(ξ) =
∑

k≥1

(−1)k−1

k

∑

η1,...,ηk∈X+

η1 · · · ηk (η1 ⊔⊔ · · · ⊔⊔ ηk, ξ).

In addition,

dU

dt
=

m∑

i=0


∑

ξ∈X∗

π1(xiξ)Eξ[u]


 ui

either formally or on [0, T ] if u is analytic. If u ∈ Lm1 [0, T ] then the
identity holds on [0, T ] except possibly at a finite number of points.

Proof: The first identity follows directly from the usual series expan-
sion for the logarithm. Observe

U = log


1 +

∑

η∈X+

ηEη[u]




=
∑

k≥1

(−1)k−1

k


 ∑

η∈X+

ηEη[u]



k
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=
∑

k≥1

(−1)k−1

k

∑

η1,...,ηk∈X+

η1 · · · ηk Eη1 ⊔⊔ ··· ⊔⊔ ηk [u]

=
∑

k≥1

(−1)k−1

k

∑

η1,...,ηk∈X+

η1 · · · ηk
∑

ξ∈X∗

(η1 ⊔⊔ · · · ⊔⊔ ηk, ξ)Eξ[u]

=
∑

ξ∈X∗


∑

k≥1

(−1)k−1

k

∑

η1,...,ηk∈X+

η1 · · · ηk (η1 ⊔⊔ · · · ⊔⊔ ηk, ξ)


Eξ[u]

=
∑

ξ∈X∗

π1(ξ)Eξ[u].

The second identity comes directly from differentiating the first
identity (recall, for example, Theorem 3.6 in the case where Lm1 [0, T ]),
i.e.,

dU

dt
=
∑

ξ∈X∗

π1(ξ)
d

dt
Eξ[u]

=
∑

ξ∈X∗

π1(ξ)

m∑

i=0

uiEx−1
i (ξ)[u]

=

m∑

i=0


∑

ξ∈X∗

π1(xiξ)Eξ[u]


ui.

Another generalization of the Campbell-Baker-Hausdorff formula
for a Chen series can be deduced from the following theorem, which
uses properties related to direct differentiation of the exponential Lie
series P = eU to produce a differential equation that U must satisfy.

Theorem 5.21 The logarithm of the Chen series P [u] = eU , where
u is a formal input (or analytic on [0, T ]), satisfies the differential
equation

dU

dt
=

adU(t)

eadU(t) − I

(
m∑

i=0

xiui

)

=

∞∑

n=0

adnU

(
m∑

i=0

xiui

)
Bn

n!
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formally (or on [0, T ]). If u ∈ Lm1 [0, T ] then the identity still holds on
[0, T ] except possibly at a finite number of points.

Proof: The identity for the formal case follows directly from Theo-
rem 5.19 and Corollary 5.1, where the derivative is interpreted in the
formal sense. Specifically,

dU

dt
=

adU(t)

eadU(t) − I

(
dP

dt
e−U(t)

)

=
adU(t)

eadU(t) − I

((
m∑

i=0

xiui

)
eU(t)e−U(t)

)

=
adU(t)

eadU(t) − I

(
m∑

i=0

xiui

)
.

The analytic and Lm1 [0, T ] cases are treated in an analogous fashion.

Comparing Theorems 5.20 and 5.21, the following corollary is im-
mediate.

Corollary 5.2 If U = log(P [u]) for any admissible u then

adU
eadU − I

(xi) =
∑

ξ∈X∗

π1(xiξ)Eξ[u], i = 0, 1, . . . ,m.

Example 5.20 It follows directly from Theorem 5.21 that

dU

dt
=

m∑

i=0

xiui +

[
m∑

i=0

xiui, U

]
1
2

1!
+

[[
m∑

i=0

xiui, U

]
, U

]
1
6

2!
+ · · · ,

(note the sign change coupled with the reverse ordering of the brackets)
or equivalently,

U(t) =

m∑

i=0

xiExi [u](t) +

∫ t

0

[
m∑

i=0

xiui(τ), U(τ)

]
1
2

1!
dτ+

∫ t

0

[[
m∑

i=0

xiui(τ), U(τ)

]
, U(τ)

]
1
6

2!
dτ + · · · (5.36)
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Observe that the first term of this expansion agrees with that from the
brute force calculation in Example 5.19. Using the identity above, it is
a straightforward calculation to produce an explicit expression for the
second term (see Problem 5.4.8). Specifically,

U =
m∑

i=0

xiExi [u] +
m∑

i,j=0
i<j

[xi, xj ]E 1
2
[xi,xj ]

[u] + · · · (5.37)

In both series expressions (5.35) and (5.37) for U = log(P ), there is
no guarantee that the Lie polynomials found in each term are linearly
independent. Given a basis B for the free Lie algebra L(X), one has
the option to write P in terms of coordinates of the first kind, i.e.,

P = exp


∑

p∈B

Eχ1(p) p


 ,

where χ1(p) ∈ R〈X〉 is the polynomial corresponding to basis element
p, or in terms of coordinates of the second kind, namely,

P =

←∏

p∈B

exp
(
Eχ2(p) p

)
,

where χ2(p) ∈ R〈X〉, and
←∏

denotes the directed product. As with any
vector space, many choices of bases are possible. The Lyndon basis in
Theorem 5.2 is but one of several bases that appear in the literature.
For coordinates of the second kind, a simple inductive formula exists
for generating the terms of the expansion using what is called a Hall
basis for L(X). But in the case of coordinates of the first kind, there
is at present no such formula. This topic is beyond the scope of the
presentation here, but the interested reader is directed to the biblio-
graphic notes at the end of the chapter to find the relevant literature
on this topic.

5.5 Universal Realizations

In this section, the concept of a one dimensional universal realiza-
tion of a Fliess operator is presented first. It is a special case of what
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will be called an n dimensional universal realization. The latter is
the coordinate-free counterpart of differential realizations as defined
in Chapter 6.

Recall from Section 5.3 that Ĝ(X) can be viewed as a formal Lie
group with L̂(X) as its corresponding Lie algebra. A commutative
algebra of real-valued functions on Ĝ(X) is defined using the shuffle
algebra on the R-vector space RLC〈〈X〉〉. Specifically, for any fixed
c ∈ RLC〈〈X〉〉 define fc : Ĝ(X) → R as

z 7→ fc(z) = (c, z) =
∑

η∈X∗

(c, η)(z, η). (5.38)

Ree’s criterion states that p ∈ L(X) if and only if (η ⊔⊔ ν, p) = 0 for
all nonempty words η, ν ∈ X∗. This implies that z is an exponential
Lie series if and only if (c ⊔⊔ d, z) = (c, z)(d, z) for all c, d ∈ R〈〈X〉〉.
Therefore,

fc(z)fd(z) = (c, z)(d, z) = (c ⊔⊔ d, z) = fc ⊔⊔ d(z).

Convergence follows from the fact that the shuffle product is known
to preserve local convergence (see Theorem 3.15).4 Often fc(z) will
be abbreviated as c(z), which is more natural in the present context.
Analogous to standard Lie group theory, the formal tangent space at
the unit 1, T1Ĝ(X), is identified with L̂(X). Thus, for any fixed p ∈
L̂(X), there is a corresponding tangent vector at 1 written as the
linear functional Vp(1) : RLC〈〈X〉〉 → R, c 7→ Vp(1)(c) := (c, p1) and
satisfying the Leibniz rule

Vp(1)(c ⊔⊔ d) = (c ⊔⊔ d, p1)

= (p−1(c ⊔⊔ d),1)

= (p−1(c) ⊔⊔ d,1) + (c ⊔⊔ p−1(d),1)

= (p−1(c),1)(d,1) + (c,1)(p−1(d),1)

= (c, p1)(d,1) + (c,1)(d, p1)

= Vp(1)(c) d(1) + c(1)Vp(1)(d).

In turn, the tangent space at z ∈ Ĝ(X), denoted TzĜ(X), is defined
via right translation to be the vector space of linear functionals Vp(z) :

RLC〈〈X〉〉 → R, c 7→ Vp(z)(c) := (c, pz), p ∈ L̂(X) satisfying

4 One could alternatively defined this algebra on R〈X〉 and entirely avoid the
convergence issue. But here RLC〈〈X〉〉 is more suitable for applications.
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Vp(z)(c ⊔⊔ d) = (c ⊔⊔ d, pz)

= (c, pz)(d, z) + (c, z)(d, pz)

= Vp(z)(c) d(z) + c(z)Vp(z)(d). (5.39)

From a Hopf algebraic viewpoint, elements z ∈ Ĝ(X) are group-like,
that is, for c, d ∈ RLC((X)) one has

(c ⊔⊔ d, z) = (c⊗ d, sh∗(z)) = (c⊗ d, z ⊗ z) = (c, z)(d, z).

Here sh∗ is the coproduct dualizing the shuffle product (see Theo-
rem 2.6). On the other hand, elements p ∈ L̂(X) are primitive, i.e.,
sh∗(p) = p⊗ 1 + 1⊗ p such that

(c ⊔⊔ d, p) = (c, p)(d,1) + (c,1)(d, p).

Moreover, sh∗(pz) = sh∗(p)sh∗(z) yields

(c ⊔⊔ d, pz) = (c, pz)(d, z) + (c, z)(d, pz).

This Hopf algebraic approach, however, will be suppressed here in favor
of a purely Lie theoretic point of view.

For any p ∈ L̂(X), the mapping

Vp : Ĝ(X) → TzĜ(X), z 7→ Vp(z) := pz

is a formal right-invariant vector field on Ĝ(X). Here X will denote
the set of all such right-invariant vector fields. In addition, the formal
Lie derivative is defined to be the mapping

Lp : RLC〈〈X〉〉 → RLC〈〈X〉〉, c 7→ Lpc := p−1c

so that

Lpc(z) = (Lpc, z) = (p−1c, z) = (c, pz) = Vp(z)(c),

and, in particular,

Lp(c ⊔⊔ d)(z) = (Lp(c ⊔⊔ d), z)

= (c ⊔⊔ d, pz)

= (Lpc(z)) d(z) + c(z)Lpd(z),

which is just an alternative form of (5.39).
Finally, note that any Fliess operator y = Fc[u] can be written com-

ponentwise as yk(t) = (ck, z(t)), k = 1, 2, . . . , ℓ, where ck ∈ RLC〈〈X〉〉
denotes the k-th component of c ∈ RℓLC〈〈X〉〉 and z(t) = P [u](t). This
leads to the following definition.
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Definition 5.10 For any c ∈ RℓLC〈〈X〉〉, the one dimensional uni-

versal realization for the Fliess operator y = Fc[u] is

ż =

m∑

i=0

xizui, z(0) = 1

yk = (ck, z), k = 1, 2, . . . , ℓ.

Observe that

Lxick(1) = x−1i ck(1) = (x−1i ck,1) = (ck, xi)

LxjLxick(1) = x−1j x−1i ck(1) = (x−1j x−1i ck,1) = (ck, xixj),

so that the coefficients of ck can always be written in terms of formal
Lie derivatives as

(ck, η) = (ck, xi1 · · · xil)
= Lxil · · ·Lxi1 ck(1) =: Lηck(1). (5.40)

The notion of a one dimensional universal realization is next ex-
tended by taking a finite number of direct products of Ĝ(X), i.e.,
Gn(X) := Ĝ(X) × Ĝ(X) × · · · × Ĝ(X), where Ĝ(X) appears n times.
For any ĉ = c1 ⊗ · · · ⊗ cn ∈ R⊗nLC〈〈X〉〉 define

fĉ : Gn(X) → R,

z 7→ (c1 ⊗ · · · ⊗ cn)(z1, . . . , zn) = (c1, z1) · · · (cn, zn).

A commutative algebra on the R-vector space of all such real-valued
functions on Gn(X) is given by defining

fĉ(z)fd̂(z) = [(c1, z1) · · · (cn, zn)][(d1, z1) · · · (dn, zn)]

= (c1 ⊔⊔ d1, z1) · · · (cn ⊔⊔ dn, zn)

=: (ĉ ⊔⊔ d̂)(z1, z2, . . . , zn)

= fĉ ⊔⊔ d̂(z).

As earlier, fĉ(z) will often be abbreviated as ĉ(z). The Lie algebra of
Gn(X), denoted by L̂n(X), is similarly defined as the n-fold direct sum
of the Lie algebra L̂(X) for Ĝ(X) with itself. The formal tangent space
at the unit 1n := (1, . . . ,1), T1nGn(X), is identified with L̂n(X) via the
one-parameter subgroup H(t) := (exp(tp1), exp(tp2), . . . , exp(tpn)),
p = (p1, p2, . . . , pn) ∈ L̂n(X) so that Ḣ(0) = p. For any fixed
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p ∈ L̂n(X), there is a corresponding tangent vector at 1n represented
by the linear functional

Vp(1n) : R⊗nLC〈〈X〉〉 → R, ĉ 7→ d

dt
(ĉ ◦H(t))|t=0.

Observe that

Vp(1n)(ĉ) =
d

dt

(
(c1, exp(tp1)) · · · (ci, exp(tpi)) · · ·

(cn, exp(tpn))
)
|t=0

=
n∑

i=1

(c1,1) · · · (ci, pi1) · · · (cn,1)

satisfies the Leibniz rule:

Vp(1n)(ĉ ⊔⊔ d̂) =

n∑

i=1

(c1 ⊔⊔ d1,1) · · · (ci ⊔⊔ di, pi1) · · · (cn ⊔⊔ dn,1)

=

n∑

i=1

(c1 ⊔⊔ d1,1) · · · (p−1i (ci ⊔⊔ di),1) · · · (cn ⊔⊔ dn,1)

=
n∑

i=1

(c1 ⊔⊔ d1,1) · · · (p−1i (ci) ⊔⊔ di,1) · · · (cn ⊔⊔ dn,1)

+

n∑

i=1

(c1 ⊔⊔ d1,1) · · · (ci ⊔⊔ p−1i (di)),1) · · · (cn ⊔⊔ dn,1)

= Vp(1n)(ĉ)d̂(1n) + ĉ(1n)Vp(1n)(d̂).

The tangent space at z ∈ Gn(X), denoted TzGn(X), is defined via right
translation to be the vector space of linear functionals

Vp(z) : R⊗nLC〈〈X〉〉 → R, ĉ 7→
n∑

i=1

(c1, z1) · · · (ci, pizi) · · · (cn, zn)

so as to satisfy

Vp(z)(ĉ ⊔⊔ d̂) = Vp(z)(ĉ) d̂(z) + ĉ(z)Vp(z)(d̂).

For any p ∈ L̂n(X), the mapping

Vp : Gn(X) → TzGn(X), z 7→ (p1z1, . . . , pnzn)
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is a formal right-invariant vector field on Gn(X). Here X n will denote
the set of all such right-invariant vector fields. In this context, the
formal Lie derivative is defined to be the mapping

Lp : R⊗nLC〈〈X〉〉 → R⊗nLC〈〈X〉〉,

c1 ⊗ · · · ⊗ cn 7→
n∑

i=1

c1 ⊗ · · · ⊗ p−1i (ci) ⊗ · · · ⊗ cn

so that

Lpĉ(z) =

(
n∑

i=1

c1 ⊗ · · · ⊗ p−1i (ci) ⊗ · · · ⊗ cn

)
(z1, . . . , zn)

=

n∑

i=1

(c1, z1) · · · (ci, pizi) · · · (cn, zn)

= Vp(z)(ĉ), (5.41)

and directly

Lp(ĉ ⊔⊔ d̂)(z) = (Lpĉ(z)) d̂(z) + ĉ(z)Lpd̂(z).

In this generalized setting, a set of n systems with state z =
(z1, z2, . . . , zn) evolves on the group Gn(X) according to the state equa-
tions

żj =
m∑

i=0

xizjuij , zj(0) = 1,

where uij ∈ Lp[0, T ] and u0j = 1 for i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
Define ℓ outputs yk = ĉk(z), where ĉk ∈ R⊗nLC〈〈X〉〉, k = 1, 2, . . . , ℓ.
Therefore, the corresponding input-output map u 7→ y takes an m×n
matrix of inputs to ℓ outputs. Consider now the situation where a
network is formed by allowing each system input to be interconnected
to some function of other systems’ outputs and a new external input vij
to yield a new input-output map v 7→ y, for example, uij = d̂ij(z) +

vij , where d̂ij ∈ R⊗nLC〈〈X〉〉. In this case, the state equations for the
interconnected system become

żj = x0zj +
m∑

i=1

xid̂ij(z)zj + xizjvij , zj(0) = 1.

Note, in particular, the appearance of state dependent vector fields
pjzj with pj(t) =

∑m
i=1 xid̂ij(z(t)) ∈ L̂(X). The solution to żj = pjzj ,
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zj(0) = 1 has the form zj(t) = exp(Uj(t)), where Uj(t) ∈ L̂(X). The
corresponding tangent vector at z(t) is

Vp(t)(z(t)) : R⊗nLC〈〈X〉〉 → R,

ĉ 7→ d

dt
(ĉ ◦ z(t))

=

n∑

j=1

(c1, z1(t)) · · · (cj , pj(t)zj(t)) · · · (cn, zn(t))

= Lp(t)ĉ(z(t)). (5.42)

Substituting pj(t) =
∑m

i=1 xid̂ij(z(t)) on the right-hand side above,

where d̂ij(z(t)) = (d
(1)
ij , z1(t)) · · · (d(n)ij , zn(t)), gives

Lp(t)ĉ(z(t)) =
n∑

j=1

(c1, z1(t)) · · · (cj , pj(t)zj(t)) · · · (cn, zn(t))

=

n∑

j=1

(c1, z1(t)) · · ·
m∑

i=1

d̂ij(z(t))(cj , xizj(t)) · · · (cn, zn(t))

=
m∑

i=1

n∑

j=1

(c1 ⊔⊔ d
(1)
ij , z1(t)) · · · (x−1i (cj) ⊔⊔ d

(j)
ij , zj(t))

· · · (cn ⊔⊔ d
(n)
ij , zn(t))

=: ĉ′(z(t)). (5.43)

In this way, a second Lie derivative can now be computed directly
using (5.42), thus circumventing the difficult task of explicitly com-
posing time-varying vector fields. Henceforth, all such state dependent
Lie series will be written as p(z).5 In this context, a generalization of
Definition 5.10 is presented.

Definition 5.11 Let Vi ∈ X n, i = 0, 1, . . . ,m with

Vi : Gn(X) → TzGn(X),

z = (z1, . . . , zn) 7→ Vi(z) = (Vi1(z)z1, . . . , Vin(z)zn),

where Vij(z(t)) ∈ L̂(X). The j-th component of the corresponding state
equation on Gn(X) is

5 No other type of state dependent series will appear in this chapter.
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żj =

m∑

i=0

Vij(z)zjuij , zj(0) = zj0. (5.44)

Given ĉk ∈ R⊗nLC〈〈X〉〉, k = 1, 2, . . . , ℓ, the k-th output equation is
defined to be

yk = ĉk(z). (5.45)

Collectively, (V, z0, ĉ) is an n dimensional universal realization

on Gn(X) of the input-output map u 7→ y.

Calling the integer n the dimension of the realization is somewhat
of a misnomer as the underlying group Ĝ(X) is not finite dimensional,
therefore neither is the state z. Nevertheless, the terminology will be
used for convenience. The following example illustrates how the con-
cept naturally arises when Fliess operators are cascaded.

Example 5.21 Suppose X = {x0, x1} and consider the systems y2 =
Fc[u2] and y1 = Fd[u1] with c = x21 and d = x1. The generating series
for the cascade interconnected system y2 = Fc◦Fd[u1] can be computed
directly from the composition product (Theorem 3.20) to be

c ◦ d = (c, x21)ψd(x
2
1)(1) = ψd(x1) ◦ ψd(x1)(1)

= x0(x1 ⊔⊔ (x0(x1 ⊔⊔ 1))) = x0x1x0x1 + 2x0x0x1x1.

Each system has a one dimensional universal realization. So setting
u2 = y1 yields the two dimensional universal realization:

ż1 = x0z1 + x1z1u1, z1(0) = 1

ż2 = (x0 + x1(d, z1))z2, z2(0) = 1

y2 = (1, z1)(c, z2).

(Note that (1, z1) = 1 and u1 := u11.) Therefore,

V0(z) =

[
x0z1

(x0 + x1(d, z1))z2

]
, V1(z) =

[
x1z1

0

]
, (5.46)

and ĉ = 1⊗ c. Observe that the composition Fc ◦Fd = Fc◦d introduces
in the second component of the tangent vector V0(z) a z1 dependence.

Let ei ∈ RmLC〈〈X〉〉 denote the series with the i-th component series
being the monomial 1, and the remaining components are the series
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having all coefficients equal to zero. Define 1m =
∑m

i=1 ei. Given cj ∈
RLC〈〈X〉〉, let ĉj = 1⊗ · · · ⊗ 1⊗ cj ⊗ 1 · · · ⊗ 1 ∈ R⊗mLC 〈〈X〉〉, where cj
appears in the j-th position. The next theorem describes the class of
additive networks of Chen-Fliess series. Its proof is straightforward.

Theorem 5.22 Consider a set of m single-input, single-output Fliess
operators mapping ui 7→ yi with generating series ci ∈ RLC〈〈Xi〉〉,
where Xi = {x0, xi}. Let M ∈ Rm×m be a weighting matrix for the
interconnections ui = vi +

∑m
j=1Mijyj , i = 1, 2, . . . ,m. Then the

input-output map v 7→ y has a well defined m dimensional universal
realization (V,1m, ĉ) with

V0(z) =




x0z1
x0z2
...

x0zm


+ diag(x1z1, . . . , xmzm)M




(c1, z1)
(c2, z2)

...
(cm, zm)


 ,

and Vi(z) = xiziei for i = 1, 2, . . . ,m.

M

c

y v 

Fig. 5.6. Single system additively interconnected.

Example 5.22 A single system additively interconnected with itself
as shown in Figure 5.6 would correspond to propositional output feed-
back, i.e., u = v+My (dropping all subscripts). Thus, the correspond-
ing universal realization is given by

V0(z) = (x0 + x1M(c, z))z, V1(z) = x1z,

z0 = 11 = 1, and ĉ = c. (See Problems 5.5.1 and 5.5.2 for additional
interconnection examples.)

The next assertion is that universal realizations provide a direct
method for computing generating series of interconnected Fliess op-
erators. This Lie theoretic approach is often more tractable for inter-
connections with complex topologies than the Hopf algebraic methods
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in Chapter 3. It requires the notion of a universal representation of a
generating series as presented in the next section.

5.6 Universal Representations

In Section 4.2, the notion of a linear representation of a formal power
series in R〈〈X〉〉 was introduced. In this section, the following gener-
alization is considered.

Definition 5.12 A universal representation of a series d ∈ R〈〈X〉〉
is any triple (µ, z0, ĉ), where

µ : X∗ → X n, xi 7→ Vi

defines a monoid homomorphism, z0 ∈ Gn(X), and ĉ ∈ R⊗nLC〈〈X〉〉, so
that for any word η = xikxik−1

· · · xi1 ∈ X∗

(d, η) = Lµ(η)ĉ(z0) := Lµ(xi1 )Lµ(xi2 ) · · ·Lµ(xik )ĉ(z0). (5.47)

By definition, (d, ∅) = L∅ĉ(z0) := ĉ(z0). The integer n ≥ 1 will be
called the dimension of the representation.

Example 5.23 For the trivial case where n = 1, µ(xi) = xi, z0 = 1,
and d = ĉ = c, it is immediate that (5.47) reduces to (5.40) when
ℓ = 1.

The following lemma provides a sufficient condition under which
universal representations are always well defined.

Lemma 5.5 Given (µ, z0, ĉ), if for each xi ∈ X [µ(xi)]j(z) := Vij(z)zj
with Vij(z) being some Lie polynomial in L(X), then there exists a well
defined d ∈ R〈〈X〉〉 satisfying (5.47).

Proof: If (µ, z0, ĉ) is a universal representation of d then necessarily
for any η = xi1 · · · xik ∈ X∗

(d, xik · · · xi1) = Lµ(xi1 )Lµ(xi2 ) · · ·Lµ(xik )ĉ(z0),

where each Vij(z) is assumed to be a Lie polynomial. Therefore, each
Lie derivative can be written as a polynomial in functions of the form
(e, pizi) with pi ∈ L(X), i = 1, 2, . . . , n, and e ∈ RLC〈〈X〉〉, implying
that d is well defined, in fact, locally finite.
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Example 5.24 Continuing Example 5.21, the claim is that c ◦ d has
a formal representation (µ,12, ĉ), where µ is defined in terms of the
vector fields V0 and V1 in (5.46) and ĉ = 1⊗ c. Note that both vector
fields satisfy the condition in Lemma 5.5. As an example, it is verified
that

(x20x
2
1, c ◦ d) = Lµ(x20x21)ĉ(1) = LV1LV1LV0LV0 ĉ(1) = 2.

First apply (5.42) (suppressing all t dependence)

LV0 ĉ(z) = (c, V02(z)z2)

= (x21, (x0 + x1(x1, z1))z2).

Regarding the z1 dependence of V02(z), use (5.43) to get

LV0 ĉ(z) = (x1, z1)(x1, z2) = (x1 ⊗ x1)(z1, z2) = ĉ′(z).

Applying (5.42) and (5.43) a second time gives:

LV0LV0 ĉ(z) = LV0 ĉ
′(z)

= (x1, V01(z)z1)(x1, z2) + (x1, z1)(x1, V02(z)z2)

= (x1, x0z1)(x1, z2) + (x1, z1)(x1, (x0 + x1(x1, z1))z2)

= (x1, z1)2(1, z2)

= (x1 ⊔⊔ x1, z1)(1, z2)

= (x1 ⊔⊔ x1 ⊗ 1)(z1, z2)

= (2x21 ⊗ 1)(z1, z2) = ĉ′′(z).

Continuing in this fashion,

LV1LV0LV0 ĉ(z) = LV1 ĉ
′′(z) = (2x1, z1)(1, z2)

= (2x1 ⊗ 1)(z1, z2) = ĉ′′′(z)

and

LV1LV1LV0LV0 ĉ(z) = LV1 ĉ
′′′(z) = (21, z1)(1, z2).

Therefore, (x20x
2
1, c ◦ d) = LV1LV1LV0LV0 ĉ(1) = 2 as expected.

The proposition in the previous example is established in the gen-
eral case by the following theorem.
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Theorem 5.23 If d ∈ R〈〈X〉〉 has a well defined universal representa-
tion (µ, z0, ĉk), then the input-output map u 7→ yk of the corresponding
universal realization (5.44)-(5.45) has a Chen–Fliess series represen-
tation with generating series d.

Proof: Without loss of generality, assume there is a single output so
that the subscripts on ĉk and yk can be dropped. Likewise, assume
n = 1 so the index on the state can be omitted. Since ż(t) is a tangent
vector at z(t) ∈ Ĝ(X) for any t ≥ 0, it follows directly from (5.41) that

ż(t)(ĉ) =

m∑

i=0

Vi(z(t))(ĉ)ui(t)

=
m∑

i=0

LVi ĉ(z(t))ui(t).

Integrating both sides on [0, t] and applying (5.43) gives

ĉ(z(t)) = ĉ(z0) +

m∑

i=0

∫ t

0
LVi ĉ(z(τ))ui(τ) dτ

= ĉ(z0) +

m∑

i=0

∫ t

0
ĉ′i(z(τ))ui(τ) dτ, (5.48)

where LVi ĉ(z(τ)) = ĉ′i(z(τ)) = (ĉ′i, z(τ)). Substituting ĉ′i for ĉ above
yields

ĉ′i(z(t)) = ĉ′i(z0) +

m∑

i=0

∫ t

0
ĉ′′i (z(τ))ui(τ) dτ. (5.49)

Noting that y(t) = ĉ(z(t)) and substituting (5.49) into (5.48) gives

y(t) = ĉ(z0) +

m∑

i=0

LVi ĉ(z0)

∫ t

0
ui(τ) dτ+

m∑

i1,i2=0

∫ t

0

∫ τ1

0
LVi1 ĉi2(z(τ2))ui2(τ2) dτ2 ui1(τ1) dτ1.

Continuing in this way yields

y(t) =
∑

η∈X∗

Lµ(η)ĉ(z0)Eη [u](t)
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=
∑

η∈X∗

(d, η)Eη [u](t),

which proves the theorem.

For additively interconnected networks of Fliess operators, the fol-
lowing theorem applies.

Theorem 5.24 The input-output map v 7→ y of any additive inter-
connection of m single-input, single-output Fliess operators with gen-
erating series ci ∈ RLC〈〈Xi〉〉 has a well defined generating series
d ∈ Rm〈〈X〉〉, where dj has the formal representation (µ,1m, ĉj) with
µ defined in terms of the vector fields in Theorem 5.22.

Proof: The claim follows directly from Lemma 5.5 and Theorem 5.23
with µ(xi) = Vi, i = 0, 1, . . . m, z0 = 1m, and ĉj ∈ R⊗mLC 〈〈X〉〉.

Example 5.25 Reconsider the single system additively interconnected
with itself in Example 5.22. For a unity feedback system, i.e., M = 1,
applying (5.47) gives the following generating series for the closed-loop
system:

(d,1) = c(1) = (c,1)

(d, x1) = LV1c(1) = (c, x1)

(d, x0) = LV0c(1) = (c, x0) + (c, x1)(c,1)

(d, x21) = LV1LV1c(1) = (c, x21)

(d, x0x1) = LV1LV0c(1) = (c, x0x1) + (c, x1)(c, x1)+

(c, x21)(c,1)

(d, x1x0) = LV0LV1c(1) = (c, x1x0) + (c, x21)(c,1)

(d, x20) = LV0LV0c(1) = (c, x20) + (c, x1)(c, x0)+

(c, x1x0)(c,1) + (c, x0x1)(c,1)+

(c, x1)(c, x1)(c,1) + (c, x21)(c,1)(c,1)

...

These expressions are consistent with those given in Section 3.7, where
d = S(−c), and S is the antipode of the output feedback Hopf algebra.
(See Problems 5.6.1 and 5.6.2 for additional examples.)
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5.7 Relative Degree and Universal Zero Dynamics

Given a one dimensional universal realization with generating series
c ∈ RLC〈〈X〉〉, the main question addressed in this section is under
what conditions is the system left-invertible? That is, given an output
y in the range of Fc, when does there exist a unique input u so that
y = Fc[u]? If c is not locally convergent, then the formal version of
the problem is to find a unique series cu ∈ R[[X0]] such that for a
given cy ∈ R[[X0]] it follows that cy = c ◦ cu. Of particular interest
in control theory is the case where y (cy) is identically zero for some
u∗ (cu∗). This situation arises in output tracking problems where y
is the tracking error. In this context, the problem can be interpreted
as when does the tracking problem have an exact solution on an in-
terval [t0, t0 + T ] as opposed to an asymptotic solution where y only
approaches zero on the interval? The dynamics for P [u∗] in this situa-
tion are called the universal zero dynamics. They correspond to a Chen
series which is orthogonal to the generating series c, i.e., (c, P [u∗]) = 0
on [t0, t0 + T ]. The more general case where y is not zero will also be
addresses in this section. The presentation concludes by a brief discus-
sion addressing whether this invertibility property is preserved under
system interconnections.

First observe that any c ∈ R〈〈X〉〉 can always be decomposed into
its natural and forced components, that is, c = cN + cF , where cN :=∑

k≥0(c, x
k
0)xk0 and cF := c−cN . The focus will be on the single-input,

single-output case to keep the notation simple. The follow definition
is essential.

Definition 5.13 Given c ∈ R〈〈X〉〉 with X = {x0, x1}, let r ≥ 1 be
the largest integer such that supp(cF ) ⊆ xr−10 X∗. Then c has relative

degree r if the linear word xr−10 x1 ∈ supp(c), otherwise it is not well
defined.

It is immediate that c has relative degree r if and only if there exists
some e ∈ R〈〈X〉〉 with supp(e) ⊆ X∗\{X∗0 , x1} such that

c = cN + cF = cN +Kxr−10 x1 + xr−10 e (5.50)

and K 6= 0. From this characterization it is clear that if c has relative
degree r, then

(c, xk0x1) = Lx1L
k
x0c(1) = 0, k = 0, 1, . . . , r − 2

(c, xr−10 x1) = Lx1L
r−1
x0 c(1) 6= 0.
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Example 5.26 Consider a linear time-invariant system with transfer
function H(s) =

∑
k≥r hks

−k, where hr 6= 0 and r ≥ 1. The corre-

sponding generating series is the linear series c =
∑

k≥r hkx
k−1
0 x1 with

relative degree r. This corresponds to the classical definition of relative
degree in linear system theory.

Example 5.27 The linear series c = x1 + x1x0 has relative degree
r = 1, while the linear series d = x1x0 does not have relative degree.

Next, conditions are developed under which the zero output is in
the range of a given Fc. This will be done in the formal case so that
Fc[u] = 0 whenever the Chen-Fliess converges.

Definition 5.14 A series c ∈ R〈〈X〉〉 is said to be nullable if the zero
series is in the range of the mapping c ◦ : R[[X0]] → R[[X0]], cu 7→ c◦cu.
That is, there exists a nulling series cu∗ ∈ R[[X0]] such that c◦cu∗ = 0.
The series is strongly nullable if it has a nonzero nulling series. A
strongly nullable series is primely nullable if its nulling series is
unique.

It follows from the definition of the composition product that (c ◦
cu, ∅) = (c, ∅) for all cu ∈ R[[X0]]. Thus, if c is nullable, then necessarily
c must be proper. Also, every series c = cF satisfies c ◦ 0 = 0. Thus, it
is nullable. If c = cN + cF with cN 6= 0, then c ◦ 0 = cN . Therefore, if
c is nullable, it must be strongly nullable.

Example 5.28 Observe that c = x20 − x1x0 is primely nullable since
c ◦ 1 = x20 − x20 = 0, and cu∗ = 1 is the only series with this property.

Example 5.29 The polynomial c = x0 + x0x1 is not nullable since
c ◦ cu = x0 + x20cu 6= 0 for all cu ∈ R[[X0]].

A sufficient (but not necessary) condition for a series to be primely
nullable is presented next. If c, d ∈ R〈〈X〉〉 with m = 1 and d non-
proper, then one can define the quotient c/d = c ⊔⊔ d ⊔⊔ −1 so that
Fc/Fd = Fc/d with the shuffle inverse of d defined as
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d ⊔⊔ −1 = ((d, ∅)(1 − d′)) ⊔⊔ −1 = (d, ∅)−1(d′) ⊔⊔ ∗,

where d′ = 1 − (d/(d, ∅)) is proper and (d′) ⊔⊔ ∗ :=
∑

k≥0(d
′) ⊔⊔ k (see

Problem 2.4.11). The following lemma is needed.

Lemma 5.6 If c, d, e ∈ R〈〈X〉〉 with d non-proper, then

(c/d) ◦ e = (c ◦ e)/(d ◦ e).

Proof: It can be shown directly from the definition of the composition
product that if d is non-proper then so is d ◦ e. In fact, (d ◦ e, ∅) =
(d, ∅) 6= 0. Thus, both sides of the equality in question are at least well
defined formal power series. In light of the known identity

(c ⊔⊔ d) ◦ e = (c ◦ e) ⊔⊔ (d ◦ e) (5.51)

for any c, d, e ∈ R〈〈X〉〉 (see Problem 2.7.7(d)), it is sufficient to show
that

d ⊔⊔ −1 ◦ e = (d ◦ e) ⊔⊔ −1. (5.52)

It is clear via induction that for any k ∈ N,

d ⊔⊔ k ◦ e = (d ◦ e) ⊔⊔ k.

Therefore, since d is non-proper, it follows that

d ⊔⊔ −1 ◦ e = (d, ∅)−1 lim
n→∞

n∑

k=0

(d′) ⊔⊔ k ◦ e

= (d ◦ e, ∅)−1 lim
n→∞

n∑

k=0

(d′ ◦ e) ⊔⊔ k

= (d ◦ e) ⊔⊔ −1.

As d′ and d′ ◦ e are both proper, all the limits above exist (in the
ultrametric sense), and thus, the claim is verified.

Theorem 5.25 If c ∈ R〈〈X〉〉 has relative degree r, and supp(cN ) ⊆
xr0X

∗
0 is nonempty, then c is primely nullable.

Proof: Since cN 6= 0 by assumption, any nulling series must be
nonzero. The claim is that c has a unique nonzero nulling series. Ap-
plying the identity in Problem 2.7.7(f) to cy = c ◦ cu with m = 1 (let
d1 = d) under the assumption that c has relative degree r gives
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cy = c ◦ cu
x−10 (cy) = x−10 (c) ◦ cu

...

x−r+1
0 (cy) = x−r+1

0 (c) ◦ cu
x−r0 (cy) = x−r0 (c) ◦ cu + cu ⊔⊔ ((xr−10 x1)

−1(c) ◦ cu).

Since (xr−10 x1)
−1(c) is non-proper (specifically, ((xr−10 x1)−1(c), ∅) =

K 6= 0 in (5.50)) it can be shown that (xr−10 x1)−1(c) ◦ cu is also non-
proper and thus has a shuffle inverse. Setting x−r0 (cy) = 0 and dividing
by (xr−10 x1)

−1(c) ◦ cu gives an expression that cu∗ must satisfy

0 = (x−r0 (c) ◦ cu)/((xr−10 x1)−1(c) ◦ cu) + cu∗ .

Next, applying Lemma 5.6 yields

0 = (x−r0 (c)/(xr−10 x1)
−1(c)) ◦ cu∗ + cu∗ .

The previous equation can be written as

0 = (δ + (x−r0 (c)/(xr−10 x1)
−1(c))) ◦ cu∗

= (δ + (Lrx0c(1)/Lx1L
r−1
x0 c(1)))︸ ︷︷ ︸

:=dδ

◦cu∗ ,

where dδ is an element of the group δ + R〈〈X〉〉 described in Theo-
rem 3.29. Therefore, one can solve for cu∗ directly via left inversion to
give

cu∗ = d◦−1δ ◦ 0 (5.53)

(see Problem 5.7.1 for the locally convergent case). That is, there exists
a unique cu∗ that will zero out all the coefficients of cy with the excep-
tion of the first r coefficients. These initial coefficients are completely
determined by c since

(cy, x
k
0) = (x−k0 (cy), ∅) = (x−k0 (c) ◦ cu, ∅)

= (x−k0 (c), ∅) = (c, xk0), k = 0, 1, . . . , r − 1.

By assumption supp(cN ) ⊆ xr0X
∗
0 . Hence, all the coefficients above

must be zero so that cy = 0 as desired.

Series satisfying the condition in Theorem 5.25 will be referred to
as linearly nullable since the linear word xr−10 x1 in its support plays a
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key role in computing the nulling series. In light of (5.50), every such
series has the form

c = xr0e0 +Kxr−10 x1 + xr−10 e1,

where r ∈ N, K 6= 0, e0 ∈ R[[X0]]\{0}, and supp(e1) ⊆ X∗\{X∗0 , x1}.
From the general identity (xk0c) ◦ d = xk0(c ◦ d) and the fact that the
composition product is left linear, it follows that

c ◦ cu∗ = (xr0e0 +Kxr−10 x1 + xr−10 e1) ◦ cu∗
= xr−10 ((x0e0 +Kx1 + e1) ◦ cu∗)

= 0.

That is, cu∗ is a solution to

(x0e0 +Kx1 + e1) ◦ cu∗ = x0(e0 +Kcu∗) + e1 ◦ cu∗ = 0.

Central to the proof of Theorem 5.25 is the observation that map-
ping c◦ under the condition that c has relative degree is injective since
it is left invertible. The following corollary, which also follows directly
from this proof, states that c◦ is never surjective on R[[X0]] under this
condition.

Corollary 5.3 Suppose c has relative degree r. Define cr−1N = (c, ∅) +
(c, x0)x0+· · ·+(c, xr−10 )xr−10 . Then the range of the mapping cu 7→ c◦cu
is the affine subspace of the R-vector space R[[X0]]

Rc := {cy = cr−1N + xr0e : e ∈ R[[X0]]}.

Therefore, c is nullable in this case only if cr−1N = 0.

Example 5.30 The polynomial c = x0 + x1 has relative degree r = 1
and cN = x0 ∈ x0X

∗
0 . Therefore, it is linearly nullable. Specifically,

cu∗ = −1 is the only series that yields c ◦ cu∗ = 0.

Example 5.31 Consider a linear time-invariant system with the fi-
nite dimensional state space realization (A,B,C), initial state z0, and
relative degree r. Its generating series has the form

c =

∞∑

k=r

CAkz0 x
k
0 +

∞∑

k=r

CAk−1B xk−10 x1
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(see Example 5.26 and Problem 1.4.5). If the zero-input response
y(t) =

∑
k≥r CA

kz0 t
k/k! is not the zero function, then the system

is linearly nullable with the unique nonzero nulling input u∗ given in
(1.36).

Example 5.32 The polynomial c = x20 − x1x0 in Example 5.28 does
not have relative degree since it does not have the required linear word
in its support (i.e., K = 0 in (5.50)). So it is primely nullable but not
linearly nullable.

Example 5.33 The polynomial c = x0 + x0x1 in Example 5.29 has
relative degree 2 and was shown not to be nullable. Observe cN = x0 6∈
x20X

∗
0 , which is consistent with Theorem 5.25.

Example 5.34 Consider the series c =
∑

η∈X+ |η|! η, where X+ :=
X∗/{∅}. The series has relative degree 1 and is linearly nullable. In
this instance, the corresponding Chen-Fliess series has the closed-form
expression

Fc[u] =
Fx0+x1 [u]

1 − Fx0+x1 [u]
.

Therefore, the unique nulling series for c is cu∗ = −1.

Let c ∈ R〈〈X〉〉 be nullable. Define the (two-sided) principal ideal

Ic = (c) := {c ⊔⊔ d : d ∈ R〈〈X〉〉}
in the shuffle algebra on R〈〈X〉〉.
Lemma 5.7 Every series in Ic is nullable. If c is strongly nullable,
then every series in Ic is strongly nullable.

Proof: Applying (5.51) it follows that (c ⊔⊔ d) ◦ cu∗ = (c ◦ cu∗) ⊔⊔ (d ◦
cu∗) = 0 if cu∗ is selected so that c ◦ cu∗ = 0, which is always possible
since c is nullable by assumption. The second claim is now obvious.

The first theorem below is obvious given the definition of primely
nullable. The second theorem is less trivial but not unexpected. It
confirms that the set of linearly nullable series is not closed under the
shuffle product.
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Theorem 5.26 If c, d ∈ R〈〈X〉〉 are primely nullable with cu∗ 6= du∗,
then c ⊔⊔ d is strongly nullable but not primely nullable.

Theorem 5.27 If c, d ∈ R〈〈X〉〉 are linearly nullable, then c ⊔⊔ d is
strongly nullable but not linearly nullable.

Proof: The strong nullability property follows directly from the lemma
above. Regarding the second assertion, if c ⊔⊔ d is linearly nullable,
then necessarily c ⊔⊔ d must have relative degree, say s, and (c ⊔⊔ d)N ∈
xs0X

∗
0 . Observe that if rc and rd are the relative degrees of c and d,

respectively, then

c ⊔⊔ d = (xrc0 e0 +Kcx
rc−1
0 x1 + xrc−10 e1) ⊔⊔

(xrd0 f0 +Kdx
rd−1
0 x1 + xrd−10 f1)

has the property that (c ⊔⊔ d)N ∈ xrc+rd0 X∗0 . But the assertion is that
c ⊔⊔ d cannot have relative degree rc + rd. This would require that the
shortest linear word in supp(c ⊔⊔ d)F be xrc+rd−10 x1 and all other words
in supp((c ⊔⊔ d)F ) must have the prefix xrc+rd−10 . This linear word will
only be present if

Kc(f0, ∅) +Kd(e0, ∅) 6= 0. (5.54)

This means that at least one of the constant terms (e0, ∅) or (f0, ∅)
must be nonzero. In addition, note that every word in the support of

(e0, ∅)xrc0 ⊔⊔Kdx
rd−1
0 x1 + (f0, ∅)xrd0 ⊔⊔Kcx

rc−1
0 x1

= Kd(e0, ∅)(xrc0 ⊔⊔ xrd−10 x1) +Kc(f0, ∅)(xrd0 ⊔⊔ xrc−10 x1)

has length rc + rd, and these words must have the required prefix
xrc+rd−10 since no other words in the larger shuffle product are short
enough to cancel these words. But the only way to remove an illegal
word would violate (5.54). For example, if rc = rd = 1, then

(e0, ∅)x0 ⊔⊔Kdx1 + (f0, ∅)x0 ⊔⊔Kcx1

= Kd(e0, ∅)(x0x1 + x1x0) +Kc(f0, ∅)(x0x1 + x1x0).

The illegal word x1x0 cannot be canceled without removing the re-
quired linear word x0x1. Thus, c ⊔⊔ d cannot be linearly nullable.

Example 5.35 Suppose c = x0 − x1 and d = x20 − x1. Both series are
linearly nullable with relative degree rc = rd = 1. The nulling series
for c is cu∗ = 1, and the nulling series for d is du∗ = x0. Observe
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c ⊔⊔ d = −x0x1 − x1x0 + 2x21 + 3x30 − x20x1 − x0x1x0 − x1x
2
0

does not have relative degree. Therefore c ⊔⊔ d is strongly nullable, but
not linearly nullable and not primely nullable.

Example 5.36 Suppose c = x0 + x1 and d = 1 + x1. In this case, c
is linearly nullable with relative degree rc = 1, and d also has relative
degree rd = 1 but is not nullable as it is not proper. Observe

c ⊔⊔ d = x0 + x1 + x0x1 + x1x0 + 2x21

is also linearly nullable with relative degree rc ⊔⊔ d = 1. That is, Theo-
rem 5.27 does not preclude the possibility that primely nullable series
can have shuffle factors that are not nullable.

Example 5.37 Suppose c = d = x0 − x1 so that both series are
linearly nullable with relative degree rc = rd = 1. As expected,

c ⊔⊔ d = 2x20 − 2x0x1 − 2x1x0 − 2x21

is not linearly nullable as it does not have relative degree, but it is
primely nullable since cu∗ = du∗ = 1 is the only nulling series for
c ⊔⊔ d as the shuffle product is an integral domain. That is, in general
(c ⊔⊔ d)◦eu = (c◦eu) ⊔⊔ (d◦eu) = 0 if and only if at least one argument
in the second shuffle product is the zero series.

In summary, if Rp〈〈X〉〉 is the set of all proper series in R〈〈X〉〉,
then the following inclusions hold:

Rp〈〈X〉〉 ⊃ nullable series ⊃ strongly nullable series ⊃ primely
nullable series ⊃ linearly nullable series.

In light of Theorems 5.26 and 5.27, only the set of nullable series and
strongly nullable series are closed under the shuffle product.

With conditions established under which a universal realization can
produce the zero output, it is now possible to define the notion of
universal zero dynamics.

Definition 5.15 Let X = {x0, x1}. Suppose c ∈ RLC〈〈X〉〉 has rela-
tive degree r and supp(cN ) ⊆ xr0X

∗
0 . Its universal zero dynamics,

z∗, are defined by

ż∗ = x0z
∗ + x1z

∗u∗, z∗(0) = 1. (5.55)
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The solution to (5.55) is the Chen series z∗ = P [u∗] = exp(U∗),
where U∗ := log(z∗). Therefore, y = (c, exp(U∗)) = 0 on some interval
[0, T ]. The bilinear structure of (5.55) gives immediately a Volterra
series representation of its solution

z∗(t) = ex0t +
∞∑

k=1

∫ t

0

∫ τk

0
· · ·
∫ τ2

0
ex0(t−τk)x1e

x0(τk−τk−1)

· · · x1ex0τ1 u∗(τk) · · · u∗(τ1) dτ1 · · · dτk (5.56)

or, equivalently,

z∗(t) = ex0t

[
1 +

∞∑

k=1

∫ t

0

∫ τk

0
· · ·
∫ τ2

0
Adx0τk(x1) · · ·

Adx0τ1(x1)u∗(τk) · · · u∗(τ1) dτ1 · · · dτk
]
,

where Adx0τk(x1) := e−x0τkx1ex0τk . In the event that c is not locally
convergent, then (5.55) can only be viewed formally in terms of the
generating series cu∗ satisfying

cy = c ◦ cu∗ = (cN + cF ) ◦ cu∗ = cN + cF ◦ cu∗ = 0. (5.57)

Example 5.38 Consider a linear generating series in RLC〈〈X〉〉

c = cN +
∑

k≥r

(c, xk−10 x1)xk−10 x1

with relative degree r and supp(cN ) ⊆ xr0X
∗
0 . In this case, cF ◦ cu∗ in

(5.57) reduces to series convolution

(cF ◦ cu∗ , xk0) =

k−1∑

j=r−1

(c, xj0x1)(cu∗ , x
k−1−j
0 ), k ≥ r.

Deconvolution can be done inductively using the fact that (c, xr−10 x1) 6=
0 to yield

(cu∗ , x
k
0) = − 1

(c, xr−10 x1)


(c, xk+r0 ) +

k+r−1∑

j=r

(c, xj0x1)(cu∗ , x
k+r−1−j
0 )




for k ≥ 0. For example, if c = cN +Kxr−10 x1, where K 6= 0, then
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u∗(t) = − 1

K

∞∑

k=r

(c, xk0)
tk−r

(k − r)!
.

In which case,

y(t) = (c, z∗(t))

= (cN +Kxr−10 x1, z
∗(t))

= (cN , e
x0t) +K

(
xr−10 x1,

∫ t

0
ex0(t−τ)x1 u

∗(τ) dτ

)

= (c, ex0t) −
(
xr−10 x1,

∞∑

k=r

(c, xk0)

∞∑

n=0

∫ t

0

(t− τ)n

n!

τk−r

(k − r)!
dτ xn0x1

)

=

∞∑

k=r

(c, xk0)
tk

k!
−
∞∑

k=r

(c, xk0)

∫ t

0

(t− τ)r−1

(r − 1)!

τk−r

(k − r)!
dτ

= 0,

using the identity for k ≥ r ≥ 1

∫ t

0

(t− τ)r−1

(r − 1)!

τk−r

(k − r)!
dτ =

tk

k!
.

Example 5.39 Reconsider the generating series c =
∑

η∈X+ |η|! η in
Example 5.34 where it was shown that cu∗ = −1. Therefore the uni-
versal zero dynamics are

z∗(t) = ex0t +
∞∑

k=1

(−1)k
∫ t

0

∫ τk

0
· · ·
∫ τ2

0
ex0(t−τk)x1e

x0(τk−τk−1)

· · · x1ex0τ1 dτ1 · · · dτk.

It is straightforward to show that (c, ex0t) = t/(1 − t). Thus, it must
follow since y = 0 that

∞∑

k=1

(−1)k
∫ t

0

∫ τk

0
· · ·
∫ τ2

0
(c, ex0(t−τk)x1e

x0(τk−τk−1) · · · x1ex0τ1)

dτ1 · · · dτk =
t

t− 1
,

a fact that is not obvious from a brute force calculation.
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The chapter is concluded by summarizing a few facts that are useful
in applications. Details regarding these results can be found in the
literature. First, Theorem 5.25 can be generalized by replacing cy =
0 by some cy in the range of Fc. This can be ensured by requiring
(cy, x

k
0) = y(k)(0) = (c, xk0) for k = 0, 1, . . . , r − 1, where r is the

relative degree of c. The proof of the following theorem requires only
a minor modification of the proof for this earlier result.

Theorem 5.28 Suppose c ∈ RLC〈〈X〉〉 has relative degree r. Let y
be analytic at t = 0 with generating series cy ∈ RLC [[X0]] satisfying
(cy, x

k
0) = (c, xk0), k = 0, . . . , r − 1. Then the input

u(t) =

∞∑

k=0

(cu, x
k
0)
tk

k!
, (5.58)

where

cu =

((
(xr0)−1(c− cy)

(xr−10 x1)−1(c)

)◦−1)

N

, (5.59)

is the unique analytic solution to Fc[u] = y on [0, T ] for some T > 0.

In general, this formula is best exercised using computer algebra
software and often requires the Taylor series for u to be truncated in
an implementation.

Second, many systems in applications are build by interconnecting
simpler subsystems. A natural question to consider is whether the
composite system has well defined relative degree if all its component
system have this property. Table 5.1 summarizes what is known about
this question. Note in particular that parallel interconnections can fail
to have relative degree, while output feedback always preserve relative
degree. The latter fact is well known in both linear and nonlinear
system theory.

Example 5.40 Suppose c = x0 + x0x1 and d = 1 − x0x1 + x0x
2
1 so

that rc = rd = 2. Observe that c + d = 1 + x0 + x0x
2
1 does not have

relative degree since the linear words have canceled.
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Table 5.1. Relative degrees for interconnections of SISO nonlinear control systems
having relative degree

connection value

rc+d min(rc, rd) if rc 6= rd

rc ⊔⊔ d
r = min(rc, rd) if rc 6= rd and

the series with r· 6= r is non proper

rc◦d rc + rd

rc ◦̃ dδ rc

rc⊚d min(rc, rd) if rc 6= rd

rc◦−1 rc

rc@d rc

rc ⊔⊔ −1 rc if c is non proper

rc/d
r = min(rc, rd) if rc 6= rd, and

c, d are non proper

Example 5.41 Let c = x1, which has relative degree one, and d =
1 + x0x1x0, which has no relative degree and is non proper. Observe
that c ⊔⊔ d = x1 + x1x0x1x0 + x0x

2
1x0 + x0x1x0x1 has relative degree

one.

Example 5.42 Let c = x0x1 and d = x21. Here rc = 2 and d has no
relative degree. Nevertheless, c ◦̃ dδ = x0x1 + x20x

2
1 has relative degree

two.

Example 5.43 Suppose c = 1 + x1, which has relative degree one.
Then from the identity x ⊔⊔ k

1 = k!xk1 , k ≥ 0 observe

(1 + x1)
⊔⊔ −1 =

∞∑

k=0

(−x1) ⊔⊔ k

= 1− x1 + 2x21 − 3!x31 + 4!x41 − · · · ,

which also has relative degree one.
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Example 5.44 When c is a linear series, the product c ◦̃ dδ is both
left and right R-linear. It then follows that

(δ + c)◦−1 = δ − c+ c◦2 − c◦3 + · · · ,

where c◦k denotes the composition power. If, for example, c = x1,
which has relative degree one, then

(δ + x1)
◦−1 = δ − x1 + x0x1 − x20x1 + · · · .

Clearly c◦−1 has relative degree one as expected.

Problems

Section 5.1

Problem 5.1.1 Let L be a Lie algebra with Lie bracket [·, ·].
(a) Show that the bracket operation is anti-symmetric.
(b) Verify the derivation identity (5.3) for adx.

Problem 5.1.2 Show that every Lie polynomial is proper.

Problem 5.1.3 Show that the mappings ̺ and λ as defined in (5.10)-
(5.11) and (5.12)-(5.13), respectively, are adjoints of each other, i.e.,

(̺(p), q) = (p, λ(q)), ∀p, q ∈ Rp〈X〉.

Problem 5.1.4 Verify identity (5.16).

Problem 5.1.5 Show that if p ∈ Rp〈X〉 such that sh∗(p) = (p⊗ 1) +
(1⊗ p), then (p, η ⊔⊔ ν) = 0 for all η, ν ∈ X+.

Problem 5.1.6 Show that

p = 2x1 + 3x0x1 − 3x1x0

is a Lie polynomial by applying each criterion in Theorem 5.5.
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Section 5.2

Problem 5.2.1 Let d ∈ R〈〈X〉〉 be a proper series.

(a) Compute (ed, ∅) and (log(1 + d), ∅).
(b) Show that ed = 1 if and only if d = 0.
(c) Verify that log(ed) = d and elog(1+d) = 1 + d.

Problem 5.2.2 Show that statement ii implies iii in Theorem 5.8.

Problem 5.2.3 Verify the first three terms of the Campbell-Baker-
Hausdorff formula (5.20) by direct calculation using only the power
series for log(c) and exp(c).

Problem 5.2.4 Prove identity (5.21) using induction.

Problem 5.2.5 Verify the following identities

d

dt
etxixje

−txi

∣∣∣∣
t=0

= [xi, xj ]

d

dt
e−txixje

txi

∣∣∣∣
t=0

= [xj , xi]

for all xi, xj ∈ X.

Problem 5.2.6 Prove the alternative differentiation formula

d

dt
eU(t) = eU(t) I − e−adU(t)

adU(t)

(
dU

dt

)

= eU(t)
∞∑

n=0

adnU(t)

(
dU

dt

)
(−1)n

(n+ 1)!
.

Problem 5.2.7 Verify the first three terms of the Campbell-Baker-
Hausdorff formula in equation (5.20) using the formula in Theo-
rem 5.10 and noting that

g(z) = I − z − I

2
+

(z − I)2

3
− · · · .
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Section 5.3

Problem 5.3.1 Prove Theorem 5.11.

Problem 5.3.2 Show by induction that the Magnus transformation
satisfies

M(ν) =
∑

η∈X∗

(
ν

η

)
η, ∀ν ∈ X∗, (5.60)

where
(ν
η

)
denotes the number of times the word η appears as a subword

in ν (see Problem 2.4.4).

Problem 5.3.3 Prove Theorem 5.13.

Problem 5.3.4 Let X and Y be vector fields on a Lie group G rep-
resented, respectively, as

Xh =
∑

i

αi(h)
∂

∂zi

∣∣∣∣∣
h

, Yh =
∑

i

βi(h)
∂

∂zi

∣∣∣∣∣
h

,

where αi and βi are real-valued functions on G.

(a) Show for any h ∈ G that

[X,Y ]h =
∑

j

[
∑

i

αi(h)
∂βj
∂zi

∣∣∣∣∣
h

− βi(h)
∂αj
∂zi

∣∣∣∣
h

]
∂

∂zj

∣∣∣∣∣∣
h

.

(b) Verify the identity (5.24).

Problem 5.3.5 Verify the claim in (5.27) that Adc is a Lie algebra
homomorphism for all c ∈ Ĝ(X).

Problem 5.3.6 Show that (xj)e
ãdxi = e−adxi (xj) for all xi, xj ∈ X.

Section 5.4

Problem 5.4.1 Fix the input function u(t) = tkU(t− t0).

(a) If X = {x1} and k = 1, verify that P [u](t) = exp((t2 − t20)x1/2).
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(b) If X = {x1} and k ≥ 0, verify that P [u](t) = exp((tk+1 −
tk+1
0 )x1/(k + 1)).

(c) If X = {x0, x1}, k = 1, and t0 = 0, compute P [u](t) up to word
length three.

Problem 5.4.2 Let X = {x0, x1, . . . , xm}. Fixed u ∈ Lm1 [t0, t1] and
let t ∈ [t0, t1]. The following notation for he Chen series will be used:

P [u](t, t0) =
∑

η∈X∗

η Eη[u](t, t0).

When t0 = 0, P [u](t, t0) reduces to the series P [u](t) considered in
Section 5.4. Verify the alternative forms of Chen’s identity given below.

(a) If (u, v) ∈ Lm1 [ta, tb]×Lm1 [tc, td], τ ∈ [ta, tb], and t ∈ [τ, τ+(td−tc)],
then P [v]((t− τ) + tc, tc)P [u](τ, ta) = P [v#τu](t, ta).

(b) If tc = τ , then P [v](t, τ)P [u](τ, ta) = P [v#τu](t, ta).
(c) If ta = tc = 0, then P [v](t− τ)P [u](τ) = P [v#τu]((t− τ) + τ).

Problem 5.4.3 In Chen’s original work, the concept of a path was
used instead of an input. A path U : [0, 1] → Rm corresponding to an
input u ∈ Lm1 [0, 1] is defined to have component functions

Ui(t) =

∫ t

0
ui(τ) dτ, i = 1, 2, . . . ,m.

The catenation of paths V and U at τ ∈ [0, 1] is defined to be

(V#τU)(t) =

{
U(t) : 0 ≤ t ≤ τ

U(τ) + V (t− τ) : τ < t ≤ τ + 1.

Let U−1(t) be the path associated with the input uS described in
Lemma 2.4, i.e., uS(t) = −u(1 − t), t ∈ [0, 1]. Verify the following
identities:

(a) U−1(t) = U(1 − t) − U(1)
(b) (U−1)−1 = U

(c) (U−1#1U)(t) =

{
U(t) : 0 ≤ t ≤ 1

U(2 − t) : 1 ≤ t ≤ 2
(d) Sketch the function in part (c) for the case where u1(t) = 1 and

u2(t) = 1 + 2t.
(e) Determine the Chen series P [0](2) and P [u](2) for the function in

part (d).



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

362 5. Lie Series and Universal Representations

Remark: The function (U−1#1U) can be renormalized in terms of arc
length so as to again define a path on [0, 1]. In this setting, Chen showed
that the set of paths forms a group GP so that the corresponding Chen
series map P : GP 7→ GC(X) taking paths (rather than inputs) to
the Chen group is a group homomorphism. In light of part (e), this
mapping is not injective.

Problem 5.4.4 Define the n-truncated Chen series to be

Pn[u] =
n∑

k=0

∑

η∈Xk

η Eη[u].

Show that Pn[u] satisfies the differential equation

d

dt
Pn[u] =

[
x0 +

n∑

i=1

xiui

]
Pn−1[u], n ≥ 1

with Pn[u](0) = 1 for n ≥ 0.

Problem 5.4.5 The following items are best addressed using the no-
tation from Problem 5.4.2.

(a) Let I be a neighborhood of some point t0 ∈ R. Suppose f : I → R

is a smooth function on I. Derive the following re-centering formula
given some t1 ∈ I using the binomial theorem

f(t) =

∞∑

k=0

(
∞∑

n=k

f (n)(t0)
(t1 − t0)

n−k

(n− k)!

)
(t− t1)k

k!
.

(b) Show that Chen’s identity on the alphabet X0 = {x0} is equivalent
to the binomial theorem.

(c) Suppose u1 ∈ Lm1 [t0, t1] and u2 ∈ Lm1 [t1, t2]. Derive the following
re-centering formula for Chen-Fliess series when t ∈ [t1, t2]

Fc[(u2#t1u1)](t) =
∑

η∈X∗


∑

ξ∈X∗

(c, ξ)Eη−1(ξ)[u1](t1, t0)


Eη[u2](t, t1).

(d) Re-center Fc about an arbitrary t1 when c =
∑

k≥0 x1
k. Is the

re-centered series still globally convergent?
(e) Re-center Fc about an arbitrary t1 when c =

∑
k≥0 x1

kk!. Is the
re-centered series still locally convergent? If so, comment on its
radius of convergence.
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Remark: The identity (2.17) is useful for part (c).

Problem 5.4.6 Show by example that the inclusions in Figure 5.5
are strict inclusions, i.e., GC(X) ⊂ Ĝ(X) ⊂ GM (X).

Problem 5.4.7 Verify the following for any alphabet X:

(a) The right-hand side of (5.35) evaluates to log(P [u]).
(b) For any xj ∈ X, π1(xij) = xj if i = 1 and zero otherwise.

Remark: Part (b) requires the following identity for the sum of multi-
nomial coefficients

∑

il>0
i1+···+ik=i

(
i

i1 · · · ik

)
= k!

{
i

k

}
,

where
{
i
k

}
are the Stirling numbers of the second kind.

Problem 5.4.8 While there is no simple recursion to compute the
terms of the generalized Campbell-Baker-Hausdorff formula (5.37),
there is always the brute force approach.

(a) Compute the second term of (5.37) by substituting the entire right-
hand side of (5.36) into the second term of (5.36) and isolating the
terms corresponding to words of length two.

(b) Apply a similar approach to compute the terms for words of length
three.

Section 5.5

M21

c1

y1v1

v2 y2

c2

M12

Fig. 5.7. Two systems additively interconnected.

Problem 5.5.1 Consider two additively interconnected systems as
shown in Figure 5.7, where Mij = 0 when i = j. and Mij = 1 for
i 6= j. Determine a universal realization for the mapping yi = Fdi [v],
i = 1, 2.
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Problem 5.5.2 A set of m single-input, single-output Fliess operators
mapping ui 7→ yi with generating series ci ∈ RLC〈〈Xi〉〉, where Xi =
{x0, xi}, and weighting matrix M ∈ Rm×m is said to be multiplicatively
interconnected if ui = vi

∏m
j=1Mijyj, i = 1, 2, . . . ,m.

(a) Determine a universal realization for the mapping yi = Fdi [v],
i = 1, 2.

(b) Describe this realization for the case where m = 1.

Section 5.6

Problem 5.6.1 Compute the terms of a universal representation for
the generating series di in Problem 5.5.1 up to word length two.

Remark: For networks involving more than one subsystem, coefficients
like (di, x1x2) cannot be computed using the methods in Chapter 3.

Problem 5.6.2 Compute the terms of a universal representation for
the generating series d in Problem 5.5.2(b) up to word length two
assuming M11 = 1.

Section 5.7

Problem 5.7.1 Let X = {x0, x1} and c ∈ RLC〈〈X〉〉.
(a) Show that

y(r) = F(xr0)
−1(c)[u] + uF(xr−1

0 x1)−1(c)[u].

(b) Using the result from part (a), show that if c has relative degree
r then the formula for the nulling input u∗ is as given in (5.53).

Problem 5.7.2 Let δ denote the Dirac delta function at t = 0.

(a) Verify that the Chen series is P [δ](t, 0+) = ex0tex1 , t ≥ 0+.
(b) What initial value problem is this the solution for?
(c) Show there exists a linearly nullable generating series c with the

property that y(t) = (c, P [δ](t, 0+)) = 0, t ≥ 0+.
(d) Show there exists an input u∗ 6= δ that nulls the output in part (c).

Does this violate the uniqueness claim in Theorem 5.25? Explain.
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Problem 5.7.3 For each series given below, determine its relative de-
gree from the definition and using Table 5.1 when applicable.

(a) c = x0 + x0x1 + x0x
2
1, d = 1 + x1, and c+ d.

(b) c = x1, d = 1 + x0x1, and c ⊔⊔ d
(c) c = x1, d = x1, and c ⊔⊔ d
(d) c = x1, d = x0x1, and c ◦ d
(e) c = 1 + x0x1, d = 1 + x1, c/d.

Bibliographic Notes

Section 5.1 The preliminaries concerning enveloping algebras and the
Poincaré-Birkhoff-Witt theorem largely follow the treatments present
in the books by Jacobson [125] and Reutenauer [169]. The two Bour-
baki volumes [15, 16] (English editions) provide a comprehensive treat-
ment of Lie groups and Lie algebras and also influenced the treatment
here. The claim concerning the universal property of an enveloping
algebra is proved in [169], while proofs for the Poincaré-Birkhoff-Witt
theorem can be found in the books by Humphreys [119], Jacobson
[125], Lothaire [153] and Varadarajan [203]. The material in Exam-
ple 5.3, including Theorem 5.2 regarding Lyndon word bases for free
Lie algebras, can be found in [153] as well as [169]. A thorough alge-
braic characterization of Lie polynomials appears in [169, Chapter 1].
Friedrichs’ criterion in Theorem 5.3 originally appeared in [81]. The
proof here (using Theorem 5.4 and Lemmas 5.1-5.2) is based on the
approach taken by Ree [168] (see also Lothaire [153]). Theorem 5.5 is
a straightforward reorganization of all the previously developed char-
acterizations of Lie polynomials. As was noted in [169, p. 80], Ree’s
criterion was extended by Cohn in [50] to an orthogonality condition
involving the shuffle product of words and linear spans of products of
Lie polynomials. Lemma 5.3 can be viewed as a special case of such a
result.

Section 5.2 As stated in the section, Theorem 5.6 characterizing Lie
series is a straightforward generalization of the criteria for Lie poly-
nomials summarized in Theorem 5.5. Theorem 5.7 is an elementary
result. The characterizations of exponential Lie series in Theorem 5.8
are due to Ree [168]. Analogous results for logarithmic Lie series also
appear in this paper. A comprehensive treatment and history of the
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Campbell-Baker-Hausdorff formula appears in [10]. Theorem 5.9 con-
cerning the derivative of an exponential series is based on the approach
taken in [169, Section 3.4], which in turn is based on the original papers
of Campbell [30], Baker [3], and Hausdorff [115]. Theorem 5.10 giving
an integral form of the Campbell-Baker-Hausdorff formula follows the
treatment by Hall in [112].

Section 5.3 The treatment of free groups and the Magnus group,
namely, Theorems 5.11-5.13, is based largely on the books by Baumslag
[6], Bourbaki [15], Hall [113], Lyndon and Schupp [157], and Magnus,
et al. [159]. A very concise presentation of Theorem 5.13 appears in [15,
Theorem 1, p. 151]. The identity (5.60) for the Magnus transformation
can be found in [153, Proposition 6.3.6]. See also [169, p. 132]. Two
(of many) books on classical finite dimensional Lie groups are that of
Boothby [11] and Helgason [116]. A survey of infinite dimensional Lie
group theory appears in [164]. An introduction to Chow’s theorem is
given by Brockett in [24]. A more recent treatment of the topic can
be found in [105]. The notion of the Malcev completion and Malcev
group first appeared in [160] and was further developed in [150, 167].
More modern treatments can be found in [32, 80]. Theorems 5.14 and
5.15 are elementary.

Section 5.4 This section is based primarily on the work of K.-T.
Chen, in particular, [37, 40]. A complete anthology of Chen’s papers
was compiled by Tondeur [201]. Chen was mainly interested in for-
mal power series derived from paths in Rm, while the focus of these
notes is on formal power series related to control functions, which can
be viewed as the derivatives of path component functions (see Prob-
lem 5.4.3). The notion of a drift control function, u0 = 1, is also unique
to the control theory setting. The notation used here and throughout
is distinct from Chen’s notation in order to be more compatible with
control theory. Fliess largely followed Chen’s notation in his founda-
tional work [71, 74]. The shift towards more control theoretic notation
began with the work of Sontag and Wang [191, 211, 212, 213, 214],
Wang [210], and Sussmann [195]. Theorems 5.16 and 5.17 providing
the fundamental properties of the Chen series first appeared in [37,
Theorem 2.1 and Lemma 4.1, Theorem 4.2, respectively]. The treat-
ment here starting with Lemma 5.4 follows the presentation of Wang
in [210]. Theorem 5.18 stating that the Chen group is subset of Mal-
cev group follows directly from [40, Proposition 5.3]. The formal case
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of a Chen series appearing in Theorem 5.19 is a more recent varia-
tion of the classical object and first appeared in [104]. The Campbell-
Baker-Hausdorff generalization in Theorem 5.20 based on π1 follows
the presentation in [169, Section 3.2, in particular, equation (3.2.2)].
Its alternative form, Theorem 5.21, has its origins in [37, Theorem 4.1].
The primary bases used in the literature for the free Lie algebras L(X)
(Hall bases, Lyndon bases, and Sirsov bases) all come from the same
basic construction as described in [207]. Sussmann used a Hall basis
for describing coordinates of the second kind in [195]. The analogous
problem for coordinates of the first kind is at present an open problem
as described in [140]. A more extensive description of the problem,
some background information, and potential directions for investiga-
tion can be found in [82, 137, 138, 139]. Problem 5.4.5 is based on
[13, 14].

Section 5.5 The one dimensional universal realization is due to
Kawski and Sussmann who used the term universal control system
[141, 195]. Certain aspects of this framework can also be found in
[111, 109]. The extension to the n dimensional case can be found in
[94].

Section 5.6 All the material in this section was developed in [94].
Applications to network analysis appeared in [90].

Section 5.7 The material in this section is largely the work of the
author and his collaborators. See, in particular, [88, 92, 95, 96, 102].
See also [90, 91] for related results.
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González, Bilinear systems interconnections and generating series of
weighted Petri nets, Systems and Control Letters, 58 (2009), 841–848.

[98] W. S. Gray and Y. Li, Generating series for interconnected analytic nonlin-
ear systems, SIAM Journal on Control and Optimization, 44 (2005), 646–
572.



a4Rw60Zb2yEdition 1.3, Copyright © 2025 by W. Steven Gray

472 References

[99] W. S. Gray, M. Palmstrøm, and A. Schmeding, Continuity of formal power
series products in nonlinear control theory, Foundations of Computational
Mathematics, 2022. https://doi.org/10.1007/s10208-022-09560-0.

[100] W. S. Gray and J. M. A. Scherpen, Hankel operators and Gramians for
nonlinear systems, in Proceedings of the 37th IEEE Conference on Decision
and Control, Tampa, Florida, 1998, pp. 1416–1421.

[101] W. S. Gray and M. Thitsa, A unified approach to generating series for mixed
cascades of analytic nonlinear input-output systems, International Journal
of Control, 85 (2012), 1737–1754.

[102] W. S. Gray and G. S. Venkatesh, Relative degree of interconnected SISO
nonlinear control systems, Systems & Control Letters, 124 (2019), 99–105.

[103] W. S. Gray and Y. Wang, Fliess operators on Lp spaces: Convergence and
continuity, Systems and Control Letters, 46 (2002), 67–74.

[104] , Formal Fliess operators with applications to feedback interconnec-
tions, in Procceedings of the 18th International Symposium on the Mathe-
matical Theory of Networks and Systems, Blacksburg, Virginia, 2008.

[105] A. V. Greshnov and R. I. Zhukov, Control theory problems and the
Rashevskii-Chow theorem on a Cartan group, Siberian Mathematical Jour-
nal, (2024), 1096–1111.

[106] D. Grinberg and V. Reiner, Hopf algebras in combinatorics, https://arxiv.org
/abs/1409.8356, 2014.
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