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Preface

These lecture notes introduce a collection of techniques for the analy-
sis of nonlinear control systems rooted in the theory of formal power
series and their associated combinatorial algebras. Formal power se-
ries methods in control theory began with the work R. E. Kalman in
the 1960s, primarily in connection with the partial realization problem
for linear systems. Parallel developments by M. P. Schiitzenberger in
automata theory and the remarkable discoveries of K.-T. Chen in the
1950s concerning the algebra of iterated path integrals subsequently led
M. Fliess in the 1970s to introduce what is now called a Chen-Fliess
series or Fliess operator. The underlying formal power series which
generates such an operator provides an elegant and compact way to
represent the input-output map of a control affine nonlinear system. As
these generating series are indexed by words over a noncommutative
alphabet, there is a natural link between nonlinear control theory and
the combinatorics of words, a mature and beautiful field going back to
seminal papers of A. Thue at the start of the twentieth century.
Following the initial work of Fliess, the area grew rapidly with
important contributions by P. E. Crouch, G. Duchamp, A. Ferfera,
R. L. Grossman, C. Hespel, V. Hoang Ngoc Minh, A. Isidori, G. Ja-
cob, B. Jakubczyk, M. Kawski, D. Krob, M. Lamnabhi, F. Lamnabhi-
Lagarrigue, R. G. Larson, P. Lemux, N. E. Oussous, M. Petitot,
C. Reutenauer, F. Rotella, W. J. Rugh, E. D. Sontag, H. J. Sussmann,
X. G. Viennot, and Y. Wang. The work of A. Ferfera was especially
valuable for understanding how to describe interconnected nonlinear
systems using Chen-Fliess series. More recently, the author, in collabo-
ration with L. A. Duffaut Espinosa and K. Ebrahimi-Fard, has built on
the work of Ferfera to show that there are combinatorial Hopf algebras
underlying the feedback structures appearing in control theory. They
are useful for doing explicit calculations. This approach was largely
inspired by analogous combinatorial algebras appearing in the work of
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v Preface

A. Connes, D. Kreimer, and H. Moscovici in quantum field theory and
in J. C. Butcher’s approach to numerical integration. One of the goals
of these notes is to introduce the reader to some of these more recent
developments. Finally, it should be stated that these notes are simply
an introduction to the subject from one researcher’s point of view. A
more encyclopedic treatment of this topic is well beyond the scope of
this book.

It is generally assumed that the reader has had an introduction to
linear system theory, say at the level of Kailath’s Linear Systems, and
some exposure to elementary topics in real analysis, abstract algebra,
and differential geometry. The reader would also benefit from knowl-
edge of geometric system theory as presented in the book by Isidori
Nonlinear Control Systems. But otherwise, the treatment of the sub-
ject is from first principles and is as self-contained as possible. The
material is organized as follows. The first chapter is an overview of the
central topics that appear in later chapters. It is written in a more
casual style and meant to motivate the formal power series approach
to system theory while staying mainly in a linear system setting. It is
designed to be largely independent of the other chapters so that a more
experienced reader can start directly with Chapter 2 with little loss of
continuity. The rest of the book follows a more systematic theorem-
proof format. Chapter 2 introduces some elementary background and
tools concerning formal power series. Chapter 3 then addresses the
analysis of nonlinear input-output systems and their interconnections
from a formal power series perspective. Chapters 4 and 5 introduce the
notions of rational series and Lie series, respectively, which are then
applied in Chapter 6 to develop the theory of finite dimensional state
space realizations for nonlinear input-output systems.

W. S. Gray
April 2025
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1. Introduction

This chapter introduces some elementary concepts concerning real an-
alytic functions, formal functions, linear integral operators, and linear
state space realizations. The primary goal is to motivate the more gen-
eral treatment of these topics in subsequent chapters. From a system
theory point of view, real analytic functions provide a convenient class
of input and output signals. They can also be used to describe various
types of analytic systems. A formal function is a type of generalized
function which is sometimes more convenient for algebraic analysis
than a traditional function. Integral operators, linear or otherwise, de-
scribe a category of input-output systems frequently encountered in
applications. Starting with the linear case provides a familiar setting
in which to get oriented. Operators which have a finite dimensional lin-
ear time-invariant state space realization are of particular importance
as they are computationally convenient and ubiquitous in systems and
control theory.

1.1 Real Analytic Functions

A function v : U C R — R is said to be real analytic at a point tg € U,
if it can be represented in terms of a convergent power series

ut) = 3 ey L0 (1.1)

|
ne0 n:

on an interval (tg — T,to + 1) C U, where ¢ is a sequence of real
numbers, and T is either a positive real number or 7' = +oo. The
largest such T' for which the series (1.1) converges is referred to as
the radius of convergence of u at ty. When T = +oo, u is said to be
entire. The function w is real analytic on an interval (a,b) C U if it
is real analytic at every point to € (a,b). In this case, the radius of
convergence may vary as a function of tg.
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2 1. Introduction

One can extend the definition of u to a mapping on the complex
plane, C, by letting

o n
u(z) = Zc(n)% (1.2)

n=0
on the largest open disk Dy = {z € C : |z — tg| < T} for which the
series converges. The function is then analytic at ¢y in the sense of
complex variables, that is, the derivative of u exists not only at ¢ty but
at every point in some neighborhood of ty in the complex plane. In
fact, all the higher order derivatives of u are well defined in such a
neighborhood. The Cauchy integral formula says in this case that the
n-th derivative of u at ¢y can be computed as

gy — j{ _ou(z)
W) =50 P Tt

where C' is a closed contour lying within Dy and encircling the point
to, for example, all z satisfying |z — tg| = T’ < T. Since u is analytic
on and within the region Dj = {z € C: |z — to| < T}, the real-valued
function u(z) is continuous on this closed and bounded region. Hence,
there exists a nonnegative real number K satisfying

K = max |u(2)] .
2€D,

Setting z(t) = to + T"e" on [0,27] and applying the identity

27
74 feydz= [ fla) (t)dt
C 0
gives
e(m)] = |u™(to)|

o
T u(to + T'e') -
/ — 2Tt dt‘
0

n!
o (T'eit)nt1

n! K 27Td
<. t
<5 )

= KM"nl, Vn >0, (1.3)
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1.1 Real Analytic Functions 3

where M := 1/T’. This means then that the coefficients of an analytic
function can only grow in modulus at a certain maximum rate as n
increases. A sequence like c(n) = (n!)?, for example, can never define
an analytic function. The inequality (1.3) is called a Cauchy growth
condition and the real numbers K and M are growth constants for the
sequence c. They are not necessarily unique unless one considers the
smallest possible growth constants. Normally, M will be referred to
as a geometric growth constant for c. If some estimate M’ is available
a priori for a given sequence c¢ then a lower bound on the radius of
convergence for series (1.2) can be computed using the fact that

() < 3 ety 110
n=0

n!

<Y KM [z — o))"

n=0
That is, the series converges at least for all z € C such that M’ |z — to| <
1, or equivalently, when

|z —to] < 1/M' < T.

Conversely, if u is analytic at the origin with the nearest singularity
being 2’ # 0, then for any € > 0 there exists N € Ny := {0,1,2,...}
such that

1
le(n)| < <m —|—e> nl, n> N.

In which case, one can always find a constant K > 1 such that

1
le(n)] < K <W —|—e> n!l, n>0.
z

It is not difficult to show that 1/|2’| is in fact the smallest possible
geometric growth constant for c. Finally, if it is known that c¢ satisfies
the more restrictive growth condition

le(n)| < KM"™, Vn >0 (1.4)

then clearly
lu(z)| < KeMlz=tl vz e C,

implying that u is entire. Analogous statements can be made for the
real analytic series (1.1) by restricting z to the real number line.
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4 1. Introduction

A power series representation of a real analytic function is unique
in a local sense. Suppose there exists two series representations of u at
to, namely,

a(ty = 3 e(my =)

and
Zd t—to

with radii of convergence T, and T}, respectively. Since u is continuous
at to (see Problem 1.1.3), it follows that

[e.e]

. L (t—to)" _
tliglo u(t) = tliglo > c(n)T = ¢(0)
- t—to)"
lim u(t) = lim d(n)ﬂ = d(0),
t—to t—to £ n!

and thus, ¢(0) = d(0). A similar argument can be made for the function

i) o M) = 0) _ u(®) —d(0)

t—to t —to

to show that ¢(1) = d(1), and so on. In addition, since c¢(n) = d(n)
for all n > 0, it follows immediately that 7, = Ty =: T. Thus, if
there exists a power series representation of u at tg, it is unique. It
is also easily shown that if t; € R such that |[t; — 9| < T then the
series representation of w can be re-centered about t1. That is, u can
be written as

Zb L [t—t] < T — |t — tol,
where each b(n) is given by an absolutely convergent series

n):ic(n—l—k)(tl;i!to)k, n>0 (1.5)
k=0

(see Problem 1.1.4). So once a power series representation of u is iden-
tified at one point, any other power series representation at another
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1.1 Real Analytic Functions 5

point within the radius of convergence can be explicitly computed us-
ing equation (1.5). Modulo this type of transformation, it makes sense
to speak of the coefficients of u in a neighborhood of .

A fundamental idea throughout this book is that within the ra-
dius of convergence, the series coefficients of u completely characterize
the function u. Therefore, operating on the coefficients in some man-
ner produces a corresponding transformation of the function and vice
versa. Consider the following examples.

Example 1.1 As discussed earlier, if u is real analytic at tg, then it
is differentiable on a neighborhood of t3. Observe that

/ o (t —1 )n_l
u'(t) = Z C(n)Tol)!

n=1
[eS)

= Zc(n—kl)w

|
n:
n=0

= Zd(n)(t_nﬂ, it —to] < T (1.6)
n=0 ’

(see Problem 1.1.5). Therefore, the left-shift mapping between two
sequences
rtie—d, (1.7)

where d(n) = ¢(n + 1), n > 0 corresponds to mapping u to u'. 0

Example 1.2 Consider taking the square of u. Clearly,

(o.] B " . B .
u(t) = ;}c(n)% l;)dk)(tki!to)
_ 0 c(0) e(n) (1) e(n—1)
_n:0<0! n! 1! (n—l)'+"'+
CE?%) (t—to)"
= Zd(n)(t nfo)n’ b to| <T.
n=~0 !

Thus, the mapping between sequences
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6 1. Introduction

(-)2 tersd,
where d(n) := Y7o (7)c(k)e(n — k), n > 0 corresponds to mapping u

to u?. O

When u has coefficients which satisfy (1.4), u is entire, and its right-
sided Laplace transform is well defined (cf. Problem 1.1.6). Specifically,

Lll(s) = /O T u(t)e dt
S 00 ¢n L
= Z c(n) /0 e dt

n=0
= s_lzc(n)(s_l)", (1.8)
n=0

provided Re(s) > 0. In which case,

[ ZLlul(s)| < K [s7H Y (M ]s7)"
n=0

_ K5
1 MsT

whenever |s‘1‘ < 1/M =: S. The Laplace transform of u, when written
as a power series in s~!, is described by the same sequence, c, as is
its counterpart u in (1.1) modulo the factors 1/n! and the extra factor
of s~ corresponding to a right-shift of c. It is often convenient to
introduce an abstract symbol, x, and to write the sequence ¢ as a

formal power series
o0
c= E c(n) z".
n=0

The word formal in this case refers to the fact no actual summation
of the series terms is considered, so convergence is not an issue. In
this context, no notational distinction is usually made between the
sequence ¢ and the series c. The mapping

Ly tursc,

assuming ty = 0 in equation (1.1), is called the formal Laplace trans-
form (see Table 1.1 and Problem 1.1.7) It is well defined whether or

Edition 1.3, Copyright () 2025 by W. Steven Gray



1.1 Real Analytic Functions 7

Table 1.1. The formal Laplace transform of some common functions.

u(t), t>0 | Z4lu] |
t" kL k>0 zF
the® /K k> 0,a#0 o (”;:k) ara"tF
sin(bt) S (=)t gt
cos(bt) S (1)
sinh(bt) oo b gt
cosh(bt) S b

not the series (1.8) converges for any value of s~!. But when it does,
then clearly
Lul(s) = = Lyu]| ,_,
everywhere in the region of convergence for #[u] where the series
converges and where Re(s) > 0.1
One approach to characterizing the radius of convergence of (1.8)
involves forming the Hankel matriz of ¢, namely,

c(0) ¢(1) ¢(2)
| @) @) 3
He=| ¢(2) ¢(3) c(4)

In the event that H, has finite rank n > 0, it follows that the first n+1
columns of the matrix must be linearly dependent. That is, there exists
a polynomial § = >_)_,G(¢)z* with at least one coefficient G(¢) # 0
such that

Q(0)
(0) (1) e(n) 4
c(1) ¢(2) cn+1) .
o2) c3) - cn+2) - qgﬂ =0,
oo T :

! Some authors define the formal Laplace transform with a left-shift applied so
that Z[1] = 27" and L[u|(s) = Z[u]|, ,.-:. That convention will not be
used here.



8 1. Introduction

or equivalently,
n

> ek +0)§() =0, k=>0. (1.9)
(=0
Exploiting the Hankel structure, it is possible to show more specifically
that the first n columns of H. are linearly independent, and thus,
G(n) # 0 (see Problem 1.1.8). Now let ¢ be the polynomial derived from
¢ by simply reversing the order of its coefficients, i.e., q(i) = ¢(n — 1),
i1=0,1,...,n. Observe that

I
o)
—
-~
|
.
~—

Q
—
.
~—
8

=p, (1.10)

assuming that ¢(i) = 0 when ¢ < 0 and defining

n

p(i) = cli = 5)q(5)
§=0

)
=0
Note that equation (1.9) implies for & > 0 that

n

pln+k) =" c(n+k—j5in—j)
j=0
=) clk+6)q(f)
/=0
=0.

Thus, p can be viewed as the image of ¢ under an augmented Hankel
matrix, namely,
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1.1 Real Analytic Functions 9

T 00 ¢(0) T _
q(0) p(0)
oY W ) p(1)
0 ¢(0) - c(n—1) B
(1) e(2) - c(n+1) 0 0
c(2) ¢(3) - c(n +2)

(1.11)
In which case, p = ¢q is a polynomial in = of at most degree n — 1.
One could formally write then that ¢ = pg~!, where ¢~ is understood
to be a formal power series with the property ¢ '¢ = g¢~! = 1. In
this situation, c is called a rational series. Readers familiar with linear
system theory will recognize this as the formal counterpart to the re-
lationship between a rational transfer function and the system Hankel
matrix constructed from the series coefficients (Markov parameters) of
the transfer function when written as a power series in the variable s ™.
But in the present context, the corresponding Laplace transform of u is
a rational function in s~!. Specifically, Z[u](s) = s *N(s71)/D(s7!),
where

N(s7") = playsr, deg(N)<n—1 (1.12)
D(s7") = qlyys—1, deg(D) < n. (1.13)

It can be shown that N and D have no common roots as polyno-
mials in s~!, that is, the rational function N/D is irreducible (see
Problem 1.1.9). Therefore, the radius of convergence of the series rep-
resentation of Z[u] at the origin is S = min; |\;|, where )\; is the i-th
root of the polynomial D. When this analysis is combined with the
requirement that Re(s) > 0, which holds if and only if Re(s™!) > 0,
the resulting region of convergence is shown in Figure 1.1.

Example 1.3 If c= )., 2i=12% then the corresponding Hankel ma-
trix is -

01 2 4
1 2 4 8
2 4 8

Ho— 6 . |

—_

which clearly has rank two. Thus, there exists polynomials p and ¢
such that ¢ = pg~! with deg(p) < 1 and deg(q) < 2. From (1.11),
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10 1. Introduction

Fig. 1.1. The region of convergence for the series representation of £[u].

observe that

000 1 0 0
00 1 2 ~2 .
01 2 4 1 -
124 8 01 =1,
2 4 8 16 0 '

Therefore, § = 2> — 2z or ¢ = 1 — 2z and p = z. To confirm this
calculation, note that

T [ee] o0
-1 _ Qi i—1, i
c=pq —1_236—:8;2 —;2 x'.

The Laplace transform of the corresponding input

oo

%
u(t) = Zzi—l% = % (e* —1), t>0
i=1 ’

is
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> -2

— E i—1_,—1 S
f[u](s):s 1 2 18 :m
=1

The radius of convergence for the infinite sum is clearly defined by
!23‘1‘ <lor ‘s_1| < 1/2. This corresponds to the location of the pole
of D(s71) =1 —2s"1 at s7! = 1/2. Of course in system theory it is
more customary to write rational functions in terms of s rather than
571, but the latter is actually more natural when doing series analysis.

O

The notion of real analyticity can be extended to multivariable
functions in the following manner. A function f : U ¢ RF — R is
said to be real analytic at a point zog = (21,0,...,2k0) € R if it has a
convergent power series representation

e ni _ ng
21— 21,0 Zk — Zk,0
fG.nm) = Y c(m,...,nk)( ' S : )
ny N
ni,...,n=0
on some open neighborhood V' C U of zy, where each ¢(ny,...,nx) €

R’. Extending the setup to the complex variable setting and apply-
ing the corresponding version of the Cauchy integral formula gives an
expression for the coefficients

c(ny,...,ng)
_m nk?{ n+1"'f{ [z, ,nk_,,)_ldzk"'dzla
@mi)™ Jo, (21 — 21,0)™ o (21— 21,0)™

where each integral is defined componentwise, n := ny + ng - -+ + ng,
and |z; — z;0| < R; for i =1,2,... k. Define the growth constants

K =max max |f(z1,...,21)]
(2 ‘Zi—zi,0|<Ri
1
M — —
7 R,
assuming |y| := max{|y1|,...,|ye|}. Then it follows directly that
le(ni, ... ng)| < KM - M*ng! - - ny! (1.14)
§KM"n1'nk' (1.15)
< KM™n! (1.16)
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12 1. Introduction

with M := max;<;<; M; and using the multinomial coefficients prop-

erty
|
n n!
L
nyng - N nylng!---ny!

Clearly, the inequality (1.14) is the multivariable extension of the
Cauchy growth condition (1.3). Sometimes in calculations, however,
it is easier to use the more generous upper bounds (1.15) or (1.16).

1.2 Formal Functions

A function f: U C R™ — R’ is said to be smooth at a point zg € U if
its partial derivatives

9" f(2)
8ZZ'1 aZiQ e azik

z=2z0

are well defined for every i; € {1,...,m}, k = 0,1,.... The set of all
such functions will be denoted by C°(zg). It is possible in this case
that

0" f(2)
8ZZ'1 8ZZ'2 e azik

< KMF(E?

z=z0
only if s > 1. The constant s is called the Gevrey order of the growth
bound.? Two functions f,g € C*(zg) will be called ~, equivalent if
there exists an open neighborhood Uy of zy in the domain of each
function such that f = g on Uy.? It is easily verified that this is an
equivalence relation on C*°(zy). The quotient set, that is, the set of
all equivalence classes, is represented by C™(zg)/~.

Definition 1.1 A germ at zy is an equivalence class in C™(zg)/ ~q.

Two functions in f, g € C™(2) will be called ~; equivalent when

0" f(z) 9" g(2)

Ozil aziz s 82ik 2=20 azil 822'2 s azik 2=20

for all i; € {1,...,m}, k = 0,1,.... It is equally straightforward to
show that ~; also defines an equivalence relation on C'*°(2y), and the
corresponding quotient set is denoted by C°°(zy)/~;.

2 Classically, the definition assumes s € [1, 00), but it will be useful here to allow

s € ]0,00). See, for example, (1.4) and Problem 1.1.2.
3 The reader may want to review the material in Section A.2 of Appendix A.
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1.2 Formal Functions 13

Definition 1.2 An infinite jet at zo is an equivalence class in
C>(20)/~;-

Clearly f ~, g implies that f ~; g, but the following example
illustrates that the converse of this implication is false.

Example 1.4 Consider the functions f(z) = 0 for all z € R and

fe VP40
g(z)—{ 0 :z=0.

Both f and g are in C*°(0), and it can be directly checked that f ~; g
while f ¢, g. That is, an infinite jet is not a faithful representation of a
germ. Put another way, not all functions are equal to their Taylor series
in a region of convergence with nonzero radius unless they are real
analytic at the point in question. In this case, f is real analytic at zg =
0, while g is not (see Problem 1.2.1). Note in particular that ‘g(") 0)| =
0< KM™! n=0,1,... for any K, M > 0. So satisfying the Cauchy
growth condition alone is not sufficient for equating a function with
its Taylor series, that is,

o Zn
9(2) # D _g"M(0)—
n=0 ’
at every point except z = 0. 0

In the previous section, it was shown that given a function f : U C
R — R which is real analytic at a point, say zg = 0, one can uniquely
identify a formal power series ¢ = Z[f] which satisfies a Cauchy
growth condition. The above example, however, illustrates that the
reverse process of mapping a series to a smooth function is not as
simple as one might first surmise. Without the additional analyticity
assumption, such a series can only represent a class of functions. This
motivates the following definition.

Definition 1.3 A formal function at 2y is a class of functions de-
scribed by an infinite jet at zg.

A convenient way to describe the set of all formal functions at a point,
namely C*(zp)/ ~j, is to identify every infinite jet with a formal power
series defined over a set of symbols X = {z1,z9,..., 2}, usually
called an alphabet, where each letter x; represents an argument z; of
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14 1. Introduction

f- Specifically, define for any word x;, x;, - - - x;, the corresponding /-

vector
" f(2)
0z, 0ziy - 02y |,

(1.17)

Since the order of partial differentiation is not important, it is natural
to allow the letters of X to commute, i.e., x;x; = x;x;. In which case,
an ordering x1 < 9 < - -+ < I, can be introduced and a given infinite
jet can be uniquely identified with the formal power series

c= g c(ni,ng, ... ) it ay? - apm,

n1,n2,...,nm >0

where 2] := x;x; -+~ x; (v; appears n; times). If R? [[X]] denotes the
set of all possible ¢, then clearly C°°(zy)/ ~; can be identified with
at least a subset of R [[X]]. But it turns out that one can say more
than this. Consider, for example, the special case where m = 1 so that
f:U CR — RY and X = {z}. It can be shown that the formal
Laplace transform

Ly C%(z0) = RUX]], frre,

where the coefficients of ¢ correspond to the partial derivatives of f,
is a surjective mapping.* Hence, for the series ¢ = Y (n!)?z" there
exists at least one function in C'*°(zg) which is well defined on a neigh-
borhood of zp and whose derivatives grow at this non Cauchy rate. If
£ is restricted to real analytic functions then the coefficients of ¢, as
discussed in the previous section, must satisfy a Cauchy growth rate.
But in general, the image of % is all of R¢[[X]]. In this context, a
formal Borel transform is any mapping of the form

B R [[X]] — O (z0)

such that .2 %y(c) = c for all ¢ € R*[[X]]. That is, %/ is any right
inverse of .Zs. It constitutes a left inverse, namely, Z¢ Z(f) = f, only
in special cases, for example, when f is real analytic, and %, maps all
such series to the function defined by its convergent Taylor series. It
is more common to define the formal Laplace-Borel transform pair as

L Z c(n)Z—T > Zc(n)x”
n=0 ’ n=0

4 This is called Borel’s Lemma.
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1.3 Linear Integral Operators 15

By Z c(n)x" — Zc(n)ﬁ
n=0 n=0

Their interpretation is strictly in the formal sense when the series
involved do not converge, otherwise, they have the usual interpretation
as mappings between functions. In either case, > .,c(n)z™ is called
the generating function associated with ¢, while > o, c(n)z"/n! is
referred to as its exponential generating function. B

1.3 Linear Integral Operators

Since real analytic functions are always absolutely integrable within
their region of convergence, they provide a convenient class of ker-
nel functions for integral operators. Consider a causal linear integral
operator

Z H (t, 7)ui(7) dr, (1.18)

where y(t) € RY, t > tq and every u; is piecewise continuous. If each
kernel function H; : R? — R’ is real analytic at (to,tg), then there
exists at least a finite T > 0 such that on the set D = {(¢t,7) €
R?:tg+T >t >71 > tg}, Hi(t,7) can be expressed as a uniformly
convergent series

(o)

H;(t,7) = Z C(nl,i,no)(

ng,n1=0

t— 7)™ (1 —tg)"0
’I’Ll! ’I’Lo!

(1.19)

Here the coefficients have been indexed in manner that is more con-
sistent with the way in which a formal power series will be used to
describe an integral operator. Causality mandates that the kernel func-
tions be identically zero when ¢ < 7, so these series representations are
only used on D. Substituting equation (1.19) into equation (1.18) and
integrating term-by-term, it follows that

Z Z c(ny,i,ng / (¢ ;17-')"1 i (T) (r _n;o)no dr. (1.20)

no,n1=0 i=1

Now introduce a letter x; for each input u;, and define also a fictitious
input function ug = 1 and corresponding letter zg. For each z; define
an associated integral
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16 1. Introduction

Ewi[u](t7t0):/ ui (1) dr.

to

In which case,
By [u](t, o) =t — to,

and if the integration is repeated
t 2
t—to
Ealul(tt0) i= | uo(r)Evglul(r.t0) dr = -t
to :
After ng successive integrations,

(t —tg)"o
Emgo [’LL] (t7 tO) = 0!
Similarly, for any ¢ = 1,...,m, let

t

Exixgo [U](t, tO) = / % (T)Exgo [U] (T, t()) dr

to
t _ no
= ui(T)(TitO) dr. (1.21)
nn!
to 0-

This last integral is close in form to those that appear in the series
(1.20) except for the terms involving nj. So integrate the expression
(1.21) once more and apply the integration by parts formula:

Emom . t t() / / ’LLZ ) d£ dr
0 to Jto

- [ m(é)—“‘“) dé (r—to)| -

no to

[ -t um T

to nO!

_ /t (t = ) () =10 g (1.22)

|
0 no-:

A straightforward induction gives

By om0 [ul(t, to) = /t o ui(7) (r=t)™ o (1.23)

7”L1! ’I’L()!

(see Problem 1.3.1). Thus, series (1.20) has the alternative expression
in terms of iterated integrals
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1.3 Linear Integral Operators 17

yt) = D Y elnisiing) By, e [ul(t o). (1.24)

no,n1=0 i=1

The form of this series suggests that indexing the summations in terms
of words over the alphabet X = {x¢,z1,...,2,} would be more nat-
ural. So the following notation is introduced:

_ C(nlv i) 7'L(]) = x81$i$80
(e;n) = { 0 : otherwise
for all ng,ny > 0and i = 1,...,m. In which case, the series (1.24) has
the concise representation

y(t) = 3 (e Eyful(t, to), (1.25)

nex*

where X* is the set of all words over X (including the empty word
§) and Ey := 1. A key observation in this context is that the letters
of X do not commute, since, for example, the integrals FE, ., and
Ey 4, are not equivalent. Thus, ¢ = 3, - v.(c,n) n must be viewed as
a noncommutative formal power series. It will be referred to as the
generating series for this integral operator. The symbol R*((X)) will
denote the set of all possible noncommutative formal power series over
X taking coefficients from R’. Note that any series ¢ € R*((X)) can
be equivalently described as a mapping of the form

c: X* 5 RE e (em).

In principle, one could define an input-output operator, Fy. : u — y,
using the expression (1.25) for any ¢ € R*((X)) provided that the series
converges for every u in the set of admissible inputs. Such operators
are called Fliess operators, and the series is known as the Chen-Fliess
functional expansion. From an historical point of view, Fliess operators
can be viewed as a special class of Volterra operators. An operator V'
is called a Volterra operator if it can be represented by a convergent
series

y(t) = V]ul(?)

00 m t Pk p)
:’w()(t)-i-z Z /to /to ”’/to wik~~~i1(ta7'k7---a7'l)’

k=11i1,...ix=1
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18 1. Introduction

uik(Tk)---uil(Tl) dTl "'di,

where each kernel function, wj, .., , is an £ vector-valued function de-
fined on a set

Dy ={(t,Thy...,m1) ERM L itg + T >t > 7, > > 1 >t}

Each integral in this series can be viewed as a generalized convolution
integral, and a finite Volterra operator refers to the case where only a
finite number of the kernel functions are nonzero. Volterra operators
date back to the 1880s and are arguably the most widely encountered
type of nonlinear operators encountered in physics and engineering.
Observe that the linear operator in (1.18) is among the simplest ex-
amples of a Volterra operator, and it was rewritten in (1.25) as a Fliess
operator. It will be shown in Chapter 3 that any Volterra operator hav-
ing real analytic kernels has a Fliess operator representation over some
admissible set of inputs.

In the theory of linear systems, the series coefficients of a real ana-
lytic kernel function can be used to determine the nature of the opera-
tor. For example, in the linear time-invariant case, each kernel function
H;(t,7) in (1.19) reduces to the form

(t > (t—T1)k
-7) Z ¢, zhr;) 7'
k=0

with the corresponding Fliess operator F,. given by

L k Lt —1)t
y(t) = Z Z(Cv o) Tui(T) dr
i=1 k=0 to
=D > (eagwi) By, [u(t, to). (1.26)
i=1 k=0
Suppose the output is scalar-valued. For each ¢ = 1,2, ..., m define the

formal power series ¢; = Y 7 (e, wEx;)xkx;. If every Hankel matrix

(67 xl) (Cv $0$i) (67 l‘%l‘l)
B (e, xox;) (e x%x,) (c, m%xz)
¢ (67 l‘%l‘l) (Cv $8$Z) (67 l‘él‘l)

. (1.27)
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1.3 Linear Integral Operators 19

has finite rank then every ¢; is rational in the sense that there exist
polynomials in xg, say a; and b;, such that ¢; = (biai_l)xi (see equation
(1.10)). In which case, the power series ¢ can be written as

c= Zc, = Z iQ 1)xi. (1.28)

=1

In general, any formal power series over X is said to be rational if
it can be written in terms of a finite number of polynomials using
a finite number of sums, products and inversions. Series (1.28) is a
special case where the polynomials in the letters {z1,z9,...,x,,} are
all homogeneous with degree one. In Chapter 4, this idea will be more
fully developed. It will be shown in the next section that systems
having rational generating series of the form (1.28) always have finite
dimensional state space realizations.

The formal Laplace transform of the linear Fliess operator F, : u —
y is defined to be

Ly F.—c,

assuming that ¢ can be uniquely determined given F.. In the lin-
ear time-invariant case observe that the formal Laplace transforms
of the input and output functions, ¢, = Zk>0(cu,:ﬂ]§)$lg and ¢, =
> iesolcy, xk)zk, respectively, are related by

Cy =COCy

= C‘xi—mocui

= (c,dx)xd ey,
i=1 j=0
or equivalently,
m k—1
(cocy,zk): ZZ c, azlg i 1:v-)(cui,:v%), E>1 (1.29)
i=1 j=0

(see Problem 1.3.3). The summation on the right-hand side with re-
spect to j is a convolution sum, as is expected from linear system
theory. The impulse response of the operator relative to the input w;
corresponds to
e . .
hi = ¢ilz;—1 = Z(c, whr)x), i=1,2,....m (1.30)
j=0

Edition 1.3, Copyright () 2025 by W. Steven Gray



20 1. Introduction

since

hi(t) = Fe[](t) = Y _(e.apzi) E,g, [8](£,07)
j=0

o .
ZC:EOJEZ,,t20+,
j=0 '

where § denotes the Dirac delta function. The formal power series prod-
uct ‘o’ is a special case of the composition product. In general, it gives
the generating series for the composition of two Fliess operators, that
is, for arbitrary series ¢ € RY((X)) and d € R™{(X)) F.o Fy = F.oq.
So from a systems point of view, it describes the series interconnection
of two input-output systems. This product will be first introduced in
Chapter 2 and then further developed in Chapter 3. In particular, it
will be shown that the composition product is an example of what is
called Hopf convolution, a well known product in the theory of Hopf
algebras. This machinery will give not only deeper insight into the al-
gebra, but also provide convenient computational tools for solving real
problems.

Up to this point, all the discussion has been for analytic operators.
But a formal Fliess operator can also be defined in the event that the
underlying series describing F. does not converge, i.e., when generating
series ¢ does not satisfy a Cauchy growth condition. In this case, the
mapping ¢, + ¢, = coc, takes formal inputs to formal outputs with no
underlying assumption of convergence. This mapping is viewed as the
formal counterpart of the mapping u — y = F.[u] in the real analytic
case. In some analysis encountered in later chapters, it will be easier to
first establish algebraic results via the use of formal functions, formal
operators, or formal differential equations, after which convergence
issues can be determined independently. In other instances, such as in
this section, it is more intuitive to start with the analytic case, and then
extract out the algebraic structures on which the formal counterparts
are based.

1.4 State Space Realizations of Rational Operators

An operator F, is said to be rational whenever its generating series c is
rational. As an example, consider the case where c is given by equation
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1.4 State Space Realizations of Rational Operators 21

(1.28). Tt is straightforward to show that the generating series for the

output function,
m

ey = Z(biai_l)xocui,

i=1
is rational whenever ¢, is rational, i.e., when each ¢, is rational (see
Problem 1.3.3). A pillar of linear system theory is that the rational

operator F, always has a finite dimensional state space realization of
the form

4(t) = Az(t) + > Biui(t), z(to) = (1.31)
y(t) = Cz(t), (1.32)

where A € R™", B; € R™! and C € R™", and whose solution
o(t,to,0,u) satisfies

y(t) = Felul(t) = Co(t, 10,0, u)

for every integrable input u. Setting m = 1 and integrating both sides
of the state equation (1.31) gives

z@:[mmm+f&mﬂm

0 to

Substituting for z(7) on the right-hand side with the entire expression
gives

z(t) = /tA [/;2 Az()dm + /TQ Biuy(mp) dT1:| dro + /t Biui(r)dr

to 0 to to
t T2 t T2
— A2 / 2(11) drydmy + AB; / / u(71) dridre+
to Jt to Jto

0
¢
Bl / ul (T ) dr.
to
Continuing in this way gives what is called the Peano-Baker series
representation of the solution to the state equation

o) t
Z(t) = Z AkBl /
k=0 to

Tk+1

T2
/ ul(Tl)dTldTg'”di_H.
to

to
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From the output equation (1.32) it then follows that
y(t) =Y CA*BIE, [u)(),
k=0

or equivalently,

y(t) = > (e.n)Eylul(t to),
nex*
where
(c,n) = CAFB, :n:xlgznl, k>0
’ 0 : otherwise.

The triple (A4, By, C) is said to be a representation of the generating
series c. The distinction between realizing F,. and representing c¢ is mi-
nor in the present context. It is straightforward to show that (A, B, C)
realizes F, if and only if it represents ¢ (see Problem 1.4.1). But for
more general types of rational series, this type of connection is not so
transparent. It will be shown in Chapter 6, using the tools developed
in Chapter 4, that the problem of realizing a rational operator goes
well beyond the traditional boundaries of linear system theory and in-
volves more fundamentally the class of bilinear systems, that is, state
space systems of the form

2t) = Az(t) + > Niz(t)ui(t), 2(to) = 2
=1

y(t) = Cz(t).

In particular, note the product between the state z(¢) and the input w;.
Despite the name, this system is truly nonlinear (see Problem 1.4.2).

Another observation about rational operators is that ¢, = co¢,
may not be a polynomial even when each ¢, is a polynomial. This
fact is central to defining an abstract notion of system state. Suppose,
for example, that ¢ = (ba~')z1, where the polynomials a and b have
no common roots. Assume that given any polynomial p, p denotes
the polynomial whose coefficients appear in the reverse order of those
defining p. In light of the Hankel matrix discussion in Section 1.1, it is
clear that deg(a) = rank(H.) = n. It can be assumed without loss of
generality that & is monic, i.e., the coefficient of its highest order term
is one so that

a=(a,0) + (a,zo)zo + - + (@, zf "l + .

Edition 1.3, Copyright () 2025 by W. Steven Gray
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Then any polynomial in xg, say ¢,, can be uniquely decomposed via
Fuclidian division into the form ¢, = ap + 7, where p and 7 are poly-
nomials with the remainder polynomial having the form

7= (7,0) + (7, 20)z0 + - + (F,2p~ Had L.
In which case,
cy =coc, = (batxy) o (ap+ 1) = bxop + (ba™H)xor

is polynomial if and only if » = 0. In this setting, two input polyno-
mials ¢, and ¢, are said to be equivalent when their corresponding
remainder polynomials, 7 and 7, are identical. Their respective output
series, ¢, and c,, can therefore only differ at most by a polynomial.
A collection of equivalent inputs forms an equivalence class which can
be uniquely identified by the n coefficients of the remainder polyno-
mial which they have in common. Thus, the quotient set can be put
in one-to-one correspondence with the n dimensional vector space R™.
It is this representation of the quotient set that provides the famil-
iar notion of a state space in linear systems theory. To see this more
clearly, consider how the state 7_ is transformed by introducing a new
constant term v, € R according to the mapping

(p : (f_,U+) — f.i_ = [‘TOF_ + U+]@,

where [-]z denotes the operator which extracts the remainder polyno-

mial from a given polynomial after division by a. Using the fact that

af =a— (a,0) — (@,z0)xo — -+ — (@, ) ")l ", observe that

(
wof— 4 uy = (7, 0)wo + (7, xo)af + - + (F, xf~")ag + uy
= (o, ag ") + [(@ 0)(F-, 257 + ]+
a, o) (F—, xp " azo + -+

)~ (
sy ) = (@) (!

Therefore, 7, = &(7_,u,) can be written in component form as

(f-i-? @)

(f+,ﬂ:0)

(f-l-’ xg_l)
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1 0 _(d7 33‘0) (T—v :EO)
- + U
0 1 —(a,zf (Fo,xp™t) 0

More conventionally, this is equivalent to writing the state equa-
tion (1.31) (with m = 1) in the integral form

tt tt

z(T) dr + By / uy(7) dr,

t_

(te) — 2(t) = A/

t_

where z(t;) denotes the n dimensional state vector at time instant
t = t4 corresponding to 7, and uy = fttj u1(7) dr. In this setting,
the system output y(t4) is generally understood to only be a function
of the current system state, z(¢;). If the input happens to remain
in the equivalence class corresponding to 74 for all ¢ > ¢4 then the
respective output would be completely determined by 7. In which
case, there must exist a series c¢,, depending only on 7, such that

o0 Lk
o0 =3 ey ) s (1.33)

It is perhaps easiest to see from classical arguments that c,, = H.(74),
where H,. is the Hankel mapping corresponding to c. That is, H, is the
linear mapping on the real vector space of polynomials whose matrix
representation is the Hankel matrix #H.. (No notational distinction will
be made between the mapping and its matrix representation.) Observe

that if 7_ = 0 and u4 = 1 then clearly 7, =1 and y|, —; corresponds
to the impulse response of the system (see (1.30)). So immediately, one
can conclude that ¢, |z,—1 = h1 = H.(1). Now suppose that 7_ =1

and uy = 0. Then 7 = z¢ and y|7 = is the derivative of the impulse
response, that is, ¢y, |7, =z, = 2 ' (1) = He(20), where 25! (-) denotes
the left-shift operator (see (1.7)). Proceeding in this fashion, it becomes
evident that

ol g = 707 (1) = He(wh), j=0,1,..,n—1,
where x J (+) is the left-shift operator applied j times. Using superpo-

sition for an arbitrary 74, one must conclude that c¢,, = Hc(ry). In
light of (1.33),
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y(t+) = (cy;, 0)

= (,HC(T-F)?(Z))
o0
= [(c,xl) (c,mox1) -+ (c, xg—lxl)] r+,:x0
(P4 257
=Cz(ty).

The realization (A, Bi,C) is the well known controllability canonical
form of F,.

It is also possible to characterize a state space realization for F
using exclusively the Hankel mapping H. : ¢, + ¢, . Suppose the
rank of its Hankel matrix representation is n. When ¢, and ¢, are
equivalent polynomials, their difference must be in the null space of
H.. That is,

Hc(éu - 6u’) = /Hc(d(ﬁ - ﬁ,)) =0,
since Hc(a) = 0 (see Problem 1.1.9). Conversely, observe that given

any two polynomials ¢, and ¢, with ¢, — ¢,/ in the null space of H.,
it follows that they must be equivalent. Specifically, assume

He(Cy — Cur) = He(F —7) =0,

where the first n columns of the Hankel matrix are independent. Since
7 — 7 is a polynomial of at most degree n — 1, one must conclude that
7 — 7 = 0. In summary then,

Cy ~ Cy = Hc(¢y) = He(Cy) <= Ey — G € null(H,).

A standard result concerning such equivalence relations states that

H. has a unique decomposition of the form H.(¢,) = Q.P.(¢,),
where P. : ¢, — 7 = [G)a and Q. : 7 +— c¢,, are linear map-
pings, and Q. is an isomorphism onto R™. This is referred to as the
canonical factorization of H. (see Figure 1.2). Those familiar with
linear systems theory will recognize this factorization as equivalent
to a controllability /observability factorization of the Hankel matrix,
H. = O(A,C)C(A, By), where

O(A,C) =[ CT ATCT (AT)2CT ... (1.34)
C(A,By) =[ By AB; A’By -+ |, (1.35)

]T
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P. Qc

T = [éu]&
Fig. 1.2. The canonical factorization of the Hankel mapping He. : Cu = ¢y -

and (A, By, C) is the n dimensional controllability canonical realization
of F, (see Problem 1.4.4). As in the previous discussion, the set of
equivalence classes forms a state space for F. which can be identified
with the vector space R". Here n is the minimal state space dimension
possible for the rational mapping under consideration. It will be shown
in Chapter 4 that for arbitrary rational series, a generalized notion of
the Hankel matrix plays a central role in characterizing the existence
and minimality of bilinear state space realizations.

In the event that F, is not rational, it is natural to ask whether
concepts concerning linear and bilinear state space realizations can be
generalized in some natural way. The mathematical framework intro-
duced in Chapter 5 to address this question is the theory of free Lie
algebras. Roughly speaking, a free Lie algebras is a noncommutative
algebra generated by an alphabet X. In general, an algebra has both a
vector space structure and a vector product.® In the case of a free Lie
algebra, the product is the Lie bracket [z;,z;] = x;x; — ;x;, where
x;,x; € X. It is possible in this context to define a universal realiza-
tion of F. and a wuniversal representation of ¢, which are in general
infinite dimensional. It will be shown in Chapter 6 that if the addi-
tional property of ¢ having finite Lie rank is available, a generalization
of the Hankel rank of ¢, then F, has a finite dimensional input-affine
state space realization

5 See Section A.1 of Appendix A.
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where (f, g, h) are either real analytic or merely formal functions of the
state depending on the growth rate of the coefficients of c. The rational
case in this context is the special situation where all the functions are
linear, i.e., f(z) = Az, gi(z) = N;z; and g(z) = Cz. In addition, it
will be shown that the generating series ¢ has a finite dimensional
differential representation, a generalization of a linear representation.

Finally, the notions of relative degree and the zeros of a trans-
fer function play a relatively minor role in the theory of linear time-
invariant systems. But these concepts have generalizations that play a
more central role in nonlinear system theory due to their connection to
feedback linearization, that is, a method to exactly linearize a nonlin-
ear system via nonlinear feedback. These generalizations will appear
first in Chapter 5 in the context of universal realizations and then in
Chapter 6 when input-affine realizations are available. The connection
to linear system theory can be most easily seen using a dynamical
interpretation of a system’s zeros known as zero dynamics.

Consider a single-input, single-output system with an irreducible
transfer function

Kb(s) B Kbo +bis+ - FbypgstTT g
a(s) ap+ais+ -4 ap_18" 4 sn

H(s) = :
where K # 0 and 1 < r < n. The relative degree of H(s) corresponds
to r = deg(a(s)) — deg(b(s)) or, equivalently, to fact that the transfer
function when written as a power series in s~! has the form H(s) =
> s, his™® with h, = K # 0. Euclidean division can once again
be applied to provide a canonical state space realization of the input-
output map. Specifically, divide b(s) into a(s) so that a(s) = b(s)p(s)+
r(s) with (r(s),b(s)) being a coprime pair of polynomials

p(s) =po+pis+---+ pr—lsr_l + 5"

n—r—2 r—1

r(s)=ro+ris+ -+ rp_r_29s 4+ Tpp_18"

and deg(r(s)) < deg(b(s)). In which case,

His) = K _ K <1+7‘(3) 1))—1’

p(s) % p(s) b(s) p(s

so that H(s) can be viewed as a feedback interconnection with 1/p(s)
in the forward path, r(s)/b(s) in the feedback path, and K scaling the
input. Let (A1,b1,¢1) and (Asg, by, c2) be minimal realizations of 1/p(s)
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and r(s)/b(s), respectively. Then a realization of H(s) follows directly
from this feedback structure to be

[ AL | =bie Kby _
z-[b261‘ P ]z%—[ 0 }u, 2(0) = 2o

Y= [ c1 ‘ 0 ]z.
If both realizations are in controller canonical form (that is, the A; are
in lower companion form and b; = [0,0,...,0, 1]T), then this realization
becomes
21 = Z9
2:’2 = Z3
Zr_1 = 2
Zr = P+ Rn+ Ku
n=5¢+Cn
Yy =z,
where § = [&-&, n = [m- ], P = —[po--p1], R =
_[TO T rn—r—l]y S = en—r(n - T)e{(r)v and
[0 1 0 0 i
0 0 1 - 0
Q= : : : " :
0 0 0o - 1
| —bo —b1 —b2 -+ —bypp_1 |

(Here e;(j) € R? has a one in the i-th position and zero elsewhere.)
This is called the Byrnes-Isidori normal form for H(s). If £(0) = 0 and
u(t) = u*(t) :== —Rn(t)/K, then £(t) = 0, t > 0. Thus, y(t) =0, t > 0,
and 7 is the solution to 77 = @Qn, n(0) = ny. These internal dynamics
are called the zero dynamics of the system due to the fact the roots of
b(s) = det(sI — Q) are the zeros of H(s). In this case,

0 1) = ey = 30 gy (1.36)

(see Problem 1.4.5).
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Problems

Section 1.1

Problem 1.1.1 Consider the function u(t) = 1/(1 +t?) defined on R.

(a) Show that w is real analytic on R but is not entire.
(b) Plot u on the interval [—1.2,1.2].
(c) Define the truncated Taylor series of u at t = 0 to be

N

un(t) = c(n)

n=0

tn
m-

On the same figure generated in part (b), plot uy(t) for N =
10,20, 30 over (—1,1).
(d) Explain what happens as N continues to increase.

Remark: In complex analysis, the following statements are equivalent
for a function u : C — C:

1. w is entire.
2. u is analytic on C.
3. u can be represented by a single Taylor series.

The example above illustrates that statement 2 does not imply state-
ment 3 if u is only real analytic on R.

Problem 1.1.2 Consider a real analytic function v : R — R whose
Taylor series at t = 0 has coefficients ¢(n), n > 0 satisfying the Gevrey
growth condition

le(n)] < KM™(n!)®, Vn>0

with 0 < s < 1.

(a) Determine the radius of convergence for this series representation.

(b) When s = 0 show that |u(t)| can be bounded by an exponential
function.

(¢) Show how part (b) can be generalized for any 0 < s < 1 using the
Mittag-Leffler function.

Remark: For any fixed 0 < a < 1, the gamma function satisfies the
inequality I'(an + 1) < K, M2 (n!)* for some K, M, > 0 provided
an > 1.
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Problem 1.1.3 Let u : U C R — R be real analytic at ty. Show that
u is continuous at tg.

Problem 1.1.4 Verify equation (1.5) for the coefficients of a re-
centered power series.

Problem 1.1.5 Show that if u : U C R — R s real analytic at t¢ then
the derivative of u is well defined within the radius of convergence and
can be computed by equation (1.6). Also show that in this situation u
must be smooth within the radius of convergence.

Problem 1.1.6 Show that the function u(t) = e'* is entire but does
not have a well defined right-sided Laplace transform.

Problem 1.1.7 Verify all the entries in Table 1.1.

Problem 1.1.8 Let ¢ be a series with corresponding Hankel matrix
H.. Assume that the rank of H. is n < oco.

(a) Using the Hankel structure of H., show that the (n+ 1)-st column
of H. is in the span of the first n columns of H..

(b) Show by induction that every column of H. beyond the first n
columns must be in the span of the first n columns. Therefore, the
first n columns of H, must be linearly independent.

(c) Suppose ¢ is a nonzero polynomial satisfying equation (1.9). Using
the result from part (b), show that g(n) # 0.

Problem 1.1.9 Suppose ¢ = pg~ ', where p and ¢ are polynomials in

x with deg(p) < deg(§) = rank(H.).

(a) Show that H.(¢r) = 0 for any polynomial 7 in z.
(b) Prove that p and ¢ can share no common roots.

Problem 1.1.10 For each series ¢ below, determine, if possible, two
polynomials p and ¢ such that ¢ = pg~'. Also compute the Laplace
transform for the corresponding input u and its region of convergence.

(a) c = 2?

b)) c=az+a3+a%+--
() c=1—3a+ 2% —--
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Problem 1.2.1 Determine whether each function below is real an-
alytic at ¢ = 0. If so, determine the radius of convergence; if not,
comment on whether the function is at least smooth at ¢ = 0.

(a) u(t) =€
(b) u(t) =1/(t* +1)

e /e :
(T
o= {o

Section 1.3

Problem 1.3.1 Provide the following details regarding the Chen-
Fliess series for a linear time-invariant system:

(a) The integration by parts calculation that gives equation (1.22).
(b) The inductive proof that leads to equation (1.23).

Problem 1.3.2 A function v : U C R — R™ is said to be absolutely
integrable on an interval [tg,t1] C U if

t1
/ lui(t)] dt < oo, i=1,...,m.
to
Assume that the interval [to, 1] is finite. Show that if u is piecewise
continuous (meaning that each w; has at most a finite number of jump
discontinuities) then

(a) w is absolutely integrable;
(b) the inequality

t1
/ i (OF dt <o, i=1,...,m

to

is satisfied for every integer p > 1;
(c) the iterated integral E,[u](t,to) is finite for all t € [to,t1] and every
neX*.

Problem 1.3.3 Show that the formal Laplace transforms of u and
y, where y = F.lu] and ¢ is given by equation (1.26), are related
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by ¢, = coc¢, as described in equation (1.29). Also verify that ¢,
is rational whenever ¢ and ¢, are rational, that is, when ¢; = biai_1
and ¢y, = piq; ' where a;, b;, p; and ¢; are polynomials in zy for
i=1,2,...,m.

Section 1./

Problem 1.4.1 Suppose that (A, B, C) is known to represent a formal
power series ¢ : X* — R. Show that (A, B,C) also realizes the linear
input-output operator

m o
F.:u—y(t) = Z Hi(t — m)u;(r)dr, t>to,
i=1 "1

where the series H;(t) = Y 3o o(c, zkx;) t*/k!, i = 1,...,m. Show that
the converse statement is also true.

Problem 1.4.2 Consider a bilinear state space system

2(t) = Noz(t) + Nyz(t)u(t), z(0) =z
y(t) = Cz(t).

(a) Write the solution z(t) of the state equation in terms of a Peano-
Baker series.

(b) Give a series expression for the output y(t).

(¢) Determine y(t) for the case:

%= [0 2] [0 0] o= (1 0], w= 0]

Problem 1.4.3 Let ¢ be the generating series for the integral operator
in equation (1.26) with m = 1.

(a) Show that H.(¢,) = a:o_("“H)(c o ¢,), where ¢, is a polynomial of
degree n,,.

(b) Suppose c is a rational series. Let ¢, and ¢, be equivalent poly-
nomials with corresponding output series ¢,, = H.(¢,) and cy, =
H(Ey). Using only the result from part (a), show that ¢, =c

v
or equivalently, that ¢, — ¢,/ is in the null space of H..
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Problem 1.4.4 Show that the observability and controllability ma-
trices described by equations (1.34)-(1.35) produce the canonical fac-
torization of the Hankel mapping H..

Problem 1.4.5 Let (A, B,C) be a linear state space realization in
Byrnes-Isidori normal form of the transfer function H(s) = >~ hysF.

(a) Show that the zero-input response must have the form yo(t) =
D ke C Az tF k).

(b) A well known necessary and sufficient condition for an input
u*(t) = e%g to yield y(t) = 0, t > 0 is the existence of a pair

(20, 9) such that
Z()I —-A -B 20 . 0
C 0 g | |0

Show that this implies in (1.36) that a must be an eigenvalue of
@ with eigenvector 1, i.e., « is a zero of H(s), and g = —Rny/K.

Bibliographic Notes

More detailed bibliographic notes are deferred to the later chapters,
where the topics in this chapter reappear more fully developed. Here
some citations are provided of a more general nature for those readers
wanting to expand their background in various directions.

Section 1.1 The study of real analytic functions in one variable is a
standard topic in real analysis. Basic treatments of the subject appear
in the introductory textbooks by Bartle [5], Bromwich [25], and Knopp
[144]. More advanced topics can be found in the books by Balser [4] and
Ruiz [177]. Power series in one variable are also treated in these same
introductory texts. For the multivariable versions of these topics, the
book by Grébuer [107] is very complete. Any basic text in complex
analysis will address the topic of analytic functions defined on the
complex plane, see, for example, [2, 27, 188]. For a thorough treatment
of this topic in the multivariable setting see the book by Hormander
[118].

Section 1.2 An accessible treatment of formal functions appears in
the book by Castrigiano and Hayes [33, Chapter 4]. The text by Wilf
[215] provides a general introduction to the topic of generating func-
tions. A number of books are available concerning formal power series,
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most do so in the context of formal languages or theoretical computer
science. This includes the books by Berstel [7], Berstel and Reutenauer
[8], Conway [51], Gross and Lentin [108], Harrison [114], Kuich and Sa-
lomaa [146], Reutenauer [169], Revesz [170], Rozenberg and Salomaa
[173], Salomaa [178], and Salomaa and Soittola [179]. A survey of the
subject as it applies to systems theory appears in the tutorial paper
by Fliess [76] and the textbook by Isidori [122, Chapter 3].

Section 1.3 Many texts are available treating linear integral oper-
ators. A few from the mathematical point of view include those by
Kreyszig [145], and Naylor and Sell [163]. Those from a systems point
of view include the texts by Callier and Desoer [29] and Kailath [134].
A number of references are available addressing nonlinear integral op-
erators. The books by Isidori [122], Rugh [176], and Schetzen [182],
as well as the papers by Brockett [23], Crouch [52], and Wong [218]
provide good introductions.

Section 1.4 Realization theory for linear systems is treated very com-
prehensively in the textbook by Kailath [134]. Chapter 5, in particu-
lar, gives a nice overview of the algebraic approach to the subject,
which underlies many of the concepts appearing in this book. See the
early work of Kalman for some historical perspective on this approach
[135, 136]. The textbooks by Callier and Desoer [29] and Chen [34]
are also useful references. Concerning nonlinear state space realiza-
tions, the textbooks by Isidori [122], Khalil [142], Nijmeijer and van
der Schaft [165], Sontag [190], and Vidyasagar [206] all give compre-
hensive introductions to the subject.
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Many of the mathematical objects that appear in this book arise nat-
urally in the theory of formal languages. So the starting point for this
chapter is an introduction to formal power series in this setting. As
these ideas are developed, it will become apparent that formal power
series often have a combinatorial nature, that this, their manipula-
tion involves partitions, permutations, etc. Considerable time will be
spent on the shuffle product, as it is ubiquitous when combinatorics is
applied in system theory. In this regard, combinatorial Hopf algebras
are also useful, especially when explicit computations are needed. So
the notion of a Hopf algebra is introduced along with some important
examples which will be useful henceforth. Finally, a general notion
of composition for formal power series is presented. This device will
be used in Chapter 3 for describing the series interconnection of two
input-output systems and to define a formal input-output map.

2.1 Formal Languages

A finite nonempty set of arbitrary symbols X = {xo,z1,...,2Zm} is
called an alphabet. Each element of X is called a letter, and any finite
sequence of letters from X, n = z;,_---x;,, is called a word over X.
Two words 1 and & are equivalent, i.e., n = &, if one word is letter by
letter equivalent to the other. The length of a word n is equivalent to
the number of letters in  and will be denoted by |n| . In addition, |7,
is equivalent to the number of times the letter x; appears in 7. The
empty word, (), has length zero. The set of words with length k& will be
denoted by X*. The set of all words is represented by X*, while X+
is the set of all words with positive length, i.e., the nonempty words.
A language is any subset of X*.
Consider the following binary operation on X*.
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36 2. Formal Power Series

Definition 2.1 The catenation product on X* is the associative

mapping
C: X" x X" = X* (n,&) — nt.

That is, for any n, &, v € X* it follows that

(&) =n(&v).
Furthermore, the empty word ) is an identity element for C since
bn=nb=mn, ¥ne X"

For any positive integer i and ) € X*, the i-th iterate of nisn’ =n-- -,
where 1 appears i times. Normally, 7" := ). The triple (X*,C,) (or
simply X* when the rest is understood) is referred to in algebraic
parlance as a free monoid on X. The adjective free is referring to the
assumption that there are no relationships between the letters. For
example, the letter £1 can not be used to represent the word zox3. In
some situations involving groups, it is useful to have relationships like
zix; = xjz; = () so that z; can be thought of as the multiplicative
inverse of x; and vice versa.

Given two arbitrary monoids (M, 0, e) and (M', 0 ¢’), a mapping
p: M — M’ is called a monoid homomorphism if

p(n3E) = p(n)B'p(€), Vn,& e M (2.1)

and p(e) = €. When p is bijective it is called an isomorphism. Given
an arbitrary alphabet X = {xg,1,..., 2z}, any mapping p : X — M’
can be uniquely extended to a homomorphism p : X* — M’ by letting

p(xikxikfl T xil) = p(‘r’ik)D/p(xik—l)D/ T D/p(xh)

(see Problem 2.1.3). If y; := p(x;) for each x; € X, then p(X™*) can
be viewed as a free submonoid of M’ corresponding to the alphabet
Y ={yo,y1,---,Ym}. If pisinjective, i.e., if p(n) = p(&) always implies
that n =&, Vn, & € X*, then p is called a coding of X*.

Example 2.1 Suppose X ={0,1,...,9} and Y = {0,1}. The binary
coded decimals

p(0) = 0000, p(1) = 0001, ... p(9) = 1001

define a coding of X*, but not an isomorphism since, for example, the
word 1010 € Y* is not in the range of p. 0
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Example 2.2 Consider the usual multiplicative monoid {R™,-, 1} on
the set of positive real numbers, R, and the additive monoid {R, +, 0}
on the set of real numbers R. Select any a € R™ then the map

p:RT 5 R,y y =log,(y)
defines an isomorphism since p is bijective,

p(y1y2) = p(y1) + p(y2), y1,y2 € RY,

and p(1)=0. 0

Example 2.3 The natural numbers Ny := {0,1,2,...} provide the
submonoid {Ny,+,0} of the monoid {R,+,0}. With X = {z} and
X* = {0, z,22,...}, the mapping |2’| = i, i > 0 defines an isomorphism
between X* and Njy. It is clearly a restriction of the isomorphism in the
previous example, where z € R is left unspecified, and 0 is identified
with 1 € RT. 0

This last example suggests an alternative way to express a power
series in one variable,

i=0
Namely, defining (¢,n) = ¢(|n|) for every n € X*, where X = {x}, the
series can be written as the summation over X*

c= Y (e

neX*

Example 2.4 Any R-linear mapping on the vector space R™ can be
represented by a matrix in R™*". The collection of matrices R"*"
clearly forms a monoid under the usual definition of matrix multi-
plication, where the identity matrix, I,,, is the multiplicative identity
element. Given an alphabet X = {zg, z1,..., %}, let u denote a map-
ping which assigns a specific matrix to each letter, namely, p(z;) = N;
for i =0,1,...,m. Then there exists a unique free submonoid in R"*"
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38 2. Formal Power Series

generated by N := {Ny, N1,..., Ny, } (the N;’s are not necessarily lin-
early independent). This type of matrix monoid plays a central role in
the theory of linear representations for formal power series presented
in Section 4.2.

O

2.2 Formal Power Series

Given an alphabet X = {xg,z1,...,2Zn}, a formal power series c is
any function of the form

c: X* = RE

The image of a word n € X* under ¢ is denoted by (¢,n) and is
called the coefficient of n in c. It is customary to write ¢ as the formal

summation
c=> (.
nex*

The coefficient (c, ) is referred to as the constant term, and c is called
proper when this coefficient is zero. The support of ¢ is the language

supp(c) := {n € X*: (¢,n) # 0}.

The order of ¢ is defined as

ord(c) = {min{\n! : Zoe supp(c)} g i 8,

So when ¢ is proper, it follows that ord(c) > 0. The set of all formal
power series will be denoted by R((X)). In addition, the set of all
formal power series with finite support, i.e., the set of all polynomials,
will be represented by R*(X). The degree of a polynomial p is

_ Jmax{|n|:n €supp(p)} :p#0
deg(p)—{ —00 :p=0.

As a matter of notation, n = () denotes the empty word in X*, while
the polynomials p = 10 and p = 00 will usually be written simply as
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p =1 and p = 0, respectively.! When ¢ > 1, the i-th component series

of ¢ € RY((X)) is
ci= Y (e;mm,
nex*

where (¢, n); is the i-th component of the vector (¢,n) € RY. In which
case, there is a natural bijection between R((X)) and (R{(X)))*.

The sets R((X)) and R*(X) exhibit considerable algebraic struc-
ture. For example, each admits a vector space structure over R when
addition ¢ + d is defined by the coefficients

(c+d;n) = (e;n) + (d,n), Vne X7,
and scalar multiplication «c is given by

(ae,m) = ale,n), ¥Yne X*, YaeR.
It is straightforward to show that

ord(c + d) > min{ord(c),ord(d)}, ¢,d € R((X))
deg(p + q) < max{deg(p),deg(q)}, p,q € R(X).

When ¢ = 1, each set forms a ring, an associative R-algebra, and a
module over the ring R(X) using the following product.?

Definition 2.2 The catenation product or Cauchy product of
two series (or polynomials) c,d € R{(X)) is cd = > . (cd,n)n,
where

(Cdﬂ?) = Z (675)(617’/)7 Vn e X7,

g veX*
n==E&v

or more succinctly,
(edn) = D (¢, 6)(d,v), Ve X*.
n=&v

In this case, the polynomial p = 1 acts as the multiplicative identity
element (see Problem 2.2.1).

! When it is necessary to distinguish between the scalar 1 and the polynomial 10,
the latter will be written as 1.

2 The reader may wish to consult Section A.1 of Appendix A for a brief review of
these algebraic concepts.
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Example 2.5 Suppose X = {z} and consider two polynomials:

c=(c,0) + (¢, ) x + (c,2*) 2*
d=(d,0) + (d,z) x + (d, %) 2*

The familiar polynomial product of ¢ and d is computed as

cd =[(c,0) + (¢, 2) x + (¢, 2%) 2] [(d, 0) + (d, 2) & + (d, 2%) 2]
+(c,0)(d, ) + (¢;2)(d, 0)] « + [(c, 0)(d, 2*)+

@ ( ?)(d,0)] 2 + [( z)(d,2%)+

(d. )2 + (c,2%)(d, %) 2

Thus, it follows that

(cd, xz) = Z (c, a;j)(d, xk)

So the catenation product of polynomials (or series) over a single letter
alphabet reduces to the usual polynomial product. It is easy to see in
this case that the catenation product is commutative. Also observe
that

i

(ed, ') = (c,a7)(d, 2" ).

j=0
Hence, for single letter alphabets, the catenation product is exactly
equivalent to the notion of series convolution. 0

Example 2.6 Suppose X = {xg,21}, ¢ = 2z9z1 and d = xg + ;.
Then it follows that

cd = 2xox1 (0 + 1)

= 2x9T120 + 2x0x%,
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while on the other hand

de = (xo + 1) 2x011

= 2x(2)x1 + 2x12071.

Thus, the catenation product is not commutative when X contains
more than one letter. 0

Example 2.7 Consider the special case where the letters of X =
{z1,29, ..., 2y} commute, that is, x;z; = z;x; for all z;,z; € X*.
Let R[[X]] denote the set of all formal power series on this commut-
ing alphabet. In this case, an alternative definition of the catenation
product is often useful, namely,

n
cd = Z (cd,m) pl

nex*

where

(edom) = 3 (. )(dyv) 2=

o &l

and 0! := |n[,,!nl,,! - nl,, ! For asingle letter alphabet, this yields
what is commonly called binomial convolution

(cd, 2') = Z (;) (e, 29)(d, 7). (2.2)

J=0

The catenation product in the general commutative case will be re-
ferred to as the multinomial catenation product. Binomial convolution
naturally arises when describing the pointwise product of real analytic
functions. That is, if

folz) = ety
=0

and likewise for fg, then f.fq = feq (see Problem 2.2.2). It will usually
be clear from context which catenation product is at play. For non-
commutative alphabets, it will always be the Cauchy product. For the
commutative case where the pointwise product of functions is involved,
it will always be the multinomial catenation product. 0
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One of the most common operations performed on series is to shift
its coefficients in some manner to other words in the series. For ex-
ample, given the single letter alphabet X = {z}, the familiar left-shift
operator is

27 e) =27 (e, 0) + (¢, x)x + (¢, ah)a? + (e, 2¥)a® + - )
= (¢, ) + (¢, 2z + (¢, 23)2* + (¢, x)a® + - - .

When applied twice, the operator =1 (z~1(+)) could be thought of as
(22)71(-). These ideas are generalized for an arbitrary alphabet in the
following definition.

Definition 2.3 Given any £ € X*, the corresponding left-shift op-
erator on X* is defined as

/ /
-1 * n 7]:6?7
X" 5 RX), n— { 0 : otherwise.

Note that in the second half of this definition, 7 is being mapped to
the zero polynomial, i.e., p = 0, as opposed to the empty word 0.
So this operator is a mapping into R(X) and not into X*. For any
c € RY((X)), this definition is extended linearly as

o= (&t

nex*

= (e.émn.

neX*

In which case, £71(-) acts linearly on the R-vector space R*((X)), that
is,

6_1(041(31 + ages) = alf_l(cl) + agf_l(CQ)
for all oy € Rand ¢; € RY((X)) (see Problem 2.2.3). Two key properties
of left-shift operators are given in the following lemma.

Lemma 2.1 Let z; € X and {,v € X* be fized. For any c,d € R{(X))
it follows that:

1. (gv)He) = v (€ H(e)
2. x7 (ed) =z (¢)d + (c,0) z; (d).
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1. This property follows directly from the definition,

) e =D (en) () ()

nex*

2. For any x; € X observe that

;! (cd)

2.

nex*

D

neX*

(cd,zim)n
> (e9dv) | n
zin=_&v

> (e mi)(dv) + (e, 0)(d, zim) | 7

n=_&v

2.3 The Ultrametric Space R¢((X))

It will be useful in a number of situations to provide the vector space
Rf((X)) with a topological structure so that concepts like convergence
are available. Convergence in this case does not mean convergence of a
power series in R*((X)), but rather convergence of a sequence of power
series in RY((X)). The approach taken here employs the following no-
tion of distance.
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Definition 2.4 Given a set S, a function § : S x S — R is called an
ultrametric if it satisfies the following properties for all s,s',s"” € S:

i. 0(s,s') >0
ii. 0(s,s") =0 if and only if s =5
iii. 0(s,s") =0(s,s)
iv. §(s,s") <max{d(s,s"),o(s",s)}.
The pair (S,0) is referred to as an ultrametric space.

In the event that property v is replaced with the triangle inequality,
5(s,8) < d(s,8")+6(s", 8, (2.3)

(S,0) is called a metric space. Clearly, v implies (2.3) but not con-
versely. Thus, every ultrametric space is a metric space. Now for any
fixed real number o such that 0 < o < 1, consider the mapping

dist : RE((X)) x RE(X)) = R, (¢,d) — g dle=d),

The following theorem is essential.

Theorem 2.1 The R-vector space RY((X)) with mapping dist is an
ultrametric space.

Proof: The proof is left as an exercise (see Problem 2.3.1). ]

Example 2.8 Suppose X = {z} and o = 1/2. If

c=1+z+a®+---

d=1+z+ 2
then
c—d=a+a +2°+ -
so that ord(c — d) = 3 and dist(c,d) = 1/8. 0

A sequence {s1, s2, ...} in a metric space S is said to converge to s €
S, ie., lim; o0 85 = 8, if lim; o0 0(s;, 8) = 0. This means precisely that
for every e > 0 there exists a natural number N, such that d(s;,s) <
e when ¢ > N.. Any such limit point s will always be unique (see
Problem 2.3.2). As the ultrametric dist never exceeds one, there is
no loss of generality in assuming that 0 < ¢ < 1 when applying the
definition to sequences in R*((X)).
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Example 2.9 Suppose X = {z} and let

c=1+z+a?+-.-
ci=1+xz+4 -+ i>0.

Then dist(c;, ¢) = 0T, For any 0 < € < 1, set N, = [log(e)/log(o)],
where [-| denotes the ceiling function. Then if i« > N, it follows that
o'+l < €. Therefore, lim;_ o0 ¢; = . 0

Example 2.10 Consider a proper series ¢ and the sequence {1,¢,c?,...},
where ¢ denotes the catenation power, that is, ¢’ := cc--- ¢, where ¢
appears i times and ¢? := 1. For any i > 1 observe

dist(c?, 0) = g =0) = Giord(e),

The properness of ¢ implies that ord(c) > 0. For any 0 < e < 1, set

log(e)
N = |89 |4
|710g (O.ord(c))—‘ +

Then it follows that ¢ > N, gives dist(ci, 0) < €, and thus, lim;_, ¢ =
0. 0

Using the definition to prove that a given sequence in Rf((X))
converges requires one to identify a priori a limit ¢ € R*((X)). The
classical way around this problem is to use the notion of a Cauchy
sequence. A sequence {si, S9,...} in any metric space (S, 9) is said to
be a Cauchy sequence if for every € > 0 there exists a natural number
N, such that §(s;,s;) < € whenever 4,j > N. It is easily verified that
every convergent sequence is a Cauchy sequence (see Problem 2.3.2).
A metric space is said to be complete if every Cauchy sequence is
convergent.

Theorem 2.2 The ultrametric space (R*((X)),dist) is complete.

Proof: Let {c1,ca,...} be a Cauchy sequence in R*((X)). Then for
any k > 0 there exists a natural number Nj such that dist(c;, ¢;) <
o whenever i,j > Nj. Therefore, ord(c; — ¢j) > k, or equivalently,
(ciyn) = (¢j,m) when |n| < k. Now define a new series ¢ € RY((X)) by
setting
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RA(X))

Fig. 2.1. The subsets in the definition of summable.

(c,n) = (cny,m), YneXF k>0,

The claim is that lim; ... ¢; = ¢. Choose any € > 0. Select integer
k > 0 such that % < e. Then for all i > Ny

dist(c;, ) < oF < e.
This completes the proof. [ |

Frequently, one encounters the situation where a family of formal
power series needs to be added together to form a new series. If this
family is infinite, it is not so obvious at first glance how such a sum
should be defined. Clearly, the topological structure has to be involved.
The following definition addresses this issue.

Definition 2.5 Let {c;}icr be a family of series in RY((X)). The fam-
ily is said to be summable if there exists another series ¢ in RY((X))
with the property that for any € > 0, there exists a finite subset I, C 1
such that for any other finite subset J C I containing I, it follows that

dist ch,c <€

jeJ
(see Figure 2.1).

The set I. denotes the smallest subset of series one must combine in
order to get within € of ¢. Including more terms, such as those in J,
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can get one closer to ¢ but no further away than distance e. When
{ci}ier is summable, its sum will be written as ¢ = ) .. ¢;, and, in
particular,

(en)= > (cm), neX",

i€l(n)

where I(n) := {i € I : (¢;,n) # 0}. It is left to the reader to show
that when the sum c exists, it is unique. The following definition and
theorem provide a convenient test for summability.

Definition 2.6 A family of series {c; }icr in RE(X)) is called locally
finite if the set 1(n) is finite for everyn € X*.

Theorem 2.3 If a family of series {c;}ier in RE(X)) is locally finite
then it is summable.

Proof: For a locally finite family {c;};cr, define the series ¢ whose
coefficients are given by the finite summations

(c,m) = Z (ciym), Vne X™.
i€l(n)

To see that ¢ is indeed the sum of {¢;};cs, choose any € > 0, and let
k > 0 be an integer such that o* < e. Define the corresponding finite
subset of I

§1<k

Now let J be any finite subset of I containing I.. Assuming ¢ # > jeg G
(i.e., the nontrivial case) then it follows that

ord ch—c =minQ |9 : Zq—c,n #0,ne X”

jedJ jedJ
=min < ] : Y (¢j,n) # (e,n), n € X*
jedJ
>k,
since for any word n € X* with |n| < k

> e = > (¢m) = (c,n).

JjeJ J€I(n)
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In which case,

dist ch,c — gord(e-Tjerei) <of<e
jeJ

Thus, the family {c; };es is summable, and ¢ is the corresponding sum.
|

Example 2.11 For any fixed series ¢ € RY((X)), where X is an
arbitrary alphabet, consider the family of series {c,},ex+, where
¢y = (¢,m)n. Since the support of each series ¢, contains at most one
word, the family is locally finite and the sum is obviously ¢. Further-
more, since these supports are pairwise disjoint, one can unambigu-
ously represent the mapping ¢ : X* — R’ using the series notation

c= Z ey = Z (c,m)n.

neXx* neX*

Example 2.12 Suppose X = {z} and consider the family of mono-
mials {¢; }ien,, where ¢; = a;x with a; # 0 for all i € Ny. Clearly
I(x) = Ny is not finite. Therefore, the family {¢;}ien, is not locally
finite. The question of whether the family is summable depends en-
tirely on the coefficients. For example, if a; = 1/i, i € Ny, then it is
not summable as the coefficient of z in the corresponding sum is not
finite. On the other hand, if a; = 1/i!, i € Ny, then this family has the
sum ¢ = ),y ¢ = ex, where e = 2.7182.... This demonstrates that
the converse of Theorem 2.3 is not true in general. 0

Example 2.13 Suppose X is an arbitrary alphabet. Let {a; }ien, be
any sequence of real numbers and ¢ € R((X)) any proper series. Con-
sider the family of series {a;c'}ien,. For any i € Ng and 7 € X* such
that i > |n|, it is immediate that (¢!,n) = 0 since ord(c?) > i. There-
fore, I(n) € {0,1,...,|n|}. Thus, this family is locally finite, and hence
summable. This fact allows one to extend the domain of definition for
various real analytic functions from R to R{(X)). For example, given
any proper ¢ € R((X)), one can define:
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e .
cF=(1-¢) 1220’
=0
— ;1
c __ i
¢ _;C il
o0
) 1@—1
log(l—l—c):Zc’( )
i=1

The first function above arises naturally in the study of rational series
(Chapter 4), while the latter two functions are important when the
free Lie algebra on R(X) is considered (Chapter 5). 0

The final topic of this section is contractive mappings. This is a
classic subject in the theory of metric spaces. Contractive mappings
often arise in the study of differential equations, operator theory and
functional analysis. Contractive mappings will be used in Chapter 3
to determine when the feedback interconnection of two input-output
systems is well defined.

Definition 2.7 Let (S,0) be a metric space. A mapping T : S — S is
called a contractive mapping if there exists a real number 0 < o < 1
such that

5(T(s), T(s)) <ad(s,s), Vs,se€S.

Given any mapping, 7, a point s* € S is said to be a fized point if
T(s*) = s*. The following theorem gives a condition under which a
fixed point exists and is unique.

Theorem 2.4 Let (S,d) be a complete nonempty metric space. Then
every contractive mapping T : S — S has precisely one fized point in

S.

Proof: Select any s1 € S and generate a sequence in S by the iteration
Si+1 = T(si), i > 1. It is first shown that if 7 is contractive then the
sequence {s1, s, ...} is a Cauchy sequence. Observe that for any i > 2,
6(si, si41) = 0(T (8i-1), T (54))
< ad(si-1,si)

< a?0(si—2,8i-1)
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< a1 (s, 89).

Applying the triangle inequality and using the assumption that 0 <
a < 1gives forany j >¢>1

8(si,85) < 5(31, sz+1) +0(8it1,Siq2) + -+ (sj-1,5;)
< (P ral -+ a?7?)d(s1, 50)

|
=
—
V)
[y
@
no
~—

Clearly, the right-hand side of the last inequality above can be made
arbitrarily small by choosing a sufficiently large ¢. This proves that
{s1, 89, ...} is a Cauchy sequence. Since S is assumed to be a complete
metric space, there must exist a unique element s* € S such that
limi_,oo S; — s*.

It is next shown that s* is the unique fixed point of 7. Observe
that

< 0(s™, i) +0(si, T(s¥))
< 5( ')-FOZ(S(SZ'_l,S*).

However, it was just shown that lim; ., s; = s*. So after taking the
same limit above, one must conclude that 6(s*, 7 (s*)) = 0, or equiva~
lently, s* = T (s*). Suppose 7 has a second fixed point §*. Then

6(s",8%) = 6(T(s7), T(57))
<ad(s",§),

which implies that §(s*,5§*) = 0 since 0 < o < 1. Hence, s* =5*. =

Example 2.14 Consider the function

fz)=2z+ g —tan"1(2)
on R. The set R is known to be a complete metric space under the
metric §(z,2') = |z — 2/|. Clearly, for every z € R
1

"2)=1—- —— < 1.
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For any z,2’ € R with z < 2/, it follows from the mean-value theorem
that there is some Z € (z,2") such that

1f(z) = f()] =1 (2)] |2 = #]
<l|z -2 (2.4)

This is a slightly weaker condition than that required for a contraction.
Therefore, Theorem 2.4 does mot apply. Observe that a fixed point,
z*, would have to satisfy f(z*) = z*, which in this case is precisely
equivalent to requiring that tan='(z*) = 7/2. But no such number z*
exists in R. Hence, (2.4) does not guarantee the existence of a fixed
point in general. It does, however, provide for uniqueness when a fixed

point is known to exist by other means (see Problem 2.3.6).

2.4 The Shuffle Product

In this section, a new product on Rf((X)) is considered, the shuffle
product. It is probably the most important product after the catena-
tion product for analyzing nonlinear systems in a formal power series
setting. The following definition describes the basic idea when only

words are involved. But the goal is to eventually define a shuffle alge-
bra on RY((X)).

Definition 2.8 The shuffle of two words n,§ € X* is defined to be
the language

Spe={ve X" :v=m&m& - mé&n, ni,& € X7,
n=mnz-Mn, =68 &, n > 1}

In particular, Sn,@ ={n} and S@,g = {¢}.

This shuffle operation most likely derives its name from the manner
in which playing cards are mixed, that is, n and £ are combined so as
to preserve the relative ordering of their respective components. For
example, the word 7; is to the left of 1,41 before and after the shuffle
operation is performed. An equivalent definition of the shuffle with a
more combinatorial flavor can be given in terms of set bisections. For
any integer n > 0, let [n] = {1,2,...,n} with [0] = 0. A pair of subsets
(I,J) is a bisection of [n] if I UJ = [n] and I N J = (). Given a word
v =1y with v; € X and a subset I = {i; < ia < -+ < ix}
of [|v|], let vi = v;,v4, -+ - v, denote a subword of v. For example, if
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\ 4
Y

» »
L L

B

Fig. 2.2. Two paths corresponding to the word zoz3xzo in the shuffle language in
Example 2.15.

v = zor1wory and I = {2,4} then v; = 3. It is easily verified that
v € S, ¢ if and only if there exists a bisection (1, .J) of [|v|] such that
vr =n and v; = & Therefore, any v € S, ¢ satisfies |v| = 5]+ [£], and,
in general S, ¢ can contain at most

()

Example 2.15 Suppose X = {xg,z1}, n = zor1 and £ = x120. A
systematic way to construct a word in the shuffle language S, ¢ is to
create a table as shown in Figure 2.2, where the rows are labeled from
top to bottom with the letters of 1, and the columns are labeled from
left to right with the letters of . Consider a path connecting point
A to point B, where one is only permitted to move down and to the
right. With each path one can associate a single word in S,, ¢ by keeping
track of which rows and columns have been traversed. For example, the
two paths corresponding to the word zgz?x( are shown in the figure.
Proceeding in this way, the complete shuffle language is found to be

distinct words.

2 2
Spe = {woxT20, TOT1TOT1, T1TOT1T0, T1THTL }-

O

A third equivalent definition of the shuffle can be given recursively
in terms of formal polynomials. This approach has two advantages: it is
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more computational in nature, and it is easier to determine when words
have a multiplicity greater than one, i.e. when they can be generated
by more than one bisection or path in the context of the previous
definitions.

Definition 2.9 The shuffle product of two words is

(in) w (x;€) = @i(n w (2;€)) + 2;((wimn) w§), (2.5)
where x;,x; € X, 0, € X* and withn L0 =0 wn=n?
The claim, which is left to the reader to verify, is that

Sp.e = supp(n w ).
Example 2.16 Reconsider the previous example where 1 = xgx1 and
& =x1x9. Then
Tol1w 1Ty = xo(azl L xlxo) + a:l(xoxl L xo)
= zo[z3z0 + 21 (21 w xo)] + x1[To (21 W x) + TE21]
= 2x0x%:170 + xoxr120T1 + 120120 + 2x1x(2):171.

Thus, six words are generated by this product, but two of them have
multiplicity 2. Furthermore,

2 2
supp(zor1 w x1x9) = {ToxiT0, TOT1TOT1, T1TOT1L0, T1TGLL}

= Spe-

Example 2.17 Given a language L C X*, the characteristic series of
L is the element in R((X)) defined by char(L) = >, ., v. Suppose, for
example, X = {zg,z1}. Then

char(X) =xo+ 21 =20 w+ 0w

— E 70 T1

r,71 20
rot+ri=1

3 The symbol w is the letter Sha in the Cyrillic alphabet, which is used, for
example, in the Bulgarian, Russian and Ukrainian written languages. It is used

to represent a sound which is roughly equivalent to the sh sound in the English
word shuffie.
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Similarly,

char(Xz) = azg + xpx1 + 2120 + x%

:x3m®+xomx1+@mx%

— T0 T1

r0,71=>0
ro+r1=2

An inductive argument for an arbitrary alphabet X = {zg,x1,..., 2z}
produces the useful identity

char(X*) = Z z waitwoeeswat, k>0 (2.6)

m

TOsT L os rm >0
ro+r1+trm=k

(see Problem 2.4.6). 0

The definition of the shuffle product is extended linearly to any two
series ¢,d € R((X)) by letting

cud= Y (e,n)(d,§nuwé. (2.7)
n,EeX*

For a fixed v € X*, the coefficient

(C‘JJdvy) = (Cvn)(dvg)(nu—’&l/) =0, ‘77’ + ‘5’ - ’V’

Hence, the infinite sum in (2.7) is well defined since the family of

polynomials {7 w &}, e)ex=xx+ is locally finite, i.e., I(v) C {(n,§) €
X* x X*:|n| + |¢] = |v|} is finite for every v € X*. Given two series
c,d € RY(X)) the shuffle product ¢ d is defined componentwise, i.e.,
the i-th component series of c i d is (¢ wd); = ¢; wd;, where 1 < i < /.

Example 2.18 Reconsider Example 2.6 where X = {xg,z1} and
c=2xgr1, d=z0+ T71.
Observe that

cwd= 2[3)03)1 L l‘o] + 2[3)03)1 L l‘l]
=2 (l‘o[$1 L ZEQ] + l‘o[$0$1 L @]) + 2 (l‘o[l‘l L l‘l] + l‘l[ﬂfol‘l L @])

= 2z0(z120 + zox1 + Tox1) + 222027 + T1TOT1)
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= 43;33:1 + 2z0x120 + 2212071 + 4x0x%
and

d e =2[xgwzoxy] + 2[x1 W xeT]
= 2(zo[0 wxoz1] + zolwo w x1]) + 2 (210 w zo21] + T0[T1 W 1))
= 2(x2xy + zo(zox1 + 2120)) + 2(T1 071 + 22027)
= 4:173:171 + 2xox120 + 2012071 + 4x0x%

=cuwd.
O

In general, the shuffle product is commutative. It is also associa-
tive and distributes over addition. Thus, R((X)) forms a commuta-
tive R-algebra, the shuffle algebra, with multiplicative identity ele-
ment 1. In addition, the shuffle algebra is an integral domain, namely,
it has the property that c.ud = 0 if and only if at least one of its
arguments is the zero series (see Problem 2.4.1). This fact yields an-
other basic property of the shuffle product. Using the property that
ord(c + d) > min(ord(c),ord(d)), it is easy to see in general that
ord(cwd) > ord(c) 4+ ord(d). But the following stronger claim holds.

Lemma 2.2 For any c¢,d € R{({X)), ord(cwd) = ord(c) + ord(d).

Proof: Consider only the nontrivial case where both ¢ and d are not
zero. Define the nonzero polynomials p,q € R(X) by ¢ = p+ ¢ and
d = q+ d', where p is the homogeneous part of ¢ satisfying ord(p) =
ord(c) and ord(¢’) = ord(c — p) > ord(c), and likewise for ¢. In which
case,

CHJd:(p—|—c/)u_,(q+d/):pu_,q—l—pmd/—l—c/u_rq—l-clu_rd/.

As the shuffle algebra is an integral domain, it is immediate that
puwq # 0and ord(p wq) = ord(p) +ord(q) = ord(c) +ord(d). Further-
more, each of the last three terms has order exceeding ord(c) + ord(d),
for example, ord(p wd') > ord(p) + ord(d’) > ord(c) + ord(d). There-
fore, the identity in question must hold. [ |

As alluded to earlier, the shuffle algebra plays a central role in the
analysis of nonlinear systems. To better understand this connection,
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let {up,u1,...,un,} be a fixed set of piecewise continuous real-valued
functions defined on a finite interval [tg,?1]. For any word n € X7
define recursively the iterated integral

E, )t to) = Enyyr [t to) = / wi(7) Ey (7, to) dr

to

with Eplu](t,t9) = 1 for all t € [tg,t1]. For any polynomial p € R(X)
extend this definition as

Eylul(t,to) = > (p,n) Eyul(t, to).

neX*

Let £(R(X)) denote the set of all such finite linear combinations of
iterated integrals. Clearly, £(R(X)) forms an R-vector space. The fol-
lowing lemma provides additional algebraic structure.

Lemma 2.3 For any n,& € X*

E,[ul(t, to)Ec[u)(t,to) = Ey o eul(t, to).

Proof: The claim is trivially true when |n| + [{| = 0 and |n| + |£| = 1.
Assume it holds up to the case where |n| + || = n > 1, and suppose
for example that £ is nonempty. Then via integration by parts formula

UV:/dUV+/UdV

it follows for any x; € X that

Eoonlul(t, t0) Eeul(t,to) = / wi(7) By )7, to) Ee[u](, to) dr+

to

[ w0 Bl t0) Eelulr.t0) d

= Pai(nw )t ((in) wé) [u](t, to)
= E(wm) LLl ﬁ[u] (t7 t()),

where £ = z;¢'. Hence, by induction, the identity holds for all words
n,§ e X" ]

The vector space £(R(X)) thus forms an associative and commuta-
tive R-algebra with product E,F, = E, ., ; and multiplicative identity
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element F; = 1. It will be shown in Chapter 3 (see Theorems 3.7 and
3.40) that the mapping

p: ER(X)) = R(X), E,—~p

is well defined and bijective. Thus, this R-algebra is isomorphic to the
shuffle R-algebra on R(X) since

P(EpEy) = p(Epuiq) =puig
= p(Ep) w p(Ey)

for all p,q € R(X) and p(E7) = 1. This shuffle isomorphism, or more
precisely its extension in Chapter 3 to R*((X)), means that the shuffle
product underlies any calculation that involves the product of iterated
integrals. As will be seen shortly, this happens naturally when input-
output systems are interconnected.

The section is concluded by describing how the left-shift operator
interacts with the shuffle product.

Theorem 2.5 The left-shift operator acts as a derivation on the shuf-
fle product, i.e., for ¢,d € R((X)) and z), € X

z; ewd) =2 (c) wd + cwayg(d).

Proof: First consider the identity when restricted to words n, & € X™.
If either word is the empty word then the claim is trivial. If n,£ € X
then let n = ;7" and £ = z;¢£ and observe for any z;, € X that

zy (mwé) =z (@il wE) + z;(nw )
= Oi(n w&) + ()
= (6ken') w € +nw (Or;€)
=2 () wé+nwa (),

5ij:{1:z:j

where

0 : otherwise.

Now in the general case,

zp (ewd) = > (e,n)(d, &)z (nwe)

n,EEX™
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Vi x Vs - V1 ® Ve

V3

Fig. 2.3. The commutative diagram for the mappings B and £ in Definition 2.10.

= Z (cvn)(dvf)xlzl(n)m§+ Z (0777)(6575)77‘#9”1;1(5)

n.geX* n,Ee X
=2 (c) wd +cwry(d).

2.5 Catenation-Shuffle Product Duality

In this section, a duality is presented between the catenation product
and the shuffle product when each is viewed as a linear mapping on
a tensor product space. A few preliminary concepts need to be estab-
lished first before the precise sense of this duality can be described.
Let V1, V4, and V3 be three arbitrary vector spaces over R. Consider
an R-bilinear map of the form B : Vi x Vo — V3, that is, a map where

B(aw + fz,y) = aB(w,y) + fB(x,y)

B(z, oy + fz) = aB(z,y) + BB(z, z)
for all o, 8 € R, w,z € V] and y, z € V5. In this context, consider the
following definition.

Definition 2.10 The tensor product space V1®V5 is another vector
space on which there exists a unique R-linear mapping L : Vi@ Vs — V3
such that

B(z,y) =L(z®y), Ve eV, yeVs (2.8)

(see Figure 2.3).
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Example 2.19 Let V; = V5 = R? and V3 = R with their usual R-
vector space structures. For any matrix A € R?*2, a corresponding
R-bilinear mapping of the form R? x R? — R is

B:(x,y)— xTATy = a11T1Y1 + 21T1Y2 + a12T2Y1 + A22%2Y2

L1Y1
L1Y2
L2Y1
T2Y2

=l an an app azy |

= vec(A)" (z ®y),

where vec(-) is the matrix column stacking operator, and ® is the
Kronecker matrix product. Therefore B can be made to look like a
map of the form R* — R in which

rRy+roy=(z+2)®y (2.9)
t@y+ry =r0@ly+y) (2.10)
alr®@y) = (az) @y =1z @ (ay) (2.11)

for all z,2’,y,y € R? and a € R. Taking e; = [10]7 and ey = [01]7
as a basis for R?, a corresponding basis for the vector space R? ® R? is
{e1 ®er,e1 ®ea,ea ® eq,e2 @ ea} so that

2
rTRY = Z ziyj(e; @ ej). (2.12)
ij=1

In this coordinate system, vector addition and scalar multiplication
are defined in the usual way to provide an R-vector space structure for
R? @ R2. It is then straightforward to verify that

L:RPOR? 5 R, 2@y — vec(A) (z ®y) (2.13)

is an R-linear map satisfying the identity (2.8) (see Problem 2.5.1).

Next consider the following two concepts.

Definition 2.11 A scalar product on an R-vector space V is an
R-bilinear mapping (-,-)y : V x V — R with the following properties:

i. (x,x)y >0,Ve eV
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it. (z,x)y =0 if and only if t =0
iii. (z,2')y = (2/,2)y, Vo, 2’ € V.
Given a spanning set {b;};c; for V, a scalar product is completely

determined by V(b;,b;) for all 4,5 € I. If the spanning set is or-
thonormal, i.e., if V(b;,b;) = 0;j, then it follows that (z,y)y =

Y ier(@,b:)(y, bi).

Example 2.20 Suppose V; = R? with the scalar product (x,z")y;, =

272’. Observe from the previous example that (2.12) can be written
as
2
rRy=Y (T@y.e®e))e Dej,
ij=1

where (z ® y,e; ® e;) = (v1e;)(yTej) = z;y;. This in turn induces a
scalar product on V5 = R? ® R?, namely,

2
(rRy. 2 @y )y, = Z (z®y,ei@e)(a @Y, e @e;)
ij=1

2
=D wyriy;
ig=1
= ($7$/)V1 (yvy/)V1-

Definition 2.12 Given any R-linear mapping T : Vi — Va, where
each vector space has a scalar product, an adjoint of T is any R-
linear map T* : Vo — Vi which satisfies the identity

(T(l‘),y)v2 = ($7T*(y))V17 Vo e Vi,y € Va.

The following example illustrates that for finite dimensional spaces
such an adjoint map always exists and corresponds uniquely to the
transpose of any matrix representation of 7.

Example 2.21 Suppose Vi = R"™ and Vo = R™ with the respective
scalar products

(l‘l, :Eg)Rn = l‘{$2
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(y1,y2)rm = Y1 yo.

If A:R" — R"™ z+— y = Ax for some matrix A € R"*" then the
adjoint of A must satisfy

(Az,y)gm = 27 ATy = (2, ATy)gn.

Therefore, A* : y — ATy, 0

The desired catenation-shuffle duality is now described using scalar
products on the infinite dimensional vector spaces V; = R(X) and
Vo = R(X) ® R(X). Their orthonormal spanning sets are taken to be
X* and X* ® X*, respectively, so that

v = > ()@ n)

neX*

Pogres,= Y, (Pognen)(rosnen)
nn eX*

= Y @) rn)(s,n)
n,n € X*
= (p,")vi (g, 8)vs -

(Henceforth, the subscripts on these scalar products will be omitted.)
Also observe that X*® X* forms a monoid under the catenation prod-
uct (n@n')(E®E) = (nE@n'e’), which can be extended linearly so that
R(X)®R(X) is an R-algebra under this catenation product. Likewise,
one can define (n®@7n) L (E®E) = Nwé) @ (1 w') to yield a shuffle
algebra on R(X) @ R(X).

The catenation product and the shuffle product can now be identi-
fied, respectively, with the R-linear mappings:

cat : R(X) @ R(X) — R(X), p®q— pq
sh: R(X)® R(X) > R(X), pRqr puwq.
The corresponding adjoint mappings cat® and sh* are then R-linear

mappings of the form R(X) — R(X)®R(X) which satisfy, respectively,
the identities:

(cat(p® q), ) = (p ® g, cat™(r)) (2.14)
(sh(p®q),7) = (p ® g, sh™(r)) (2.15)

<
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for all p,q,r € R(X). Explicit expressions for sh* and cat* can be
derived directly from these relations. For example, given any £, v € X*
and r € R(X) it follows that
(§wr,r) = (sh(§ ®v),r) = (§ ®v,sh*(r))
— (B (), £ @ V).

Therefore,

()= 3 sh*(r).E@v) Eev

ErveX*

= ) (néwv)Eor (2.16)

ErveX*

A similar analysis reveals that

cat®(r) = Z (r,év) E@ . (2.17)

EreX*

Example 2.22 Using (2.16) and (2.17), respectively, observe that for
Ti; € X*:
sh*(1)=1®1
sh*(z;) =25, 14+ 1@z,
sh™ (24,24, ) = Ty @iy @ 1+ T4y @ 4y + 24, @ Ty + 1@ 4,75
= (23, ®14+1Qx4) (2, @1+ 1@ zy)
= sh*(x;, )sh*(z;, )

sh*(x;, - 2,) = sh™(z;,) - - - sh™ ()
and

cat*(1) =1®1
cat*(zj,) =2, @14+ 1@ xy,

cat™(zj, T4,) = T, i, @1+ 25, @ 4, + 1 ® mjy 24,

cat™(x -y ) =, x, Q1+ 1@ @y, -+ x4, +
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k—1
E xil...xij®xij+1...xik7
J=1

where 1 denotes the unit polynomial 1(. Note that this last identity
above can be written in the inductive form

cat™(xz;m) = (x; ® 1)cat™(n) + 1 @ x;m

(see Problem 2.5.2). 0

The next theorem states the desired duality in terms of R-algebra
homomorphisms.*

Theorem 2.6 The adjoint map sh* is an R-algebra homomorphism
for the catenation product cat, and the adjoint map cat*™ is an R-algebra
homomorphism for the shuffle product sh. Specifically, this means that

sh*(pq) = sh™(p) sh*(q) (2.18)
cat™(p i q) = cat™(p) w cat™(q) (2.19)

for all p,q € R(X).

Proof: Tt is shown that sh* is an R-algebra homomorphism for the
catenation product by first showing via induction that for all £ > 1
and z;; € X

Sh*(xik T ‘Th) - (xlk ®1+1® xik)Sh*(xikfl T ‘Th)
= sh*(x;, )sh™(zi,_, -~ 24,)- (2.20)
In which case, as indicated in the previous example,
sh*(x;, - 2,) = sh™(z;,) - - - sh™ ().

Therefore, (2.18) holds for all words since the identity clearly holds if
one or both words are empty. The k = 1 case is trivial. If the claim
holds for some fixed k > 1 then it follows that

Sh*(xik+1xik o 'xil) = Z (xikJrlxik @i, Ewr) EQV
EveX*

4 This concept will be defined more precisely in Definition 2.13.
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= Z (fcik‘”wz’l,x;il(fuw)) EQv

EreX*
= 3 [y 2 (€ ww)+
EreX*
-1
(xik . xi“g u_’xik+1 (V))] € v
- Z (.Z'Zk o 'x’ipgu—’y) (wik+1€) Qv+
ErveX*
> (@i i, Ew) €@ (24, v)
ErveX*

= (xik+1 ®1) Sh*(xik Ty )+
(1 ® xikJrl) sh* (xlk T xil)
= sh*(azikH) sh*(x;, - 24,).
Thus, one must conclude that (2.20) holds for all £ > 1. Finally, by
linearity, sh*(pq) = sh*(p) sh*(q) for all p,q € R(X).

Next it is shown that cat™ is a shuffle algebra homomorphism. For
any 7,7’ € X*, equation (2.16) and the above result imply that

sh*(p) = > (', 6 wv) E@v (2.21)

EveX*

=| > mtwv)éev|-| Y. 0.&u)de

EreX §ex
= > mEun) dur) e (2:22)
£7V75I7VIEX*

Taking the scalar product of the right-hand sides of equations (2.21)
and (2.22) with £ ® v gives

(' Ew) = Y (Ewv)(f,.& W)€,
EvgveX
This identity, combined with (2.17), produces the following:

cat*(€wr) = > (Ewrm)nen
nn eX*

= Y mEwr), € w)E ) ney

§7777V7§,7T], 7V,€X*

Edition 1.3, Copyright () 2025 by W. Steven Gray



2.5 Catenation-Shuffle Product Duality 65

= Z (g',éé-/)(];7ljy/)-

£7V7€I7VIEX*

Y mtwv)yn| e > 0wy

neX* nex*
= Y G Eur) e wr)
Eugvex

= Y &hed|u| > mw)ve
£,8e X v,/ eX*

= cat™ (&) wcat™(v).
Again by linearity, this last equality holds for all p,q € R(X). [ |

This basic duality theory can be generalized in several useful ways.
First consider the tensor product space

R(X)®" .= R(X) 9 R(X) ® - -- ® R(X),

where R(X) appears k& > 1 times on the right-hand side. Define the
k-shuffle product

shy, : R(X)®F - R(X),
DP1OP2 Q- @ Pg > PP - W Pk

A straight forward generalization of Theorem 2.6 gives
shi(q192- -+ qo) = shi(q1)shi(g2) - - shy(qe),
where shj(-) satisfies
(1 wpzw - wpp,q) = (p1 @p2- - @ pr,shi(a)), (2.23)
and, in particular,
shi(z;)) =2;,91® - ®1+1Q%;®- @1+ +1R1® - @,

This latter identity is written more compactly as

k

®j
Zl’i ;

Jj=1

shy (x;)
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where
k terms

gjz®j ;:1@...@:131.@...@1.

j-th position

One can also generalize the various scalar products discussed above
to at least partially admit power series and not just polynomials. For
example, given any ¢,d € R((X)) and p,q € R(X), define

(e,p) = >_ (e;n)(p,n)

neXx*

(c®dpog) = Y (codnen)(peqnen)
nn eX*

= Y (en)dn)pn)(gn)

n,m €X*
= (Cv p) (d7 Q).

Since each summation above is finite, there are no convergence issues
to consider, as would be the case if one tried to define a scalar prod-
uct on R{(X)) x R((X)). In this context, all of the results presented
so far extend in the expected manner and, in fact, can be combined
with the shuffle product generalization above. A particularly impor-
tant example of this, which is used in Chapter 5, is the generalization
of identity (2.23):

(Cl Lwicy i e mck,q) = (Cl R ®--+® ck,shZ(q)), (2.24)

where ¢; € R((X)) for i =1,2,...,k and ¢ € R(X).

2.6 Hopf Algebras

The catenation-shuffle product duality described in the previous sec-
tion is just part of a larger algebraic picture, one involving Hopf al-
gebras. So this perspective is presented in this section. The starting
point is the standard definition of a Hopf algebra, which at first glance
seems like a rather complex mathematical object. It will then be shown
that the catenation-shuffle product duality provides two Hopf algebras,
which not unexpectedly are duals of each other in a certain sense. Next,
a canonical construction of a Hopf algebra from a group is described.
The Faa di Bruno Hopf algebra is presented as a specific example of
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id® o®i id@o
AQA® A a A®A RA-TEL A AT AQR
n®id I3 g m a
AR A -
(a) Associative property (b) Unitary property

Fig. 2.4. Defining properties of an R-algebra (A, u, o).

this construction. This particular algebra is important as it strongly
motivates the synthesis of a second Hopf algebra which plays a central
role in the analysis of feedback systems. The latter will be presented
in Chapter 3.

First consider what it means for a set A to be a unital associative
R-algebra. Let A be an R-vector space with two R-linear maps

w:ARA— A,

and
c:R— A,

which satisfy the associative and unitary properties, respectively, as
described by the commutative diagrams in Figure 2.4.> Here id is the
identity map on A, ay : k®a — ka, and a, : a ® k — ak, where k € R
and a € A. Therefore, R® A and A® R are each canonically identified
with A. These diagrams are equivalent to, respectively, the identities

(ab)e = a(be), a,b,c e A
la=a=al, a€ A,

where ab := p(a®b) and 1 := (1) is the unit of A. Traditionally, y is

called the multiplication map, and o is called the unit map. The triple

(A, pu,0) is a unital associative algebra. The algebra A is said to be

commutative when ab = ba. The corresponding commutative diagram

is shown in Figure 2.5(a), where 7: a ® b — b® a for any a,b € A.
Next suppose there exist two R-linear maps

AA— AR A,

5 It is more traditional to use m and u for the multiplication and unit maps,
respectively. But these symbols clash with their use in system theory.
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AR A—" 5 AR A AQA+—T — AR A
I 1w A A
A
(a) Commutative property (b) Cocommutative property

Fig. 2.5. Defining the commutative and cocommutative properties.

and
e:A—-R

which satisfy the coassociative and counitary properties, respectively,
as illustrated in Figure 2.6. These commutative diagrams are the same
as the ones depicted in Figure 2.4 except that the directions of the
arrows have been reversed. In this case, A is called the comultiplication
map, and € is the counit map. Here 5y : a — 1®a and B, : a — a®1 for
a € A. These diagrams are equivalent, respectively, to the identities

({d®A)oA=(A®id)o A
(e®@id) o A~ (id®e€) o A,

where ~ denotes the canonical equivalence between R ® A and A ® R.
The triple (A4, A, ¢) is called a counital coassociative coalgebra. A com-
mon notation known as Sweedler’s notation is useful for representing
coproducts in a calculation. It has several variations, for example,

Ala) =D aqy ®a@) = Y aq) @ ag) = an) @ a),
@

depending on the level of brevity desired. They all represent the sum
of all possible pieces of a € A generated by applying the coproduct A.
A coalgebra is said to be cocommutative when 7o A = A as shown in
Figure 2.5(b).

Consider now the following definition.
Definition 2.13 A homomorphism between R-algebras (Ay, 1,
o1) and (Asg, p2,09) is any R-linear map 1) : Ay — Ag such that

Yop = pro (@)

oo = 0os.

Edition 1.3, Copyright () 2025 by W. Steven Gray



2.6 Hopf Algebras 69

ARA®A hes A® A RoA«ZL A A2, AQR
At 4 Be 4 s,
A® A 2 A
(a) Coassociative property (b) Counitary property

Fig. 2.6. Defining properties of an R-coalgebra (A, A, ¢).

An analogous definition can be given for a homomorphism between
two R-coalgebras. Using either concept, one can produce the notion of
a bialgebra as described next.

Definition 2.14 The five-tuple (A, u, 0, A, ¢€) is called an R-bialgebra
when A and € are both R-algebra homomorphisms.

Specifically this means that the mapping A : A — A ® A must
be an R-algebra homomorphism between the R-algebras (A, u, o) and
(A® A, piapa, 0aga), where °

HAQA : (A®A)®(A®A) - AR A,

(a1 ® az) ® (a3 ® aq) = p(ar ® a3) @ pag @ ay)
oapA - ROR - A® A,

k1 ® ko — o(k1) @ o(ka).

In which case, it follows directly that

L Aop=pagac(A®A)=(p@u)older®id)o(A® A)
2. Aco=o0pga=0R0

(see Problem 2.6.1). Similarly, € : A — R must be an R-algebra homo-
morphism between the R-algebras (A, u, o) and (R, ug, or). Therefore,

3. eop=pro(e®e)=c-e
4. eoo=o0r = 1.

Note that properties 1 and 2 can be expressed in terms of the commu-
tative diagrams shown in Figure 2.7, and, likewise, properties 3 and 4
are shown in Figure 2.8. They are often written in a more abbreviated
notation as:

1. A(ad") = A(a)A(d'), a,a’ € A
6 In the definition of caga, R ® R is being identified with R via the mapping 3.
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AQARARA dereid ARARA®A
HFARA
ARA Lam
A®A a A 2 A® A
(a) Property 1
A® A 787 R®R
A 8
A 7 R

(b) Property 2

Fig. 2.7. Commutative diagrams describing A as an R-algebra homomorphism.

A® A o R®R A+ R
1% KR € 1
A - R R
(c) Property 3 (d) Property 4

Fig. 2.8. Commutative diagrams describing € as an R-algebra homomorphism.

2. A1) =1®1
3. €(ad’) = €(a)e(d’), a,a’ € A
4. eoo(k) =k, k eR.

If instead one introduces the notion of an R-coalgebra homomorphism
as suggested above, then an equivalent characterization of a bialgebra
is one where p and o are both R-coalgebra homomorphisms, yielding
properties 1 and 3, and properties 2 and 4, respectively. That exercise

is left to the reader.

To complete the development of the Hopf algebra definition, con-

sider the set of all R-linear maps taking vector space A back to itself,

denoted by End(A).” Given two arbitrary f,g € End(A), the Hopf

convolution product,

7 Such maps are called endomorphisms on vector space A.
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frxg=po(feg)oA,

defines another element of End(A). The following theorem is central
to the theory

Theorem 2.7 The triple (End(A),x, ) forms an associative R-algebra
with unit 9 = o oe.

Proof: The associativity of the convolution product follows directly
from the associativity of u and the coassociativity of A:

fx(g*h)=po(f@(gxh))oA
=po(fe(po(g@h)oA)

( o A
=po(ide@p)(f®(g@h)

(

(

id® A))o A
(A®id))o A
WA\

)
=po((p@id)((f ®g)®h)
=po((uo(f®g)od)®@h
=po((fxg)®h)oA
=(fxg)*h.

To show that 1 is the convolution unit, it is necessary to use the counit
identity (id®€) o A =id ® 1 (see Figure 2.6(b)). Observe that

frx9=po(f®(coe)oA
=po((i[deo)(fel)(id®e)oA
=po(ideao)(f®@1)(id®1)).

~— = —

Thus, for any a € A

(fx9)(a) = p((d@o)(f ©1)(a®1))
= u(f(a)®1)
= f(a)1
= f(a).
Likewise, 9 x f = f. [ |

Finally, an element S € End(A) satisfying
Sxid=1id xS =4. (2.25)

is called an antipode of the bialgebra. The corresponding commutative
diagram is shown in Figure 2.9. Equation (2.25) implies that S is the
convolution inverse of id, so formally
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A® A Seid A®A
/v \
A < R 7 A
A oS /
Ao A e Ao A

Fig. 2.9. Commutative diagram describing the antipode, S.

S=id""'=wW—- W —id)*' =9+ i(ﬁ —id)*. (2.26)
k=1

It can be shown that when an antipode exists, it must be unique. It also
follows that S(1) = 1 and S(ad’) = S(a’)S(a) for any a,a’ € A (see
Problem 2.6.3). This final bit of structure culminates in the definition
below.

Definition 2.15 The siz-tuple (A, p,0,4,¢€,S) is an R-Hopf alge-
bra if it is an R-bialgebra with an antipode.

Two R-Hopf algebras can be introduced on R(X), one associated
with the catenation product and the other with the shuffle product.
They are duals of each other in the sense described by Theorem 2.6.
First, the relevant R-bialgebras are described.

Theorem 2.8 (R(X),cat, o,sh*, €) is a noncommutative cocommuta-
tive R-bialgebra, where

0 :R—=R(X), k—kl
e: R(X) =R, p— (p,0).

Likewise, (R(X),sh, o, cat* €) is a commutative noncocommutative R-
bialgebra.

Proof: The defining properties are easy to check. As an example, con-
sider the bialgebra (R(X), cat,o,sh*,€). Here it is necessary to verify
that sh* and e are R-algebra homomorphisms. Specifically, this means
that the following identities must be satisfied:

1. sh™ o cat = (cat ® cat) o (id ® 7 ® id) o (sh* ® sh™)
2. sh*oco=0®0

3. €eocat =€-¢€

4. eoo =1,
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where

cat : p®q — pq
sh* :r — Z (r,éwr) Q.

ErveX*

The details of each calculation are presented below.

1. On the left-hand side, using Theorem 2.6, observe that

sh*(cat(p ® q)) = sh*(pq) = sh™(p) sh*(q)

73

= > éwv)Eer > (gfw) eV

EvEX™ & eEX*
= Z (p, € wv)(q, & wi) e @vv/.
§7V7€I7V/E‘X*

While on the right-side, one has

(cat ® cat) o (id ® 7 ® id) o (sh* ® sh™)(p ® q)
= (cat ® cat) o (id ® 7 ® id)(sh*(p) ® sh*(q))

= (cat ® cat) o (id ® T ®id) > (ptwr)(q. g wr)
Evg vexr

ERreé el

= (cat ® cat) Z (p, & wv)(q, & wr)-

€7V7£/7V/6X*

ERErel

= EZ (p,Ewv)(q, & wr') & @/

£7V7EI7VIEX*

Hence, the first identity is satisfied.
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2. Here the left-hand side evaluates to

(sh* o o) (k) = sh*(k1)

= Y (FLéwv)E@rv=k1l®1)=kl®1.
ErveX*

As expected, the right-hand side gives
(c@o)k®l)=0ck)®o(l) =kl®1.
3. In this case, the left-hand side is

(eocat)(p® q) = e(pg) = (pg, V) = (p,0)(q,0).

While the right-hand side is

(e-€)(p,q) = e(p)e(q) = (p,0)(q,0).

4. This identity is especially simple. Observe
(eoo)(k) =e(kl) = k.

It is obvious that the algebra (R(X),cat,o) is not commutative. To
see that (R(X),sh*, €) is cocommutative observe from (2.16) that for
any r € R(X) that

Tosh*(r)=r1 Z (r,éwr)Eu

ErveX

= > (rnEwr)vet

ErveX*

= Z (rvwé)rveé

ErveX*
= sh*(r).

The analogous arguments regarding the bialgebra (R(X),sh,e,
cat*, o) are left to the reader to verify. [ |

Next, the corresponding Hopf algebras are described.
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Theorem 2.9 (R(X),cat,o,sh*, ¢, S) is a noncommutative cocommu-
tative R-Hopf algebra, where the convolution product on End(R(X)) is
defined by

f*g:RX) = R(X),

pe Y (pwé) Fng(©),

nEeX™

and S is the unique R-linear map satisfying
S(‘/EilxiQ e $Zk) = (_1)k$ikx7:k71 Cr Ty

for every z; x;, - x;, € X*. Likewise, (R(X),sh,o,cat* ¢, S) is a
commutative noncocommutative R-Hopf algebra, where the convolution
product on End(R(X)) is defined by

f*’g:R(X}—HR(X},
pr S (pon€) Fm) i g(E),

n, eX*
and S is as above.

Proof: Regarding the first claim, it is first necessary to verify that

frgi=(cato(f®g)osh)(p)= > (p,nwf) fF(N)g().
n,eEX*

Recalling that
sh*(p)= Y (pnw&neE,

n,§eX™
it follows directly that

(f@g)osh)(p) = > (p,nwé) f(n)@g(8).

n,EEX™

Whereupon the desired equality follows immediately. The only remain-
ing task is to verify that I xS = S+ I = o o e. Since in this case,
(cdoe€)(p) = (p,0)1, Vp € R(X), and, for example, I xS is R-linear, it
is sufficient to show that

(IxS)(1)=1, I*x9)(v)=0, Vve XT.
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The first identity is trivial. The second identity follows from induction.
Observe that any x; € X

(IxS)(xi) = Y (winwé)n(=1)8¢E

n,£e X"
=2;(—1)°1 + 1(=1)
=0,

where € denotes £ with the letters written in reverse order. Now assume
the identity holds for all words up to some fixed length k& > 0. Then
for any x; € X and v € X*

(IxS) (@) = > (wwnwé)n(=1)E

n,EeEX*
= > W' mwd)n(-1)kl¢
N, eEX*
= > Wy ) wn(-1)E+
N, eX*
> wnwa N (©))n(-nlle
n,EeEX*

=T Z (Vﬂ?wf)n(_l)lﬂé

n,EEX™

> wnw&n(=1)HE ) a
n,§eEX*
=z, (I*S)(v)—(I*S)(v)z;
=0.

The claim regarding the second Hopf algebra is left to the reader. The
identity from Problem 2.4.3(d) is useful in this case. ]

The following lemma provides an interesting interpretation of the
antipode in the context of iterated integrals defined for m functions
which are absolutely integrable over [0,77], denoted here by L7*[0, 7]
This identity will reappear later in Section 5.4 when Chen series are
introduced.
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Lemma 2.4 Let X = {x1,22,...,2p}. For any given v € L{*[0,T]
and fized t € [0,T] define the input function ug;(T) = —u;i(t — ) on
[0,t] fori=1,2,...,m. Then for any n € X* it follows that

ES(n) [u](tv 0) = ET? [U’S](tv 0)

Proof: The claim is trivial when n = (). In the case where n =
Ti Tip - Tiy, Observe:

Bstay ve a0l (t,0) = (<1 By g, [u](2,0)

/ / / iy (1) w4y (12) - -

L (T ) drpdT—1 -+ - dmy

/ / wiy (T1) -+ - w,, (1)

U(ry — 72) -+ U(rg—1 — 1) d7g - - - dy,

Uj

where U denotes the unit step function

1:t>0
U<t):{0:t<0.

Interchanging the order of integration gives

Egp[ul(t,0) = (_1)k /Ot /T: . /T: wiy (1), (12) - - -

wi, (1) dmidry - - - dry,.

Finally, substituting t — 7 for 7y followed by t — 75 for 7, etc., yields
the desired result, namely,

ul(£,0) // / iy (= 7))~y (£ = 7)) -

ulk(t )) dTldT2 d Tk
= Eylus](t,0).

In some cases it is possible to introduce additional structure on a
bialgebra A to guarantee that it has a well-defined antipode, and thus
is a Hopf algebra. The following definitions are essential in this regard.
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78 2. Formal Power Series

Definition 2.16 An R-bialgebra (A, u, o, A,€) is filtered if there ex-
ists a nested sequence of R-vector subspaces of A, say Ay & Ay &
-+, such that A = Up>0A() and

AApy © YA ® Apoiy-
=0

The collection { Ay }n>0 is called a filtration of A.

Definition 2.17 An R-bialgebra that is filtered such that Ay = o(R)
15 said to be connected.

Definition 2.18 An R-bialgebra is graded if there exists a set of R-
vector subspaces of A, say {An}n>0, such that A = &,>0A,, with

AiA; C Ay, AA CEPAI® An,
=0

and €(A,) =0, n > 0.
Definition 2.19 Let A be an R-bialgebra. An element g € A is

group-like if (g) = 1 and Ag = g®g. If A has only one group-like el-
ement, then any other element a € A is primitive if Aa = a®g+gRa.

A number of useful results follow from these definitions. For ex-
ample, if A has a grading {A,},>0, then a natural filtration of A is

{A(n)}nzo, where
A = P A
=0

Furthermore, if Ag = o(R) then A has only one group-like element.
Perhaps the most important aspect concerning a connected bialgebra
is a key property of its coalgebra. If

AT :=kere, AE';L) =ATnN Am) (2.27)

then for any a € AZ;L) it follows that

Aa=a®1+1®a+ Ala, (2.28)

where the reduced coproduct A'a € A?;L_l) ® A?;L_l) (see Prob-

lem 2.6.4). This leads to the following central result.
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2.6 Hopf Algebras 79

Theorem 2.10 Let (A, u,0,A,€) be a connected R-bialgebra. Then
(A, p,0,A,¢, S) is an R-Hopf algebra, where the antipode is given on
A* by

Sa=—a— Z(Sa'(l))a'@), (2.29)
or alternatively,

a=—a— Z a/(l)Sa/(Q) (2.30)

with A'a = Zal(l) ® a’(2) being the reduced coproduct in Sweedler’s
notation.

Proof: 1t is first shown by induction that if a € A?;L) then the series
representation (2.25) for Sa is finite, specifically,

n
9+ > (¥
k=1
Therefore, since antipodes are unique, this must be the antipode for

all of A. The claim clearly holds when a € A since (¥ —id)1 = 0. If
a € Al observe that for any k > 2

(¥ —id)*(a) = [(9 — id) » (¥ — id)**~'])(a)

pl(0 —id) ® (9 —id)* ') Aa

pl(9 —id) ® (0 —id)* (e®1+1®a)
0

since again (¥ —id)1 = 0. Now assume the claim holds up to some
fixedn>1.Ifa € AZ;LH) then

(¥ —id)* Y (a) = p[(¥ —id) @ (9 —id)**)|(a ® 1 + 1 @ a + Aa)
= pu[(¥ —id) ® (¥ —id)*"]A%a
=0,

where the induction hypothesis was used to arrive at the final equality.
Therefore, the result holds for all n > 0.

Having established that the bialgebra is a Hopf algebra, it is shown
next that S has the recursive forms given in (2.29) and (2.30). The
focus will be on the first formula, the other one follows similarly. The
case where a € Aa) is trivial. Assume the identity in question hold up

to some fixed n > 1. Then for a € A,J{ 1 observe
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80 2. Formal Power Series

Sa = (¥ —id)a + Zn:(ﬁ —id)* % (¥ —id)a
k=1

= —a+u <Z(19 —id)* @ (0 — id)> Aa
k=1
=—a+p (Zw —id)* @ (0 — id)) > gy @ aly
k=1
=—a+ Z Z(ﬁ - id)*ka'(l)] (9 — id)a'(2)
k=1

=—a-), [Zw - id)*k“h)] 92)

k=1
=—a— Y S(afy)afy,

where the induction hypothesis is employed to get the last equality.
This proves the final part of the theorem. [ |

One way that Hopf algebras naturally arise is in the context of
groups. Suppose V is a finite dimensional vector space over R. Let
GL(V) denote the general linear group on V', namely, the group of all
invertible R-linear maps taking V' back to itself. A group G with unit
1¢ is said to have a representation if there exists a group homomor-
phism 7 : G — GL(V), that is,

m(99') = m(9)7(d"), VYg,4 € G. (2.31)

The representation is faithful if 7 is injective. Given some fixed basis
for V, A = m(g) is an invertible matrix with real coefficients. In which
case, there exists a set of coordinate functions of the form a;; : G — R.
This collection of functions, R(G), forms a commutative algebra under
pointwise defined operation

(aijar)(g) == ai(g9)an(g), Vg€ G.

From (2.31) and the definition of matrix multiplication there is a well
defined coproduct

A: R(G) = R(G) @ R(G), aij = > _ ai, @ ag,;.
k
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It can be shown that R(G) constitutes a commutative R-Hopf algebra,
H, where the unit, counit, and antipode maps are given, respectively,
by o(1) =1 with 1(g9) =1, Vg € G, €(a;;) = a;j(1¢), and

(Saij)(9) = aij(97"), Vg€ G. (2.32)
For any g € G one can define an R-linear map &, : H — R via
Dy aij — aij(g),
and @4(1) = 1 so that

Dy(aijap) = aij(g)ar(g) = Pylaij)Py(ar).

These are usually called the characters of the Hopf algebra, and they
form a group under the Hopf convolution product. Specifically, the
group product satisfies

(¢g1 * ¢g2)(aij) = Mo (¢91 ® ¢92) © Aaij
= Z Py, (air) g, (akj)

k
= Z aik(g1)akj(92)
k
= aij(9192)
= nglgz(aij)' (2:33)

The identity element of the group is @;,,. In addition, from (2.32)

b1 (aij) = aij(g~") = (Sai;)(9)
= (@40 S)(aij) = 5 (a;). (2.34)

In which case, the bijective map ¢ : g — &, is a group isomorphism
between G and the character group.

A specific example of this construction is the Faa di Bruno Hopf
algebra. The name refers to the well known Faa di Bruno formula from
calculus which describes the composition of two functions in terms of
their Taylor series. Let f. and f; be two functions with convergent
Taylor series about the point z = 0 having the property that f.(0) = 0
and f3(0) = 0. In which case,

n

Felz) = D elm) 2, fulz) = D dimy o (2.35)
| 2y

n=1
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82 2. Formal Power Series

It is further assumed that these functions are normalized in the sense
that ¢(1) = d(1) = 1. It is easy to show that the composition feoq :=
fe o fq has the same nature as f. and fg, namely, it has a convergent
Taylor series representation

Zn

M8

Jfeod(z) = ) _(cod)(n)—

|
1 n.

N
I

for some set of coefficients (cod)(n) € R, n > 1 with (cod)(1) =1, as
does the composition inverse of any such function, for example, !,
where f-lo f.= f.o f-! = I with I(2) := 2. In which case, this class
of functions forms a group G pgp under composition. The well known
Faa di Bruno formula provides the Taylor series coefficients of feoq,
specifically,

n!k! d(l)jld(2)j2 ood(n)in
(cod)( Z k:' Zjlujz L (@207 - (nl)in (2.36)

where the second sum is over all ji,j2,...,jn => 0 such that j; + jo +
-+ jp =k and j1 +2j2 + - +nj, = n.

To construct the underlying Hopf algebra, first let Ry, [[X]] be the
set of all proper series over the alphabet X = {z}. Now identify a
given Taylor series f.(z) = ), -, c(n)z"/n! with its corresponding
formal power series ¢ € R, [[X]]. Let ¢ o d denote the formal power
series corresponding to the function f.o f;, where f. and f; are given
n (2.35). For any n > 1 define the coordinate function

an R, [X]] = R, ¢ (¢,2") = ¢(n).

As described above, the set of these real-valued mappings defines an
R-vector space, H, and a commutative algebra where the product is
given by

WU an @ ap = pam

with unit a; ~ 1.8 Given that the underlying group representation
of Grgp associated with this Hopf algebra is not finite dimensional
(see Problem 2.6.5), Theorem 2.10 will be utilized to ensure that the
construction is successful. The degree of a,, is defined to be deg(a,) =
n—1,n > 1, and deg(anan) = deg(ay,) + deg(ay,). Therefore, H =

8 Here 1 is the unit of a new algebra and should not be confused with the monomial
10 by the same name, which was the unit for the catenation and shuffle algebras.
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2.6 Hopf Algebras 83

@n>0Hy,, where H, denotes all elements of degree n, constitutes a
grading of H. Since Hy = R1, this grading is connected. The key idea
is that (2.36) can be used to define a coproduct on H:

Aay(c,d) = ap(cod) = (cod,z")

_ Z o(c) ik af (d)ay'(d) --- af (d)
— k! - gilgal - ! (1!)]1 (2!)]2 - (n!)]n
Ji, J2 Jn

n
1 n!k! ap @ ay ay - ap
= — — ‘ . . —(c, d).
; k! 2]: gilgal e ! (1!)]1(2!)32 oo (nl)in

For example, the first few coproducts ordered by degree are:

Aap = a1 @ ap
Aa2:a1®a2+a2®a%
Aa3:a1®a3+a2®3a1a2+a3®a:{’

Aay = a1 @ ag + az @ (4araz + 3a3) + a3 ® 6alas + ag ® af

Thus, (H, u, 0, A, €) forms a connected graded commutative noncocom-
mutiative bialgebra with o(1) =1, €(a,) = 0 for n > 1, and €(1) = 1.
From Theorem 2.10 it follows that this bialgebra is a Hopf algebra. In
this case, the reduced coproduct is

Aay =010
Aas = as ® 3asg
Aay = a; ® (4az + 3a3) + a3 ® 6az

and the antipode computed using (2.29) is:

Sa; = a; (2.37a)
SCL2 = —ay (237b)
Saz = —ag — S(az)3ay = —az + 3a3 (2.37¢)

Say = —ay — S(az)(4az + 3a3) — S(a3)6ay
= —ay — (—ay)(4as + Sa%) — (—az + Sa%)ﬁag

= —ay + 4asas + 3a§’ + 6asag — 18(1%
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84 2. Formal Power Series

= —ay + 10aza3 — 15a3 (2.37d)

Note, in particular, that in the Sa4 calculation above there is some
inter-term cancellation involving the monomial a3. If this calculation
is repeated using instead (2.30), one will observe that there is no such
cancellations ever (see Problem 2.6.6). In fact, it is known that the
number of inter-term cancellations increases dramatically with degree,
which from a computational point of view is wasteful. The cancella-
tion free right antipode formula (2.30) is known in the literature as a
Zimmermann formula. In addition, observe from (2.32) that

(Sap)(c) = an(c_l), n>1,

where ¢! € R[[X]] denotes the generating series for f. !, that is,
f.—1 = f71. In which case, the antipode of this Hopf algebra in affect
yields a recursive form of the Lagrange series inversion formula.

Example 2.23 Consider the function f.(z) = log(l + z), where
fe(0) =0 and f.(0) = 1. Then f7'(2) = e — 1 so that

22 23 24 5

fc(z)—z—g—k 3 6—+24§

and
B 22 23 P
fc*l(z)—Z‘Fa‘Fg—FZ—l—a%—“-

o
~
Il

(™) )

(™) () =—(=1) =1
%MﬂZ—%@+&ﬁd=—U 3(-1)* =
(™) ( az(c)
= (®+w(ﬂ)—w(f 1

I

|
S
Ny
9}
~

|
—_
ot
@
NIV
/-\
\_/
+
[
)
Q
[\
/-\
\_/

as expected. 0
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Finally, recall that the set of characters {®.: H — R : c € R, [[X]],
(¢,z) = 1} forms a group under convolution. From (2.33)-(2.34) it
follows for n > 1 that

(PexPy)(an) = an(cod) = (cod,z™)
@; " an) = (San)(c) = (7, a").

Therefore, G pyp is isomorphic to the character group associated with
the Hopf algebra H.

2.7 Composition Products

Motivated by the final example in the previous section, a class of
formal power series products known as composition products is con-
sidered in this section. They all come from the same basic con-
struction process. involving two alphabet X = {xg,z1,...,2,,} and
X = {&o,&1,...,%m} and two formal power series ¢ € RY((X)) and
d € RY(X)). Mathematically there is no need for any type of compati-
bility between the parameters m, ¢, 7 and . But in many applications
there generally is some kind of natural matching requirement such as
¢ =m.

Definition 2.20 Fiz two alphabets, X = {x¢,21,...,2m} and X =
{Zo,Z1,...,Zm}, and assume that R((X)) is an associative R-algebra
with product O and multiplicative identity element 1. The associated
composition product is the binary operation

RY((X)) x RY(X)) — RE((X))
(c;d) > cod= Y (ci)ijod,

where o d is the unique extension of
Ziod=pi(d), 1=0,1,...,m
to X* given by
(ZiyZiy_y -+ Tiy) 0 d = pyy (d)Bpi,_, (d)B - - Opy, (d)

with p; : RE(X)) — RUX)) such that p;(0) =1, i =0,1,...,7m and
fod=1.
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Composition products arise in many forms when systems are inter-
connected to produce new systems. Their particular form depends on
the nature of the systems involved. Whenever possible, the same no-
tation will be used, and the specific definition will be evident from the
context. It is easily verified that any composition product is R-linear
in its left argument, that is, for any real numbers « and 8

(ac+ Bd)oe=a(coe)+ f(doe),

but in general c o (ad + fe) # a(cod) + f(coe) (see Problem 2.7.1).
Before tackling the more technical issues, such as the conditions under
which a composition product is well defined, some important examples
are introduced. These examples will appear frequently in later chapters
as they are all inspired by system interconnections.

Example 2.24 Suppose X = {1, 2o,..., 2}, X = {&1,%2,...,Ex )},
c € RY(X)) and d € R™((X)). Note that number of components
series in d, namely 7, is equal to the number of letters in X. Let
d; denote the i-th component series of d, that is, (d;,&) = (d,§); for
every £ € X*. Consider the composition product defined by letting
pi(d) =d;,i=1,...,m, and

(i'il"i"iz cee jlk) od= d’ild’ig cee di =:d".

7

k

In which case,

cod= Z (c,77)d".

jeX*
If the letters in X commute, then the composition product is written
in the exponential form

A
cod= Z (6777) Tl
n:

nex*

(review Example 2.7). If, in addition, the letters in the alphabet X also
commute, then the power d" is taken to be the multinomial catenation
power having coefficients

. | .
(dn777): Z (duﬂll)(dzkﬂ?l‘c)%a 77€X .
N1 =1 A
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This type of composition product describes function composition in
the sense described in the previous section, but in the multivariable
setting. That is, suppose U and V' are two neighborhoods of the origin.
Let f. : U C R™ — Rf and fy : V € R™ — R™ be real analytic
functions with f4(V') C U and having Taylor series about Z = 0 and
z =0,

. 27
fer By ) = ) (C,ﬁ)a
Hex*
o
fa(z1, 20,0 2m) = Z (dﬂ?)ﬁ7
nex*

respectively. Here ¢ € R’ [[X]], and d € R™[[X]] is assumed to be
proper, i.e., f4(0) = 0.2 The composite function f.o fy corresponds to

setting Z; = fq(2), i =1,2,...,m. By direct substitution observe
feo fa (Z)
2
= Z (Ca T,) ﬁ
eX 2=fa(2)

FeX*
1 zM 2"
=y (Cﬂ?)ﬁ > (dmm)ﬁ Y (dikank)F
neEX* Cmexr v LEX* ke
1 2M L
= (Cﬂ?)ﬁ > (diunl)"'(dikank)W
fex~ CemeeX - ke
1 n! 2"
= Z(Cﬂ?)?, > (diy,m) - (diy, ) ———— | —
feX* " | neX* Lm-ne=n e
1 N
- Z (Can)ﬁ Z (dnﬂ])ﬁ
neEX* | neX*

9 Otherwise, it is more natural to write f. as a Taylor series about Zo = (d, §)) so
that f.(20) = (¢, 0), i.e., this value is not determined by an infinite sum.
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=Y | S endng| 5

HEX* ﬁeX*

2N
= (COdﬂ])ﬁ

nex*
= fcod(z)‘

In which case, fc o fa = feod- So the underlying composition product
for the commutative alphabets X and X is that induced by function
composition. 0

Example 2.25 In this example, the situation is mixed. One alphabet
is commutative, while the other is not. Let X = {xo,21,..., 7},

X = {&1,%9,..., %5}, ¢ € RY[X]] and d € R™{(X)). If p;(d) = d;,
i=1,...,m, and

(Z4yTiy -+ Tip) 0d = diy widiy o -+ wdy, =d™"
7
then ]
N
cod= Z(c,n) A
neEX*

This type of composition product describes the interconnection of an
integral operator E, € £(R(X)), as described in Section 2.4, followed
by a function f., specifically, f. o E, = E.,. The composite system
will be called a Wiener-Fliess system in Chapter 3, where in general
the polynomial p can be replaced with a formal power series d to
produce a well defined map Fy. A special case of such compositions is
the class of state space systems considered in Chapter 6. In this case,
Fy will represent the solution to the state equation, and f. will be the
output function. So the mapping from input to output is given by the
composition f.o Fy = F.q. 0

Example 2.26 This example describes a type of composition product
involving only a single noncommutative alphabet, X = {zg,z1,...,
Ty }. Suppose ¢ € RY((X)) and d € R™((X)). Define the family of

linear operators
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wd(a:,) : R<<X>> — R<<X>>, e t— xo(di L 6), (238)

1=0,1,...,m with dy := 1. Extend the definition inductively to words
by letting
Ya(rizg) = Ya(xi) ® Ya(w;),

where ‘@’ above denotes operator composition, and t4(0)) := id. Since
this product is associative and R-bilinear, in effect ¥y is a continu-
ous (in the ultrametric sense) algebra homomorphism mapping the
associative algebra (R{(X)),cat,1) to the associative operator alge-
bra (End(R((X))),e,id). In this setting, define a formal power series
composition product by setting p;(d) = 1gq(z;)(1),7=0,1,...,m, and

(azikazikﬂ e xil) od= 1/%1(96%) ° 1/1d($ik,1) o ---0 wd(xil)(l)
= Ya(@i Ty -+ @iy ) (1)

Therefore,

cod= Y (e,mnod

neX*

= > (e;n) a(n)(1).

nex*

This type of composition product describes the composition of two
integral operators in the class £(R(X)). Namely, if E,, E, € E(R(X))
then F, o F; = E,o,. For example,

(Ez, © By, )[u] = By, [Eg, [u]] = Egga, [u],
and in fact
x10x1 = Py (21)(1) = zo(x1 W 1) = 2027
A variation of this product, say ¢o d, uses the following linear operators
da(z;) : RUX)) = RUX)), e — e + xo(d; we) (2.39)
for i =0,1,2,...,m with dy := 0. For example, x1 621 = x1 + xox1.
This product can be used to describe the feedback connection of two

integral operators. Both of these composition products will be further
developed and applied in Chapter 3. 0
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The well definedness of a composition product is considered next.
The following two theorems will cover all the examples described
above. The only difference in their assumptions is the inequalities in
their first item. If the inequality is the strict sense, then the composi-
tion product is always well defined. If not, then an additional condition
involving properness is needed.

Theorem 2.11 Consider a composition product defined by (p,0,1),
where

1. ord(p;(d)) > ord(d), i = 0,1,...,m, d € RY((X))
2. ord(dOd") = ord(d) + ord(d'), d,d" € R{{X)).

For any ¢ € Ré« ) and d € R(X)) the composition cod is a well
defined series in RZ« ))-

Proof: Tt suffices to show that the family of formal power series {7 o
d} ;- is locally finite, and hence, summable. For a fixed d € RE((X))
defined the integers r; = ord(p;(d)) — ord(d) > 0, i =0,1,...,m, and
r = min; 7; > 0. Then given any word 77 € X

ord(n od) = ord(&;, T;,_, - T4, od)
—_———

Since ord(d) 4+ > 1, ord(f70d) increases at least proportionally as the
length of 77 is increased. So for a fixed £ € X™ the set

14(8) = {ij € X* : (fjod,&) # 0}

must be finite since (770 d, &) = 0 when the length of 7 is such that

7] (ord(d) +7) > [¢].
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In which case, the family in question is locally finite. [ |

Theorem 2.12 Consider a composition product defined by (p,0,1),
where

1. ord(p;(d)) > ord(d), i = 0,1,...,m, d € RY((X))
2. ord(dOd") = ord(d) + ord(d'), d,d" € R{(X)).

For any ¢ € }RZ((X» and a proper d € RY((X)) the composition cod
is a well defined series in RY((X)).

Proof: Following the same logic as in the proof of the previous theo-
rem, one can conclude here that

ord(n o d) > || ord(d).
Since d is proper, ord(d) > 1. In which case,
Ia(§) = {f € X" : (N0 d,€) # 0}
is finite since (770 d, &) = 0 when the length of 7 is such that
7] ord(d) > [¢].

This proves the theorem. [ |
Example 2.27 Suppose p;(d) = d;, i = 1,2,...,m as in Exam-
ples 2.24 and 2.25. Clearly, ord(p;(d)) = ord(d;) > ord(d) as required
by Theorem 2.12. Furthermore, the catenation product and shuffle
product both satisfy item 2 in Theorem 2.12 (see Lemma 2.2 in the

latter case). Therefore, the corresponding composition products are
well defined if d is proper. 0

Example 2.28 Consider the first composition product defined in Ex-
ample 2.26. From Lemma 2.2 it follows that for any e € R((X))

ord(¢4(z;)(e)) = ord(d;) + ord(e) + 1.
Therefore,

ord(p;(d)) = ord(¢4(x;)(1)) = ord(d;) +1 > ord(d), i=0,1,...,m.
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92 2. Formal Power Series

Furthermore,

ord(¢q(w;) @ 1a(x;)(1)) = ord(zo(d; w (wo(dj 1w 1))))
= ord(d;) + 1+ ord(d;) +1
= ord(¢4(;)(1)) + ord(sa(z;)(1)).

In which case, Theorem 2.11 applies, and the composition product cod
is well defined everywhere on R*({(X)) x R™{(X)). 0

The next theorem gives conditions under which a composition prod-
uct is associative. Of course, this only makes sense if the composition
is defined for two series coming from the same underlying set. The
theorem is stated here under the simplifying assumption that all the
series are coming from R((X)) with X = {z¢, z1}. It can be stated and
proved in a much more general setting, like that of Definition 2.20, but
this only complicates the notation while obscuring the fundamental
idea.

Theorem 2.13 Consider a composition product defined by (p,0, 1)
on R((X)) x R((X)) with X = {xo,x1}. If for every c,d,e € R{(X))

(cOd)oe = (coe)O(doe), (2.40)
then the composition product is associative.

Proof: Tt is first shown by induction that for any word n € X* and
series d,e € R((X))

(nod)oe=no(doe).
If n = 0 then directly
(lod)yoe=1oe=1=0o(doe).

Now suppose the claim holds for words up to some fixed length & > 0.
Select any x; € X, n € X* and observe from Definition 2.20 and (2.40)
that

((win)od)oe = ((ziod)D(nod))oe
= ((w;0d)oe)d((nod)oe).
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Applying the induction hypothesis and Definition 2.20 one more time
gives

() od)oe = (zio(doe)D(no(doc))
= (i) o (doe).

Hence, the proposed identity holds for all n € X*. Finally, for any
c € R((X)) it follows that

(codjoe= | > (emnod|oe= Y (cn)(nodoec

nex* neX*
=Y (e;mno(doe)=co(doe),
neX*
Therefore, the composition product on R{(X)) is associative. [

Example 2.29 Consider the composition product defined in Exam-
ple 2.24. In this case, the product O corresponds to the catenation
product, which is bilinear, and p;(d) = d;. Therefore, it is sufficient to
check a reduced version (2.40), namely,

(B¢ ce=(noe)D(§oe), 1§ € X" (2.41)

Observe that if n = x;, - -2, and { = xj, - - xj,, then

M) oe = ((wy zi)(@j -zj))oe
= Pi (6) C Piy (e)pjz (6) CPhy (e)
= € €€, e
= (pi(e) - pi(€)(ps,(€) - pj(e))
= (noe)(foe).

Hence, this composition product is associative, which comes as no sur-
prise since it is induced by function composition, which is well known
to be associative. 0

Example 2.30 Consider the first composition product defined in Ex-
ample 2.26. Here O is effectively operator composition on End(R((X))),
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94 2. Formal Power Series

which is R-bilinear, and p;(d) = 1g(x;)(1), ¢ = 0, 1. So again it is suf-
ficient to check (2.41), which in this case is

(tha(n) @ ¥a(§)(1)) 0 € = VPdoe (1) ® e (€)(1). (2.42)

Suppose, for example, that n = & = 1. Then, using the identity in
Problem 2.7.7(d), it follows that

(Va(x1) ® Ya(z1)(1)) 0 e = (wo(dr w (zo(dy 1)) o€
= zo((d1 o e) w (xo(dy oe€))
= wdoe(xl) 1 wdoe(xl)(l)y

which is in agreement with (2.42). The general case can be proved
by induction, and thus, this composition product is associative (see
Problem 2.7.4).

In contrast, the second composition product in Example 2.26 does
not satisfy the condition (2.41) and is in fact not associative. Contin-
uing the earlier example, it is evident that

(r16mx1) 021 = 21 + 22071 + x%:nl,

while
x106(x10x1) = 21 + 2021 + x%xl.

O

The section is concluded by developing a bit further the first com-
position product described in Example 2.26. As indicated earlier, it
will appear shortly in the context of system interconnections. In the
analysis that follows, it is useful to write an arbitrary n € X* in the
form

n= l‘gkibikl‘gkilibikil et ag®, (2.43)
where i; # 0 for j = 1,..., k. In which case,
nod=1g(xy") e Yg(xs,) @ alzy" ") @ gz, ) e
® ha(xg") ® Ya(wi,) @ Pa(ag”)
= g iy gt iy o sy ] )

(N Tk—1

It is easily verified that
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k
ord(nod) =ng+k+ Y _n;+ord(d;,)
j=1
Inl=Inlz,
=+ > ord(d;) (2.44)
j=1
> |nl + (Inl = |nl,,) ord(d). (2.45)

Alternatively, for any n € X*, one can uniquely associate a set of right
factors {no,n1,...,n} by the iteration

N1 =2 ag,mj, no =0, i1 #0, (2.46)
so that n = n with k = |n| — 9|4, In which case, nod = n; od, where

1+
niv1od=zy"" " [di,,, w(n;od)

and 79 o d = z{°. Then for any ¢ € R((X)) and d € R™((X)), the
composition product can be written using the set of all right factors
as described by (2.46). For each word n € X", the j-th right factor, n;,
has exactly j letters not equal to xg. Therefore, given any v € X*:

vl i

(cod,v) =33 (em)(mod,v). (2.47)

=0 5=0 n;eX?

The third summation is understood to be the sum over the set of all
possible j-th right factors of words of length . This set has a familiar
combinatoric interpretation. A composition of a positive integer NN is
an ordered set of positive integers {aj,aqg,...,ax} such that N =
a; + ay + -+ 4+ ag. (For example, the integer 3 has the compositions
1+1+1,142,2+1 and 3). For a given N and K, it is well known
that there are Cx(N) = (%j) possible compositions. Now each factor
n; € X', when written in the form

nj = xgjxijxgjilxijfl o 'xglxilxgo,
maps to a unique composition of 7 + 1 with j + 1 elements:
i+l=(no+1)+(ni+1)+ -+ (n;+1).

Thus, there are exactly Cjy1(i + )m? = (;)mj possible factors 7; in

X% and the total number of terms in the summations appearing in
(2.47) is
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mn+nM“—1)<m+1

(m+ 1),

m m
This provides in general a very conservative estimate on the growth
rate of the coefficients of c o d.

Example 2.31 A series ¢ € RY((X)) is called linear if

supp(c) € {n € X* :np =y iz, i € {1,2,...,m}, ni,ng > 0}.
(2.48)
Since the shuffle product is R-bilinear on the vector space R ((X)), it
follows for any n = xy*x;z(° that

no (ad+ fe) = a:6“+1[(ad + Be); w )]
= azf TN (d; wxl®) + Bzl (e L af0)

=a(ned)+pB(noe)

Therefore, if ¢ is a linear series then

co(ad+fe) = Y (¢,;n) no (ad + fBe)
nex*
= 5" ale,n) nod+ Blen) noe

nex*
=a(cod)+ B(coe).

In other words, the composition product (2.47) in this special situation
is linear in its right argument as well as its left. 0

Additional observations regarding the composition product (2.47)
include the fact it is neither commutative nor has an identity element.
Therefore, (R({X)),0) and (R*(X), o) form only semigroups. A sum-
mary of other useful elementary properties is given below.

Lemma 2.5 The following identities hold for the composition product
defined in (2.47):

1. 0od =0, Vd € R™((X)).

2. col0=cy:=),~olc,xy) xf. (Therefore, co0 = 0 if and only if
Cco = 0.) -

3. cpod=cy, ¥d € R"{(X)). (In particular, 1od =1.)

4. col=cyp=3% x.(c,n) a:lom. (Therefore, co 1 = ¢ if and only if
c=cp.)
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Here 1 denotes a column vector where all m component series are 1.

Example 2.32 Suppose ¢ = %xoxlx — lazlx% and d = zg. Observe
Yo (o) (€) = 20(1 we) = xpe and Py, (x1)(e) = zo(z 1w e) so that

SO0 0 80 = 5y (0) & g (1) # g (20) (1)
= %x%(mo L xo)

:xé

and

18 0 20 = 50y (1) @ g (00) # iy 20) (1)

1
= gl‘o(l‘o L :Eg)

1
= §x0(3:pg)

_—

Therefore, cod = 0. That is, it is possible to have cod = 0 when both
c and d are not zero. 0

Example 2.33 Let X = {z¢, 21} and consider the two linear series ¢
and d with (¢, z('z120°) = (d, 2 z12,°) = 0 for all ng > 0. Then

cod= Y (e,n)nod

nex*

c azixl il
( » 0 0

1
2 1[M]s

= Z (¢, zbx1)(d, :E%ml) xéﬂﬂznl.

i,j=0
For any k£ > 1 observe

(Cv $6$1)(d7 l‘%ﬂj‘l) ($z]+j+1$17 $(I§x1)

WE

(cod,zfz) =
0

-
.
Il

)

T
L

(c, xlg_j_lazl)(d, xéxl).

<.
I
o
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98 2. Formal Power Series

This last expression is the familiar convolution sum (see (1.29)) and is
similar to what appears for single letter alphabets under the Cauchy
product in Example 2.5. 0

Finally, some more advanced properties of the composition product
(2.47) are considered. The first theorem states that this composition
product on R™((X)) x R™((X)) is continuous in its left argument.
(Right argument continuity will be addressed shortly.)

Theorem 2.14 Let {c;}i>1 be a sequence in R™((X)) with lim; o ¢; =
¢ in the ultrametric sense. Then lim; o (c; 0 d) = cod for any
d € R™{(X)).

Proof: Define the sequence of non-negative integers k; = ord(c; — ¢)
for ¢ > 1. Since c is the limit of the sequence {¢;};>1, the sequence
{ki}i>1 can have no upper bound. Observe that

dist(c;od,cod) = gord((ci—c) od)

and, in light of (2.45),

ord((¢; — ¢) od) = ord Z (i —e,m)nod
nesupp(c;—c)
> min  ord(n od)

nesupp(ci—c)
> min [n[+ (]n] = [nls,) ord(d)
nesupp(ci—c)
> k.
Thus, dist(c; od,cod) < o for all i > 1, and lim; ,o0(c;0d) = cod. m

The next theorem describes an ultrametric contraction induced on
R({(X)) by this composition product.

Theorem 2.15 For any ¢ € R™{(X)), the mapping d — cod is an
ultrametric contraction on R™((X)). Specifically,

dist(cod,coe) < odist(d,e), Vd,e € R™((X)).

Proof: First observe that the claim is exactly equivalent to the in-
equality
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ord(cod —coe) > 1+ ord(d — e), (2.49)

which is trivially true when ¢ = 0 since cod — coe = 0. So assume
¢ # 0 such that supp(c) is nonempty. Now if all the words in supp(c)
have the form n = xlg, k > 0, then the claim is also trivially true since
nod—noe = 0 for all n € supp(c) giving again that cod—coe = 0. Thus,
further assume that supp(c) contains at least one word 7 utilizing one
or more letters from the subalphabet {x1,z2,...,2;,}. In which case,

ord(cod —coe) =ord Z (e,n)(nod—mnoe)

neX*
> min ord(nod—noe).

nesupp(c)

From the definition of the composition product, it is clear that the
shorted possible word generated by a series of the form nod —noe
has length ord(xz; od — x; 0 €) = ord(z¢(d; — €;)) = 1 4 ord(d; — ;) for
some i # 0. This would directly establish the equality in (2.49) if this
x; € supp(c). But if z; & supp(c), then this simply means that

min ord(nod—mnoe)>1+ord(d—e).
nesupp(c)

Thus, either way, the theorem is proved. [ |

An immediate result of this theorem is the right argument continuity
property alluded to earlier.

Theorem 2.16 Let {d;};>1 be a sequence in R™((X)) with lim;_, d; =
d in the ultrametric sense. Then lim; ,oo(c o d;) = c o d for all
c € R™{((X)).

Proof: Observe

lim dist(co d;,cod) <o lim dist(d;,d) = 0.

i—00 1—00

Problems

Section 2.1
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Fig. 2.10. The mapping p : X — M and its associated monoid homomorphism
p: X" — M.

Problem 2.1.1 Suppose M is the set of real-valued functions which
have a well defined one-sided Laplace transformation H(s) = Z{h(t)}.
Let M' = Z(M).

(a) Describe specifically how M and M’ can be given the structure of
a monoid.

(b) Is &£ : M — M’ a monoid homomorphism, a coding, an isomor-
phism? Explain.

Problem 2.1.2 In the definition for a monoid homomorphism p :
M — M’, the second of two requirements is that the units e and €’ of
monoids M and M’ respectively, must be related by p(e) = €. Can
this identity be deduced from the first requirement in the definition,
i.e., is the definition redundant? If true, prove it. If false, provide a
specific counterexample.

Problem 2.1.3 Given an alphabet X = {zg, z1,..., %} and a monoid
M, show that any mapping p : X — M can be uniquely extended to

produce a monoid homomorphism p : X* — M. That is, if i : X — X*

denotes the natural injection of X into X*, then there exists a unique

monoid homomorphism p such that p = poi (see Figure 2.10).

Section 2.2

Problem 2.2.1 Verify that R((X)) and R(X) with the usual notions
of addition, scalar multiplication, and the catenation product each
constitute:

(a) a ring,
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(b) a module over R(X),
(c) an associative R-algebra.

Problem 2.2.2 Let X = {z} and assume f. and f; are real analytic
functions with generating series ¢, d € R[[X]], respectively.

(a) Verify that for the pointwise product f.fy = feq, where cd is the
binomial convolution product defined in (2.2).

(b) Show that 7 1(cd) = 271 (e)d + cz~(d).

(c) Is this identity above consistent with Lemma 2.17 Explain.

Problem 2.2.3 Prove the following propositions for an arbitrary non-
commutative alphabet X = {xg,x1,...,Tn}:

(a) The left-shift operator £71(-) is a linear operator on the R-vector
space RY((X)) for any £ € X*.

(b) If p € R(X) then x;'(p) = 0 for all z, € X if and only if p =
(p, 0)0.

Section 2.8

Problem 2.3.1 An ultrametric space (S, 0) is bounded if there exists
a real number B > 0 such that (s, s’) < B for all s,s’ € S. Show that
(RY((X)),dist) is a bounded ultrametric space.

Problem 2.3.2 Let {s1,s2,...} be a convergent sequence in a metric
space (S, 0).

(a) Show that its limit point s is unique.
(b) Prove that it is a Cauchy sequence.

Problem 2.3.3 Let {s1, s2,...} be a sequence in an ultrametric space
(S,0). Show that the sequence is a Cauchy sequence if and only if for
every € > 0 there exists a natural number N, such that §(s;, s;41) < €
when 7 > N,.

Problem 2.3.4 Let ¢,d,e, f € R((X)) and consider the ultrametric
dist defined on R{(X)). Show that in general:

(a) dist(c+e,c+ f) = dist(e, f)

(b) dist(c+ e,d + f) < max{dist(c, d), dist(e, f)}

(c) dist is continuous in both arguments, for example, lim;_, o, dist(c;, d)
= dist(c, d), where ¢ = lim;_, ¢;.
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Problem 2.3.5 Solutions of an equation g(z) = 0, where z € R, can
often be computed numerically by converting the equation into the
form z = f(z), selecting an initial condition zp, and then iterating as
follows:

Zi+1 :f(ZZ'), i:O,l,....

(a) Assume g(z) = 0 has the unique solution z*. Use Theorem 2.4 to
show that a sufficient condition for convergence of this iteration to
z* is having f differentiable and |f’(z)| < o < 1 everywhere on R.

(b) A simple geometric argument can be used to show that the tran-
scendental equation 4z + 2sin(z) + 1 = 0 has a unique solution.
Devise an iterative method to compute it and determine the first
five iterates after zy = 0.

Remark: In the event that g(z) = 0 has more than one solution, a
local version of Theorem 2.4 exists. It provides for convergence of the
iterates {zp,z1,...} to a solution when z is selected in an interval
containing a solution and on which f is (locally) a contraction. See,
for example, [145].

Problem 2.3.6 Let (S5,0) be a complete nonempty metric space and
T : S — S be a mapping such that §(7 (z), T (2")) < §(z,2’) for all
distinct z, 2’ € S. Show that if 7 has a fixed point, it must be unique.

Problem 2.3.7 Reconsider Problem 2.3.6, where § is now an ultra-
metric. Is the given condition enough to guarantee that 7 always has
a fixed point? Explain.

Problem 2.3.8 A normed R-vector space V is one where there is a
real-valued function || - || : V' — R satisfying the properties:

i [z >0

ii. ||z|]| =0 if and only if x =0
il [Jaz| = |of ||=|

iv. |z +yll < [lzf] + [yl

for any z,y € V and a € R. For a fixed R > 0 define the following
subsets of R((X)):

Sp(R) = {c € R{(X)) : [|[|,, < oo},

where
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Inlt
”C”l - Z ‘ C n ‘ |77‘

nex*

]
el —seup{u >|ff,}

(a) Verify that each space S,(R) is a normed R-vector space.

(b) Give some explicit examples of series that are in and not in S;(R)
and Soo(R).

(c) Explain in what sense these spaces are duals of each other.

(d) A sequence {ci,ca,...} in S,(R) is said to converge to ¢ € S,(R)
if |le; —¢cl[, — 0 as i — co. Explain any differences between con-
vergence in the ultrametric sense and convergence as defined here.

Section 2.4

Problem 2.4.1 Consider an arbitrary alphabet X. Verify the follow-
ing propositions:

(a) R(X) with the shuffle product forms an associative R-algebra.

(b) The shuffle product is commutative on R(X).

(¢) The shuffle algebra on R(X) is an integral domain, that is, p g =
0 if and only if at least one polynomial is zero.

(d) The shuffle product on R{(X)) is (ultrametric) continuous in both
arguments, for example, lim; o (¢; wd) = (lim;00 ¢;) wid.

Problem 2.4.2 The shuffle product defined inductively by (2.5) could
also be called the left shuffle product because at each iteration a left-
most letter is extracted from a word and moved to the far left position.
Analogously, one could define a right shuffle product via

(nzi) m (§x5) = (nm (€x5))zi + ((n2:) m&)zj,

where z;,z; € X, n,§ € X* and with nm 0 = mn = 7. Is it true that
nwé = nmé&? If so, prove this conjecture. If not, provide a simple
counterexample.

Problem 2.4.3 Verify the following relations for arbitrary c,d €
R((X)) and v € X*:
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||

(a‘) (Cu_rd,V):Z Z (Cvn)(dvg)(nu—’fvy)

=0 nex?
cexlvl—i
(b) ZZ_ (nmé,V)=<|Z>, 0<i<ly
Een)f\)u(\fi
© ¥ 0faueni={ ;170
N, eEX*
@ ¥ Cofmennei={ gt 1T0

nEeX*

Remark: Part (b) can be proved using the left-shift operator and the
derivation property described in Theorem 2.5. The word & denotes &
with the letters written in the reverse order.

Problem 2.4.4 Suppose the binomial coefficient for two words v, 7 €

X™* is defined as
v
= g,V
()= T mwen

gexlvi=Inl

when |n| < |v| and zero otherwise.

(a) Show that
> () =) ez

neXx?

(b) Show for any word n € X* that

(nw char(X™),v) = <V>

n
Remark: A word n = x;,x;, -~ x;, with zi; € X is a subword of
v € X* if there exists words &p,&1,...,& € X* such that v =
&oxi 14y - - T4, k- The integer (; ) is equivalent to the number of times
the word n appears as a subword of v. For example, if v = xgx1x0271

and n = xox, then (7"7) = 3.

Problem 2.4.5 Let X be an arbitrary alphabet. Define the shuffle
power of a series ¢ € R((X)) to be
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cF=cliicw - we, k>0
N———

c appears k times

105

and ¢ = 1. Verify the following identities for an arbitrary letter

z € X and ¢,d € R{(X)):

(a) 2P =Klak k>0

(b) zF "k = (Z) 2", 0<k<n

|
GO
(©) (@) % Wik k>0
o0 u_’k o0
<f>< | =3 (ke
=0 j=0
Lk
@ (Sawi| = )
9| X >("77)

st dmk
kO

n=0
Problem 2.4.6 Let X be an arbitrary alphabet.

(a) Verify the identity (2.6).
(b) Show that char(X*) = (char(X))¥ = (char(X))“*/k!.

G) 7 He™ ) =271 (d) we™?, where e ? =

Problem 2.4.7 Let X = {zg, z1}. Verify the following identities:
(a) (azo + Bz1) k= k! (axo + f21)*, a,B€R, k>0

(b) (c+d)mnzzn:<z>cm’kmdm("_k), n>0, ¢,deR{X))
k=0
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' _ o S
(¢) (w1ahwxd, afzizitI™F) = <Z+Jz’ ), i,j >0, 0<k<j.

Problem 2.4.8 Suppose K and M are fixed real numbers. Consider
a series d € R((X)) with coefficients (d,v) = KMW|v|! for all v € X*.
Show that for any n > 1

(n—1)+1v

(@) ("2

)M!, Vv e X*.

Problem 2.4.9 Let x be an arbitrary letter in an alphabet X and
ki,ks, ..., ke a finite sequence of nonnegative integers. Verify the fol-
lowing shuffle product identity:

L £
S.
k‘i — Sg 7
1= i=1
where §; = Z;zl kj. Note here that []] and ][ denote the shuffle
product on X and scalar product on R, respectively.

Problem 2.4.10 Let X be an arbitrary alphabet. Suppose ¢ € R{(X))

is proper.

(a) Verify that lim; ,o,c™'* = 0.

(b) Show that the summation Y oo;a;c ™" is well defined for any se-
quence of scalars {a; }ien,-

Problem 2.4.11 Show that the set of non proper series in R{{X))
is a group under the shuffle product, where the shuffle inverse of any
such series c is

BT =((e. )1 - )T = (e,0) ()
with ¢/ = 1 —¢/(c,0) proper, and (/)% := 37, () .

Problem 2.4.12 Let X = {xg,21,..., 2, }. A mapping 7 : R*((X))
RY((X)) is said to have an eigen-series ¢y € R({(X)) if there exists a
nonzero series ¢, € R((X)) such that 7 (c,) = cxcp. For a fixed n > 0
consider the mapping

4

Tn s REUX)) = RE(X)), e 2f e,

where the shuffle product is defined componentwise. For simplicity
assume ¢ = 1 and m = 0. Determine whether the following series have
a corresponding eigen-series for any n > 0:
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(a) cp=(1—xo)”"
(b) ¢p = exp(xo).

Section 2.5

Problem 2.5.1 Consider the vector space V = R? ® R? in Exam-
ple 2.19.

(a) Explicitly define vector addition and scalar multiplication on V.
(b) Verify that £:V — R as defined in (2.13) is an R-linear map.

Problem 2.5.2 For any finite alphabet X and z; € X verify the
following identities:

(a) cat™(zin) = (z; ® L)cat™(n) + 1 @
(b) sh*(char(X**1)) = sh*(char(X))sh* (char(X*))
(¢) (k4 1)cat*(char(X*1)) = cat*(char(X)) w cat*(char(X*)).

Section 2.6

Problem 2.6.1 In the context of Definition 2.14, verify that

pagao (AR A)=(p@p)o(ide®r®id)o (A® A)
TARA = 0 QX0

defines an R-algebra homomorphism.

Problem 2.6.2 Let (A,u,0,4,¢) denote an arbitrary R-bialgebra
with unit 1.

(a) Show that €(1) = 1.
(b) Prove that A(1) =1® 1.
(c) Verify the identities in parts (a)-(b) in the context of Theorem 2.8.

Problem 2.6.3 Let (A, u,0,4,¢,S) denote an arbitrary R-Hopf al-

gebra with unit 1.

(a) Verify that S(1) = 1.

(b) Show that if @ € A has the coproduct A(a) =1® a+ a® 1 then
S(a) = —a.

(¢) Prove that S(ad’) = S(a’)S(a) for all a,a’ € A.
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(d) Verify the identities in parts (a)-(c) in the context of Theorem 2.9.

Problem 2.6.4 Let (A, u, 0,4, ¢€) be a connected bialgebra with unit
1. The proposition is that every element a € A?;L) must have a coprod-
uct of the form

Aa=a®1+1®a+ Aa

with @ ® 1+ 1 ® a being the primitive part and A’a € A?;L_l) ® Az;_l)
the reduced coproduct.

(a) Show that (R(X),cat,o,sh* ¢) and (R(X),sh, o, cat*, e) are both
connected bialgebras using word length to define degree and thus
a filtration.

(b) Verify the proposition above for the coproducts sh* and cat* of
words up to degree (length) two.

(¢) Prove the proposition holds in general.

Remark: The counit property is very useful in part (c).

Problem 2.6.5 Let V' = R be the vector space of infinite sequences
of real numbers. Show that Gpyp has a faithful representation = :
GFdB — GL(ROO) given by

k! .
7T(fc) = ﬁBj,k(Cly 2!02, ey (j —k + 1)!Cj—k+1)

Cc1 C2 C3 Cq Cs
0 C% 26102 C% + 20103 20203 + 26104
0 0 o 3c2cy 3c16% + 3cies
— [0 0 0 ct 4cicy e
0 0 0 0 A e

where fo =3 5ocnt"/nl, 1 =1, and

J! t1 k1 t i
Bji(ty,. .. 1) = Z b <F> <ﬂ>

k1+ko+-+kj=k
k1+2ko+--+lk;=j

are the (partial exponential) Bell polynomials with [ = j — k + 1.

Remark: By definition, the product of two such matrices produces an-
other matrix whose coefficients are that of f.o f; in the first row. Like-
wise, the coefficients of f.! must appear in the first row of ((f.))™!.
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With the structure of the representation matrix A = 7(f.) fixed, it is
fully specified by ¢, = ai,(c), n > 1. Therefore, one can drop the first
subscript and write A in terms of a,, where ¢, = a,(c).

Problem 2.6.6
In the context of the Faa di Bruno Hopf algebra:

(a) Compute the antipodes Sa;, a = 2, 3,4 using (2.30) and determine
whether the calculation is consistent with (2.37) and is cancellation
free as claimed in the text.

(b) Compute the coproduct Aas and reduced coproduct A’as.

(¢c) Compute the antipode Sas by any method.

(d) Compute the first five terms of the Taylor series expansion of
tan~!(2) about z = 0 using the antipode.

(e) Compare the result in part (d) against a direct calculation of the
Taylor series of tan~!(z).

Section 2.7

Problem 2.7.1 Consider an arbitrary composition product defined
by (p,d,1). Show that the composition product is R-linear in its left
argument.

Problem 2.7.2 Consider the series
_1 x2 23
c= —|—x+§+§+---
d=z+2*+2°+2*+ ...

as elements of R [[X]], where X = {z}. Compute the first few terms of
the compositions:

(a) cod
(b) dod
(c) doec.

Problem 2.7.3 Consider the noncommutative polynomials p = 1+m%
and g = x1xg over the alphabet X = {x¢,z1}. Compute the composi-
tions:

(a) pogq
(b) gop
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(c) pop.
Remark: This and subsequent problems are referring to the first com-
position product described in Example 2.26.

Problem 2.7.4 Prove the identity (2.42).

Problem 2.7.5 Verify the elementary properties of the composition
product given in Lemma 2.5.

Problem 2.7.6 Let c¢,d,e € R™((X)), where X = {xg,21,...,Zm}.
Either verify that each of the propositions below is true or provide a
counterexample.

(a) If ¢ is proper then cod is proper.
(b) For fixed d, the mapping ¢ — co d is an ultrametric contraction
on R™((X)).

Problem 2.7.7 Let ¢,d,e € R™((X)), where X = {xg,21,...,Zm}.
Verify the following identities:

, 1 :
(a) 2l od = ;(modi) W70 § > 0 assuming dp :=1

b) pod = Zp, ] :L"od) 7, where p = Y (p,x])a]
5=0
(c) (:EOC)Od—:EO(COd) j=>0
(d) (cwd)oe=(coe)uw(doe)
(e) c¢Iod=(cod)™, j>0
(f)

f) 25t (cod) = z5'( Od+2d|_u (z; (c) o d)
a:i_l(cod)zo, 2:1,2,...,

Problem 2.7.8 Let X = {z¢,21} and ¢ = zpz;. Determine the fixed
point of the mapping d > co d.

Problem 2.7.9 A series ¢ € R((X)) is said to be erchangeable if
Mla; = 1€la» i=0,1,...,m = (¢,n) = (¢,§).

Show that if ¢ is an exchangeable series then the composition product
can be written in the form

cod=Y D (e ap)dalay) (1) w - wialanr)(L).

k=0 TQss ™m >0
7‘0+---+7‘m:k
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Section 2.1 The following books provide a comprehensive introduc-
tion to the theory of formal languages and related topics: Berstel
[7], Gross and Lentin [108], Harrison [114], Kuich and Salomaa [146],
Revesz [170], Rozenberg and Salomaa [173], and Salomaa [178]. It also
worth mentioning the series of books by Lothaire addressing combina-
torics on words [153, 154, 155].

Section 2.2 In addition to the books mentioned above, most of which
treat formal power series to varying degrees, the books by Conway
[51], Berstel and Reutenauer [8, 9], and Salomaa and Soittola [179], in
particular, provide excellent introductions to this subject with much
the same flavor as this section.

Section 2.3 The first part of this section addressing the ultrametric
space RY((X)) is based on the treatment of the subject by Berstel and
Reutenauer [8, 9]. The material concerning contractive mappings on
metric spaces appears in most texts on functional analysis and linear
operators, e.g., [145]. Example 2.14, a well known example introducing
a weaker type of contraction, appears in many places, e.g., [206]. More
specialized treatments of contractions on ultrametric spaces can be
found in the work by Heckmanns [202], Priess et al. [166], and Schorner
[183]. These did not influence the presentation in the section, but some
of the problems at the end of the chapter were motivated by this
material, e.g., Problem 2.3.7.

Section 2.4 The shuffle product as defined in this section first ap-
peared in a paper by Ree [168]. A proof of the integral domain prop-
erty of the shuffle algebra, for example, appears in this paper. His
motivation was clearly the seminal work of K.-T. Chen on iterated in-
tegrals of paths, in particular [37]. Some other forms of the definition
appeared earlier, as, for example, in the work of Hurwitz, who was
effectively considering power series in a single letter [120]. Hence, the
shuffle product is sometimes referred to as the Hurwitz product. (See
[66] for additional details on this point.) It should also be noted that
around the same time that Ree’s paper appeared, Chen et al. utilized
the shuffle product in the context of free differential calculus, see [49],
largely inspired by Lyndon’s use of the concept in [156]. The now stan-
dard treatment of shuffles and the shuffle product appears in the book
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by Lothaire [153]. Useful results related to these concepts can be found
in [57, 71, 169, 171]. The important identity (2.6) can be found in the
Ph.D. dissertation of Duffaut Espinosa [57, Lemma IV.2.2]. This result
is directly related to Proposition 2.2.8 of Fliess in [65].

Section 2.5 The catenation-shuffle product duality is best understood
in the context of combinatorial bialgebras and Hopf algebras. This was
observed by K.-T. Chen in [43, Theorem 1.8]. Thus, the full treatment
of this topic is deferred to the next section after the notion of a Hopf
algebra is developed. The duality theory as described in Theorem 2.6
follows the treatment by Reutenauer in [169].

Section 2.6 Standard references on Hopf algebras include the books
by Abe [1], Dascalescu et al. [56], and Sweedler [197]. The classical
paper on structural theorems for Hopf algebras by Milnor and Moore
provides a full and rigorous view of the subject [162]. The papers by
Cartier [31], Figueroa and Gracia-Bondia [64], Grinberg and Reiner
[106], and Manchon [161] give very readable comprehensive introduc-
tions to the subject. The treatment of the topic in this section was
heavily influenced by all of these works. The remaining material on
the catenation-shuffle product duality in Theorems 2.8 and 2.9 fol-
lows Reutenauer in [169]. Lemma 2.4 is based on the work of Chen
in [44] and Sussmann in [195]. The Faa di Bruno Hopf algebra was
first introduced by Joni and Rota in [132, 133]. The treatment in this
chapter follows from the presentation in [64]. Finally, Hopf algebras
have appeared in system theory prior to their use in this book. See,
for example, [82, 109, 110, 111, 172].

Section 2.7 The composition product induced by real analytic func-
tion composition is a classic topic in analysis. See, for example, the
book by Knopp [144] concerning the single variable case and the book
by Rudin [175] for the multivariable case. The composition of a Fliess
operator followed by a memoryless function, i.e., a Wiener-Fliess sys-
tem, was first described in a state space setting via the fundamental
formula of Fliess in [71, 76]. See also [122]. A more general treatment is
presented by Gray and Thitsa in [101], and additional results regard-
ing convergence and applications are given by Venkatesh in [204]. The
composition product induced by Fliess operator composition is due to
Ferfera [62, 63]. The idea was further developed by Gray and Li in
[98] and [152], which is the source for most of the advanced material
in this section. However, Definition 2.20 and the generic treatment of

Edition 1.3, Copyright () 2025 by W. Steven Gray



Bibliographic Notes 113

composition products first appeared in [101]. In addition, the proof of
Theorem 2.15 is significantly simpler than the approach taken in [98].
Finally, many any other types of noncommutative compositions appear
in the literature, for example, see the work by Brouder et al. [26] and
Foissy [77]. These concepts are all distinct from the notions utilized
through this book as they are induced by compositions of other types
of mathematical objects.
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3. Fliess Operators

In this chapter, a general class of nonlinear input-output operators is
considered with the key property that each member is uniquely speci-
fied in terms of a formal power series in RY((X)). Such operators are
called Fliess operators. They can be viewed as a kind of noncommu-
tative Taylor series. The first section introduces the basic definitions
and some terminology. The next two sections furnish input sets on
which Fliess operators are well defined and describe various properties
like continuity and differentiability of the output function and oper-
ator continuity. Fliess operators are then compared against the more
classical Volterra operator in the subsequent section. In particular, it
is shown that a Volterra operator has a Fliess operator representation
when each of its kernel functions is real analytic. Hence, all the theory
developed for Fliess operators applies directly to this class of Volterra
operators. In applications, it is common to construct models of com-
plex systems by interconnecting simpler subsystems. So the next three
sections are devoted to the interconnection of Fliess operators, specifi-
cally, the parallel, cascade, and feedback connections. The final section
describes the notion of a formal Fliess operator. In this case, no con-
vergence properties are assumed a priori, and thus, inputs, outputs,
and systems are treated as purely algebraic objects.

3.1 Fliess Operators on L, Spaces

The goal of this section is to describe a general class of causal input-
output operators having m inputs and £ outputs. Consider an alphabet
X ={xo,x1,...,Tm}. In this chapter, X is viewed as a set of noncom-
mutative indeterminates which is always in one-to-one correspondence
with a set of integrable real-valued functions {ug,u1,...,u,} defined
over an interval [tg,t1]. The parameter ¢; may or may not be finite.
For any word n € X", one can associate an iterated integral by the
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iterative calculation

E77 [u] (t7 tO) = Emm’ [u] (t7 tO) = / Wi (T)Eﬁ' [u] (T7 tO) dr,

to

where Eplu|(t,to) := 1 for all ¢t € [to,#1]. It will be assumed through-
out that ug(t) = 1 on this interval. This fictitious input wug is useful,
for example, in representing systems that have some kind of stored
energy and thus generate a nonzero output even when the input
w = [uy --- uy)? is exactly zero on [tg,t1]. Given any formal power

series over X,
c= Y (e,
nex*

where each (¢,n) € R, one can uniquely specify an input-output op-
erator as described below.

Definition 3.1 The Chen-Fliess series associated with any ¢ €
RE((X)) s

y=Ffu =) (e;n) Eylul. (3.1)

neX*
In the event the series converges on some set of inputs U, the mapping
F.:U — Y is called a Fliess operator.

Series ¢ is usually referred to as the generating series for F.. A
specific input u € U is called an admissible input. In many applications,
a natural class of admissible inputs is the set of Lebesgue measurable
functions Ly[to, t].!

Definition 3.2 For a fized p € [1,00], a measurable function u :
[to,t1] — R™ is in the Lebesgue space Ly'[to,t1] if its norm

Jull, = max [l

is finite, where

1
t1 P
||uz-||p=(/t |ui<t>|pdt) pello)
0

lui]|oo = ess sup |u;(t)].
tE[to,tﬂ

! The superscript m will be suppressed when m = 1.
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L[t 1]

Lyt 1]

Lé’ob [tO’ tl]

Fig. 3.1. For a finite interval [to, 1], the spaces Ly’ [to,t1] for integers p € [1,00)
and p = co are nested.

In general, u € Lg‘[to,tl] if and only if u; € Ly[to,t1] for all ¢ =
1,...,m, and clearly |lull, > ||u;||p. The set Ly'[to,t1], for example, is
the class of inputs with finite energy over [to,t1], while L7 [to, 1] is
the class of inputs that are bounded in magnitude almost everywhere
(a.e.) on [to, t1]. A closed ballin Ly*[to,t1] of radius R > 0 and centered
at the origin is defined as

By (R)[to, t1] = {u € Ly'[to, 1] : Hqu < R}.

A particularly useful fact illustrated in Figure 3.1 is that this collection
of spaces is nested when the interval [tg,t1] is finite, i.e., L7 [to,t1] C
Ly [to, t1] C Lit[to, t1] for all integers p € [1,00) (see Problem 3.1.1).
As demonstrated in the next example, however, this property does not
hold for infinite intervals.

Example 3.1 Consider the function u(t) = 1/(1 + t), which is well
defined over the interval [0, 00). Let uy,) denote its restriction to the
interval [0,¢;]. Observe that Hu[0,1]H1 = log(2) and HU[OJ]HQ = 1/V2.
Thus, ujy ;] belongs to both L1[0,1] and Lz[0,1]. On the other hand,
one can check that ||u||, = 1, but u does not have a well defined L,
norm. Therefore, L3]0,00) is not a subset of L]0, 00). 0
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Ly [, 4]

L;J’,L@ (t())

Lg'[tg,00)

Fig. 3.2. Extended space Ly'.(to) lies in between Ly'[to,t1] with ¢; finite and
L;n [to, OO)

Also useful in this chapter is the notion of an extended L, space.
In a certain sense, this function space lies in between Ly [to, t1] with
t1 finite and Ly*[to, o0).

Definition 3.3 For any fized tg € R and any p € [1,00] define the
extended Lebesgue space as

Lg}e(to) = {’LL : [to,OO) — R™: Ufto,t1] € L;n[to,tl] Vit € (to,oo)}.

Clearly, L. (to) is a proper subset of Li"[to, 1] for any specific t; when
its elements are restricted to [to,t1]. In addition, the extended spaces
are also nested with respect to p, that is, L% (to) C Lyiq (to) C
Ly.(to) for all integers p € [1,00). Less obvious is the fact that
Ly'[to, 00) is a subset of Ly (o) (see Problem 3.1.2).

Example 3.2 Again consider the function u(t) = 1/(1+4t) over [0, c0).
For every finite #1 > 0, ujy,] € L1[0,%1] since |‘u[07t1}H1 = log(1 + t1).
Thus, u € L1 .(0). But as noted in the previous example, u¢ L]0, c0).
So if L1]0,00) is a subset of L; ((0), it must be a proper subset. The
exact situation is shown in Figure 3.2. 0
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3.2 Local Input-Output Properties

The first goal of this section is to describe a sufficient condition for a
generating series ¢ which ensures that functions within some closed ball
B (R)[to, t1] are admissible inputs for the operator F¢.. Specifically, it
will be shown that F. defines a mapping from By*(R)[to,to + T into
Bg (S)[to, to+ T] provided that R,T > 0 are sufficiently small, and p, g
are conjugate exponents. That is, p,q € [1,00] such that 1/p+1/q =1
with 1 and oo being conjugate exponents by convention.? In this case
the operator F, will be called locally convergent since it is locally well
defined in both a temporal sense (finite T") and a spatial sense (finite
R). A class of generating series ensuring this property will be given the
same name. In the subsequent section, a more restrictive condition is
described for ¢ under which F, maps all of L}, (to) into Clto,to + 17,
where C|tg,to + 1] denotes the set of functions that are continuous on
[to,to + T, and in this case T > 0 is arbitrary. The operator F, will
be called global convergent as will any generating series ¢ which yields
this property.

The first theorem states that if a formal power series ¢ has coef-
ficients that satisfy a Cauchy type growth condition then the corre-
sponding operator F, will converge on BY"(R)]to, to + T'] provided that
R, T > 0 are small enough.

Theorem 3.1 Suppose ¢ € RY((X)) is a series with coefficients that

satisfy
[(e,m)| < KMp|l, vy e X* (3.2)

for some real numbers K,M > 0. (Here |z| := maxj<;<¢|z;| when
2z € RY.) Then there exists real numbers R, T > 0 such that for each
u € BT"(R)[to,to + T, the series

y(t) = Flu](t) = Y (e;n) Ey[ul(t.to) (3.3)
nex*

converges absolutely and uniformly on [tg,to + T1.

The set of all ¢ € RY((X)) which satisfy a local growth condition of
the form (3.2) will be denoted by R ~((X)). For any p € (1,00] and
on any finite interval [tg,to + T it can be shown that

? The spaces Lj'[to, t1] and LJ'[to, t1] are said to be duals of each other.
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lally < [lull, T4,

when u € Ly*[to,to + T, and p and q are conjugate exponents (see
Problem 3.2.1). In which case, the following corollary of Theorem 3.1
is immediate and describes other input spaces on which Fliess opera-
tors are locally convergent. However, because these spaces are nested
for finite T, it is usually most natural to work on the largest space,
Li'[to, to + 1.

Corollary 3.1 Suppose ¢ € R% (X)) and p € [1,00]. Then there
exists real numbers R, T > 0 such that for each u € By"(R)[to,to + 11,
the series

y(t) = Flul(t) = ) (e,n) Eylul(t, to)

nex*

converges absolutely and uniformly on [to,to + T1.

To prove Theorem 3.1, two upper bounds are needed for iterated
integrals over X*. Both are described in the following lemma. With-
out loss of generality, it is assumed that ¢y = 0, and Ej[u](t,0) is
abbreviated in this case as E;[ul(t).

Lemma 3.1 For any v € L"[0,T] and n € X*,
[Enlu]()] < Eylal(t), 0<t<T,

where w € L{*[0,T] has components uj := |uj|, j = 1,2,...,m. Fur-
thermore, for any integers r; > 0 it follows that

m U(t)
B o e g 0| < [T 252, 0 < T,
j=0 7

where Uj(t) := fg luj ()| dr.2 In particular, if on [0,T] it is assumed
that max{||lul|, ,T} < R then

Rk

1 O] < ST

LU =ee LU gy

(Em 0<t<T,

T
.CBO |_I_I.CB1

where k=3, 1;.

3 For notational convenience, occasionally F, will be denoted as in the previous
chapter by E, when p € R(X).
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Proof: The first inequality is trivial in the case of the empty word.
Suppose it holds for all words up to length k& > 0. Then for any z; € X
and n € X* observe that

| B[l (1)] S/O i ()| [ Enlul(T)] dr

< [ wEae)ar
= Egn[u](t).

Hence, the claim holds for all n € X*.
Concerning the second inequality, note that

Bt s 110 =TT [ B 0
=0

(see Lemma 2.3). Thus, it is sufficient to show that

J

‘ < %ft) (3.4)

This claim is clearly true when r; = 0. If it holds up to some fixed
integer r; > 0 then

5 tid0)] < [ (o[t

¢ U;j (1)
sémm|ﬂ

Uf’j-l—l(t)

— 7‘7 .
(rj +1)!

dr

Thus, the inequality (3.4) holds for all r; > 0, and the lemma is proved.
|

Proof of Theorem 3.1: Suppose the coefficients of ¢ satisfy the local
growth condition (3.2). Fix some 7" > 0. Pick any v € L{*[0, 7] and let
R = max{||u||, , |luoll;} = max{||u||, ,T}. Observe that with the help
of identity (2.6)

> e n)Eylul(2)

neX*
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<SS f(em) Bylale)

k=0neXx*

(0. 0]
< ZKMkk‘! Z Exgo Wl w2l [a](t)

T seees Tm >0
ro+ri+-+rm==k

Eod
o

< KMFE! _
- kz—o . Tl;mm rolryl 1!
- 'r0+zr1~7%---7+rn;:k

=K MR)* _—

kz—(]( ) 0 r1;m>0 TO!Tl! T Tm!

- robrite Arm—k

o0
=K Y (MR(m+ 1) (3.5)

B
Il
o

Therefore, if R < 1/M(m + 1), i.e., if

1

T -
max(ul, T} < ey

(3.6)

then the series (3.3) converges absolutely and uniformly on [0, 7] for
each u € B1(R)[0,T].4 [ ]

The above proof demonstrates in conjunction with Corollary 3.1
that if ¢ € RY((X)) then the series (3.3) defines a Fliess operator
from By*(R)[to, to + T to a bounded subset of C[tg, to + T for every
p € [1, 0], provided that R and T are sufficiently small. The following
theorem provides an even more precise description of F,.

Theorem 3.2 Suppose ¢ € R} (X)) with growth constants K, M >
0. Select any pair of conjugate exponents p, q € [1, 00| and real numbers
R,T > 0 such that Ry := max{RT"/9, T} < 1/M(m+1). (Let TY/9 =1
when p =1.) Then

F,.: B;n(R)[to, to+T] — Bg(S)[to,to + 7],
where S = KTY/(1 — MRy (m +1)).

Proof: For any u € By"(R)[to, to + T'| observe that

4 See the Weierstrass M-test.
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Y

U —» f : h — Y

Fig. 3.3. Wiener system in Example 3.3.

lully < lull, 7V < RTVA.
Therefore, under the stated assumptions,

max{[|ul|, , T} < max{RT"", T} = Ry
1

S Mimt1)

In which case, (3.5) produces the upper bound

ly(t)

< to<t<t T.
S T MR ey 0StShT
Thus, [ly[|, < KT'Y9/(1—= MRy (m+1)), or equivalently, y € Bg(S)[to,
to—i—T]. [ |

Example 3.3 A Wiener system is an input-output system consisting
of a linear operator whose output is filtered by a function h. This class
of systems arises naturally, for example, in control systems where the
control law is realized by a linear state space model, and the actuators,
which are driven by the controller, exhibit saturation or some other
type of static nonlinearity. Certain classes of neural networks also ex-
hibit this type of structure. As an example, consider the single-input,
single-output Wiener system shown in Figure 3.3, where the dynam-
ical system is simply an integrator initialized so that z(0) = 0 and
h(z) =1/(1 — z). Direct substitution for z in h gives

y(t) = h=(0) = 3 (=(0))F
oo t = k o0 N
_ ( [ ut df> = (B ()
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= > HE4ul)
k=0
~ Fuful(t)

for all ¢ > 0 provided that |z(¢)| < 1 (see Problem 2.4.5(a)). Note here
that the generating series ¢ = ), o, k! m]f is locally convergent with
growth constants K = M = 1. Thus, for any p € [1,00] there must
exist R, T > 0 such that if |jul, < R then F,[u] is well defined on
[0,T]. For example, when p = 1 it follows from (3.6) that a sufficient
condition for convergence is
R, T ! ! 3.7
max{R, }<m—§. (3.7)
However, this bound on R and T is conservative because not every
coefficient of ¢ is growing at the maximum rate KM In|!. Observe
that the de facto alphabet in this case has only a single letter, x1, so one
should really set m+1 = 1in (3.7). For an even less conservative bound
select a fixed 77 > 0 and consider all inputs satisfying HU[O,T’” <L
It follows then that

k

[e.9]

3 </Otu(7') dT>

k=0

gé(/ot\umw)k

R k
= Z H“[O,T’} 1
k=0

1

S 1- HU[O,T’} 1.

|[Fe[u](t)] =

Thus, F, is well defined on By (R)[0,T"] for any finite 7" > 0 and R < 1.
But this more detailed type of analysis is often not possible when ¢
has a complex structure. Under such conditions, a simple condition
like (3.6) is useful and easy to estimate. 0

Example 3.4 An important observation is that the set of locally con-
vergent formal power series, Rpc((X)), is not a closed subset of R((X))
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in the ultrametric topology. For example, let X = {z9,21} and con-
sider the sequence of polynomials

ci=x1+ @) 234+ 3 a4+ + (i)l i>1.

Clearly, each polynomial ¢; is locally convergent, but the series ¢ =
lim;_,~ ¢; is not. Furthermore, each Fliess operator F,, is well defined
on some closed ball of input functions, but the present theory does not
guarantee that the operator F is well defined in any sense. 0

Theorem 3.1 established that the generating series defining y =
F.[u] converges on B"(R)[to,to + T'] provided R and T satisfy

max{R,T} < (3.8)

1
M(m+1)
Clearly, the smaller the geometric growth constant M, the larger R
and T can be while maintaining a well defined output function y. Let
7 : R (X)) — RT U {0} be the mapping which takes each series ¢
to the smallest geometric growth constants satisfying (3.2), namely,

1

M* = limsup <’(C’ ””)" . (3.9)

It is possible that 7(c) = 0 if, for example, ¢ satisfies a more restrictive
bound like
(e, < KM, vy e X7

(the topic of the next section). Using 7 to partition RY ,((X)) into
equivalence classes, define 1/(M(m + 1)) to be the radius of conver-
gence for the class of generating series 7=!(M). This is in contrast to
the usual situation where a radius of convergence is assigned to an
individual series. For the case of the zero-input response, ¥y, one can
set R =0 and m = 0 in (3.8) and get a lower bound on the length of
the convergence interval [tg, to+T') for yg. The following theorem from
complex analysis is useful for better understanding the situation.

Theorem 3.3 Let f(z) = ) ,~oanz"/n! be an analytic function on
some neighborhood of the origin in the complex plane. Suppose zy # 0 is
a singularity of f of smallest modulus. Then for any € > 0 there exists
an integer N > 0 such that for all n > N, |a,| < ((1/]20]) +€)" nl.
Furthermore, for infinitely many n, |a,| > ((1/|z0]) — €)" n!.
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log(|a,| /nt)

log(K) -
. 7 o e=0
° ’«”. °
.-
,,"’ slope=log(1/|2]|)>0
,«”’ N=3 n
0 1 2 3 4 5 6 7

Fig. 3.4. A typical growth bound for the coefficients of an exponential generating
series of a function which is real analytic at z = 0 as described in Theorem 3.3.

The essence of this theorem is that the real number 1/|zy| de-
fined by the smallest singularity of f determines the minimal geometric
growth constant M*. That is, select any ¢ > 0 and as shown in Fig-
ure 3.4, the coefficients will eventually be bounded by ((1/ |zg|) +€)"n!
when n is sufficiently large. Furthermore, no number smaller than
1/ |z0| will have this property. No claim is made regarding the case
when ¢ = 0. One can always introduce a K > 1, if necessary, so that
lan| < K((1/]20]) + €)"n!, n > 0. In the special case where a,, > 0,
Pringsheim’s Theorem says that the function’s singularity zy must be
real-valued. Thus, one will observe a finite escape time when yq is
computed by simulation (cf. Problem 1.1.1). The following class of
generating series constitutes one such case in which all the series coef-
ficients are nonnegative and growing at the maximum admissible rate.

So by default, M* = M.5

Definition 3.4 Given an alphabet X and a fized s € R, the maximal
series having growth constants K, M > 0 is the element in RY((X))

5 Henceforth, M* will be called the minimum geometric growth constant and the
star superscript will be dropped.
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where each component series has the form ¢; =3 . KM ().
When s = 1 the series is called locally mazimal.’

Theorem 3.4 Ifc € Rpc((X)) is a locally mazimal series with growth
constants K, M > 0, then for u € B,(R)[0,T]

K

y(®) = Fell®) = T, M@

In addition, the zero-input response has an interval of convergence
exactly equal to [0,T), where T =1/M.

Proof: Using the identity char(X*) = (char(X))“*/k! from Prob-
lem 2.4.6(b) and Lemma 2.3, observe

y(t) =Y KMyl Bylu]
nex*

= Kf:Mk > K Byl

k=0 nexk

=K Z Mka!char(Xk)[u]
k=0

=K Z MkFchar(X) Lk [’LL]
k=0

=K Z MkF(ﬁlar(X) [u]
k=0

B K
1- MFchar(X) [u] .

Clearly, if u = 0, then yo(t) = K/(1 — Mt) so that interval of conver-
gence is determined by the singularity at ¢ = 1/M. In particular, yo
has a finite escape time at ¢t = 1/M. ]

Example 3.5 Consider the generating series
o0
c= ZM(I)CIC!$IO€ + MK 2y

k=0

6 See Appendix B for additional information regarding maximal series.

Edition 1.3, Copyright () 2025 by W. Steven Gray



128 3. Fliess Operators

with My < M. In this case, ¢ € 7T_1(M1), so the radius of conver-
gence for the series ¢ is 1/2M;. Membership in this equivalence class
implies that a lower bound on the radius of convergence for the zero-
input response is 1/Mj, while the actual radius of convergence for yg
is 1/M0 > 1/M1. 0

Now that conditions have been established under which F,. is well
defined, several fundamental properties of this class of operators are
considered: absolute continuity and differentiability of the output func-
tion, uniqueness of the generating series, and preservation of analyt-
icity from input to output. Recall that in general differentiability of a
function at a point implies continuity at that same point, but not con-
versely. The usual counterexample of the latter is the absolute value
function f(z) = |z|. It is continuous at z = 0 but not differentiable
there. A more dramatic example is the function defined by the series

flz)= Z 2% cos(3"z).
n=0

Weierstrass demonstrated in 1872 that this function is continuous at
every point but nowhere differentiable. To more precisely describe dif-
ferentiability properties, the following stronger notion of continuity is
useful.

Definition 3.5 Let J be a compact interval of R.” A function f : R —
R is called absolutely continuous on J if for every e > 0 there exists
a6 > 0 such that whenever J; = [a;, b;] are nonoverlapping subintervals
of J with Y ;| |bi — a;| <6, it follows that > ;| |f(bi) — f(ai)| < e. If
1 is an arbitrary interval of R then f is said to be absolutely contin-
uous on I if it is absolutely continuous on every compact subinterval

of I.

It is easily shown that absolute continuity implies continuity in the
usual sense (see Problem 3.2.3), but more importantly, consider the
following theorem from real analysis.

Theorem 3.5 If f : R — R is absolutely continuous on the interval
1, then it is differentiable a.e. on I.

" This is equivalent to requiring J to be closed and bounded.
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The proof of this theorem will not be pursued here, but the result will
be utilized momentarily to prove the next theorem concerning differ-
entiability of the output function of a Fliess operator. It is noted in
passing, however, that it can be shown that a function f is absolutely
continuous on J = [a, b] if and only if there exists a function g € L;[a, D]
such that f(z) = f(a) + [ g(7) dr everywhere on J. Readers familiar
with measure theory will recognize this result as a special case of the
Radon-Nikodym Theorem. Thus, g, which is equivalent to df /dt a.e.,
is usually called the Radon-Nikodym derivative. On the other hand,
if g happens to be continuous, then all this analysis reduces to the
Fundamental Theorem of Integral Calculus, namely, g = df /dt every-
where on J. Now consider the differentiability of the output function
of a Fliess operator.

Theorem 3.6 If ¢ € RY (X)) and u € B (R)[to,to + T, then
y = F.[u] is differentiable a.e. on [to,to + T| provided R,T > 0 are
sufficiently small. In particular,

Zul o1 (o lu (3.10)

Proof: In light of Theorem 3.5, it is sufficient to show that y = F.[u]
is absolutely continuous. This is accomplished by first showing that
E,[u] is absolutely continuous on [tg,ty + 77 for any n € X* and u €
B1(R)[to, to + T with R, T satisfying (3.8). The proof is by induction
on the length of 7. The first nontrivial case is when n = x;. Suppose
u; is bounded (a.e.) on every compact interval J; = [a;,b;] C [to,to +
T]. (Note uy always satisfies this property.) Then there exists a real
number B; > 0 such that

b;
| B, [u(biy to) — Euylul(aisto)| < / |uj(t)] dt < Bi |b; — aq .

Given any set of n such nonoverlapping intervals, it follows that

Z‘Exj butO E:cj[u](aiytO)‘ SBZ‘bl_aZ‘a

i=1

where B = max; B;. Therefore, given any € > 0, set § = ¢/B. In which
case, if Y1 | |b; — a;| <6, then

Edition 1.3, Copyright () 2025 by W. Steven Gray



130 3. Fliess Operators

Z|Ex3 (bir to) — Ea; [ul(ai,to)] < B> |bj — a;| < Bd =e.
=1

Therefore, E,, ;s absolutely continuous on [tg, tg+ 7. Now in the event
that u; is not bounded on J;, it is necessary to use the fact that the
set of bounded functions on [a,b] is dense in Lq[tg,to + T]. That is,
uj = fj + g;, where |f;| < B; (a.e.) on J; and f;; lgj| dt can be made
arbitrarily small by a suitable choice of g;. Hence,

b;
e, ), t0) — Eny ul(aisto)] < [ 1550 + 9500
b;
§ Bi ’bz — CLZ" + / \gj(t)\ dt.

Given any € > 0, select each g; such that f lgj(t)] dt < €/(2n) and
set § = €/2B, where again B = max; B;. Then if S b —ail <9, it
follows that

n n b;
Z Bl t0) = Bl t0)] < B b~ +3 [ oo
i i=1"%
€
<B (2B> <%> - ©

Therefore, F, ;18 absolutely continuous on [tg, tg + T

Now assume that for every word n up to length k that E,[u] is
absolutely continuous on [tg, to+7] when u € L{*[to, to+7]. Therefore,
E,u] is continuous on [tg,to + 1] and u; := u;Ep[u] € Lq[to, to + T7.
Repeating the argument above using u; instead of u; gives that E
must be absolutely continuous on [tg, g + T']. Hence, by induction the
absolute continuity of E,[u] for all n € X* is established.

To show that Fi[u] is absolutely continuous, fix n, select an € > 0
and choose an integer N > 0 such that

i K(MR(m + 1)k < ﬁ.
k=N

This is always possible since M, R > 0 satisfy M R(m + 1) < 1. Now
because each FE,[u] is absolutely continuous, there exists a ¢ > 0 such
that
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3
2

Z [(c;m)| | Enlul(bis to) — Eylul(as, to)| <

neXk

N ™

i=1

b
Il
<)

when 7", |b; — a;| < d. Hence, for this choice of 4,

n

D [Fuful(bi) — Fe[u](ai)|

i=1

ZZ S (e )| 1Byl (b to) — Eylu(ai, to)]

n N-—
ZZZ [(cm)| | By [u] (bi, to) — Eylu(ai, to)] +
i=1 k=0 pexk

Z > e o] (b1, to) | + | Ey[u) (az, to)])

=1 :N X

IN
)

$ton Z K(MR(m + 1))F
k=N

€ €

5t (5)

5 T (1
=€

IN

and the differentiability claim is proved for the p = 1 case. But the
claim in fact holds for any p € [1,00] since the L, spaces under con-
sideration are nested.

To verify the formula for %Fc [u] observe that
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N m . 1 t+At |
Z Z (xz (C)ﬂ?)At ] Uz(T)En[U](T) dr.

Again |E,[u]()] < R /|n|! for all 7 € [0,T] and n € X* when u €
B1(R)[0,T]. So the series above will converge when At and R are small
enough. Taking the limit At — 0 gives almost everywhere that

%FG[U] (t) = Z Z (77 (e),m) ui (t) Ey[u] (t)

1=0 neX*
= ui(t) F,1 (D).
=0
|

If it is assumed that u has k continuous derivatives on [tg,to +
T), ie., u € CF[tg,to + T], then it can be shown that y = F.[u] €
CF*tg, to + T, k > 0 (including the smooth case, k = oo). This
is useful for computing higher-order derivatives that appear in the
context of differential equations. If u is smooth almost everywhere on
[to,to + T, then the same is true of y = F.[u]. This fact is used in the
following theorem addressing the uniqueness of generating series.

Theorem 3.7 Suppose c,d € R} ((X)). If F. = F; on BZ(R)]to, to+
T] for some real numbers R, T > 0, then ¢ = d.

Proof: In light of the fact that F. — F; = F,._g4, it is sufficient to show
that if Fi. = 0 on some BY(R)[to, to + 1| then ¢ = 0. The approach is
based on the following simple observation. Suppose the step function
input 4 = U is applied to an integrator multiplied by a constant
(c,21), ie.,

Flal() = (c,1) /0 oU(r) dr

at(c,z1) : t>0F
0 :  otherwise,

where ¢ = (c¢,z1)z1. Then clearly the only nonzero coefficient of
the generating series ¢ can be extracted from the output y = F.[u]
by computing 9%y(t)/0adt = (c,x1) (see Problem 3.2.6 for another
simple example). The idea is to extend this approach to the case
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(1)
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Fig. 3.5. The i-th component of the input function u utilized in the proof of
Theorem 3.7 (i # 0).

where c is arbitrary. Consider applying a piecewise constant input in
B (R)[to, to + T defined by

Jj—1 J
u(t) = aj <R, te [Ztl,ztl>

=0 =0

with o = [oqj agj -+ amj]T € R™ and ¢, > 0, 4,0 = 1,2,...,k; and
Zle t1 < T (see Figure 3.5). Since ug = 1, define o; = 1. The claim
to be verified inductively is that for any k > 1

8k
— Fful(to+ti -+t _
Ot10ty - - Ot cla)(to +t1 + +t) " Z ek (¢,€),
§=1,2,....k feXk

(3.11)
where
Qek = Q QG k—1" " Q41
when § = x;, 2, | -3 € X*. Observe that when k = 1
a m
o Felil(to + 1) = > wilto + 1) Fy1 [ (to + 1)
1 t=0" = ' t1=0+

= Y w(ty) (¢, 2:8) Eelul(to)

z,€X
feXx*
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- Z Qg1 (C, xl)
r,€X
Note that in the last step, the identity

Bl ={ o © 54

was employed. Now assume that the identity (3.11) holds up to some
fixed £ > 1. Then

ak—i—l
F_.lul(t t R ]
0t10ty - - - Otp11 o+t 4o+ k+1)'t =ot,
G=1,2,...,k+1
ok 0
= F.lul(to +t1 4+ -+ +tpa
Ot10ty - - - Oty | Otpya Lt = ta =0t | | =0t
- G=1,2,....k

8k [ m
:m Z z_Lilwd(to‘{'tl‘F"'—l-ifk_i_l).

| tk4+1=0
tk+1:0+]

Fxfl (C)[ﬂ](to + 11 +"'+tk+1)

i1

o
= . _ .
Z Tig 1 RFL Ot10ty - - - Oty

Zvik+1 eX

Fx—l (C)[ﬂ](to +t1 4+ -+ tk)

41

75]-:0‘%7
j=1,2,....k

The key fact used above is that u;,,, (to +t1 +--- + tlj) = Gy, ki1
Now use the induction hypothesis by applying (3.11):

ak—i—l
F.la](to+t1 + -+ trs1)

Ot10ty - - - Otpa t;=07,
G=1,2,... k+1
-1
= Y ke | D aa (e (0),6)
Tip g €X cexk
= Y ag(cd).
SeXkﬁ»l
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Hence, by induction (3.11) holds for all £ > 1. (See Example 5.15 for
an alternative approach to this identity.)
Now by assumption F.[u] = 0 on [tg,to + T']. Therefore,

> (e, =0, k>1. (3.12)

cexk

Furthermore, observe that the left-hand side of the above expression
is a polynomial function of the input parameters «;;. Thus, one can
compute partial derivatives of this expression with respect to a;;. Let
l1,la,...,l; be any k-tuple where I, € {0,1,...,m}. Then

ak
Oay, 00y, k—1- - 0oy

o 1 : lj:ij, j:1,2,...,k’
~ 1 0 : otherwise.

a’ikk)aikflk‘—l cr Qg1

Taking such partial derivatives of both sides of equation (3.12) yields

ak
Oay, ,0aq,  k—1- -0y

E Qi kO —1 " Qg1 (C, Ly Lige_q *°* 517@'1)
Ty Ty 4 Tig cXk

= (Cv Ll Ly " ':Ull)
=0.

That is, for any n = xj, 2, , -2, € X* k> 1, it follows that
(¢,n) = 0. One caveat in this argument, however, is the case where
one or more i; = 0. Recall that og; has been fixed to one, so it is
not really a free variable in the setup. A straightforward check shows
that the above argument will give the desired result when all partials
of the form 0/0ag ; are simply omitted. Finally, setting u = 0 gives
(¢,0) = 0. Thus, ¢ = 0 as desired. ]

Next, the main analyticity theorem is given. The basic claim is
that real analytic inputs produce real analytic outputs. The proof is
accomplished by extending the setup to the complex field, using tools
from the theory of complex variables, and then restricting the results
back to the real field.
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Theorem 3.8 If ¢ € Ri (X)) and u € BJ*(R)[to.to + T is real
analytic on [to,tg + T, then y = F.[u] is real analytic on [to,tg + T
provided that R,T > 0 are sufficiently small.

Proof: Assume tg = 0 and R,T > 0 are selected so that a given u €
Bi*(R)[0,T7] is real analytic on [0,7] and y = Fe[u] is well defined. Let
% be the complex extension of u which is analytic on a neighborhood
We of [0,T] in the complex plane. Without loss of generality, one can
assume that W¢ is simply connected, that the closure W¢ of We is
compact, and that @ is analytic on W¢. Thus, for any fixed path in
We there exists some R > 0 such that all, < R. Here the norm
is extended in a natural way using the moduli of the components of
t(w) as w follows the given path. Now for such a @ define the iterated
integrals E,[u] : We — C by

Byl (w) = /0 NGB Q) dC, mie X, ne X,

where Ej = 1 and 4y = 1. By induction, the integrand is analytic on
We , so the value of the integral is independent of the path (chosen
inside W¢), and the resulting function is analytic on W¢ as well. As in
the proof of Theorem 3.1, it can be shown from the assumed growth
condition that the series

gw) = 3 (en)Eyfiil(w)

nex*

converges uniformly on We. Since each E,[u](w) is analytic on W, it
follows that gy(w) is also analytic on W¢ (see Problem 3.2.7). Clearly
g(w) is an analytic complex extension of the real-valued function

y(t) = 3 (en)Eylul(t).

nex*

In which case, the restriction of ¢ to [0,7], namely y, is real analytic
on [0, 7). |

It is important to point out what is not being claimed in the the-
orem above. Namely, that if © can be represented by a single power
series over [0, 7] then so can y = F[u]. This claim is generally false as
shown in the next example.
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Example 3.6 Reconsider the Wiener system in Example 3.3 with p =
1. Take the input to be the entire function u(¢) = — sin 7¢. Then clearly
Hu[QT}Hl < T so that F.[u] converges at least on [0,7] for any T' < 1.
However, observe more specifically that

and hence,
1 jus
y(t) = 2 )

- 1—2(t) Z +sin® (3¢

for any ¢t € [0,00). So while u has a Taylor series at ¢ = 0 which
converges everywhere on [0,00), it will be shown that y does not.
Define the function

flw) = g + sin? (gw> ,

where w = a + 1b. It is easy to verify, using the identity

. i _ o—if
sin = ———,
21

that
Re(f(w)) = %(1 + 7 — cos(ma) cosh(md))
Im(f(w)) = % sin(ma) sinh(mb).

In which case, Im(f(w)) = 0 within the unit circle only along both the
real and imaginary axes. The values of w for which Re(f(w)) = 0 are
shown in Figure 3.6. Thus, inside the unit circle, f(w) = 0 only when
w = Fiwy, where

1
wy = — cosh™ (7 + 1) = 0.6682353705.
T
So while y is real analytic at every point within [0,00), the series
representation of y at ¢ = 0 only converges on [0, wp). Any shift of this

representation to another point within [0, 00) has similar limitations.
Thus, at least two series are needed to represent y on [0, 00). With the
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Im(w)

I I I
0.2 04 0.6 0.8 1

B I I I
-1 -0.8 -0.6 -0.4 -0.2 0
Re(w)

Fig. 3.6. Values of w for which Re(f(w)) = 0 (dashed lines), Im(f(w)) = 0 (real
and imaginary axes), and the region of convergence for the Taylor series of y at
t =0 in Example 3.6 (inside inner circle).

help of symbol manipulation software, the first ten terms of the Taylor
series at w = 0 are found to be

1 1 1
y(w) =1 — 5%1024—%%2 (7T—|-6)w4— %w?’ (307T—|—7T2—|—90) wb+
Ly 2, .3 8 1 5
126 1260 7 + 2520) w® — ——
d0330 " (1267 +7° 412607 +2520) w” — gperm

(5107 4+ 7 + 13230 7° + 75600 m + 113400) w'® + O (w'?)
=1 — 1.570796327 w* + 3.759329296 w* — 8.359524051 w’+
18.73043265 w® — 41.94529728 w'® + O (w'?).

The square root of the ratio of the magnitudes of the last two nonzero
coefficients of this series,

\/18.73043265/41.94529728 = 0.668239688,

must give an estimate of wy since the radius of convergence of such a
series, T', and the smallest geometric growth constant, M, are related
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as T = 1/M. It is worth restating the subtle point that while this series
representation of y diverges at ¢ = wg, the function y is perfectly well
defined at ¢ = wp, namely y(wg) = 0.676214167 (cf. Problem 1.1.1).

As Theorem 3.2 demonstrated, the input-output system F. can be
viewed as a mapping between to closed balls in the normed linear
spaces Ly'[to,to + T and Lé [to,to + T'] when its generating series is
locally convergent. Thus, it makes sense to consider whether the map-
ping is continuous as an operator between these spaces. The following
theorem answers this question to the affirmative.

Theorem 3.9 Suppose c € R%C«X)) and select any pair of conjugate
exponents p,q € [0,00]. If the real numbers R, T > 0 are sufficiently
small, then the operator

F,.: B:T’(R)[to, to+T] — Bg(S)[to,to + T

for some S > 0 is continuous with respect to the L, and Lq norms.
That is, for any € > 0 there exists a § > 0 such that for any
u,v € BY'(R)[to, to + T satisfying |lv—ull, < d it follows that
[Felv] — Felulll, <e.

Proof: 1t is first proved by induction on the length of the word n € X*
that the mapping

Ey : BJ*(R)[to, to + T] — By(S)[to,to + T
has the desired continuity property. The focus is on the case where
p,q € (1,00) (the remaining case is handled similarly and left to the

reader). Without loss of generality, assume ¢y = 0. The claim is trivial
when 7 is the empty word. If n = x;, then

" .
1Balt] = B [u]ll, = ( | 1Bl - B0 dt)

§<4T<4Twwﬂ—uxﬂ|m>qﬁ>é

T 1
:/|Mﬂ—wﬁﬂqu
0

2
< v = wil|, T
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140 3. Fliess Operators

2
<o —ull, Ts,

where Hélder’s inequality has been used in the second to the last step
above. Thus, if [[v —ull, < ¢ := ¢/T?/9, then clearly

[ Ex[0] = Eg,fullly <.

Now suppose the claim holds for all words up to some fixed length
k > 0. Then for any z; € X and n € X* observe

| Ezinv] — Einlul Hq

(Em[v] - /0 wi(r) By o] (7) dr

)
([ Bl ar = Euful)

q
1

< (/OT (/OT‘M(T) — i (7)| | By 0] (7)] d7'>th> . .
(AT<ATWAﬂHEmMﬂ—EvaNdﬁqﬁ);

! 1
§A|mﬂ—wﬁm@MﬁHMTﬂ

T 1
| 1B 1) = Byfud(r)] dr T
< llo— ull, | Eqfolll, T3 + lull, 1Egfe] — Egfl, T

From the induction hypothesis E, is continuous in the desired sense.
Thus, it follows that for any € > 0, there exists a ¢’ > 0 such that

[Eg[]llq < 1 Eglulll, +1

and 1
[ull, 1By [v] = Bylulll, Ts < /2

Edition 1.3, Copyright () 2025 by W. Steven Gray
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for all v in a ball centered at u of radius 6’ > 0.8 In which case, choose

€/2

d =min< ¢, T
(1B [ulll, +1)T'a

so that if [lu — vl|, <, then
|Baunlo] — Evinlll, < e

Hence, by induction, E,, is continuous with respect to the L, and L,
norms for every n € X*.

To show that F. is also continuous in the desired sense, observe
that for any integer N > 0

1Fefo] = Felullly =D D (em)(By o] = Bylu))
k=0 neX* q
N—-1
< (c,;n)(Eplv] — Eylu])|| +
k=0 nexk q
Z Z (¢, m) (Eylv] = Ey[u])
k=N neXk q
N—-1
< (e, ) (Eylv] — Eplu)|| +
k=0 neXx*

2 i K(MR(m+ 1)),
k=N

where K, M > 0 are defined as in the proof of the previous theorem.
Clearly, the second term above can be bounded by €/2 by selecting N
to be sufficiently large. For this fixed IV, it is now possible to bound
the first term by €/2 since each E, in this finite sum is continuous as
shown above. This proves the theorem. [ |

® Of course, §' must be selected so that this ball is contained inside By"(R)[0, T7.
It is also being tacitly assumed that u is not on the boundary of By"(R)[0, T].
Otherwise, this argument needs a few minor adjustments.
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142 3. Fliess Operators

3.3 Global Input-Output Properties

In this section, a sufficient condition is described under which a Fliess
operator is globally convergent. In addition, a global counterpart for
the analyticity of the output function is presented. The first theorem
introduces a growth condition for the coefficients of ¢ under which F,
is well defined for every input function from LY, (to).

Theorem 3.10 Suppose ¢ € RY((X)) is a series with coefficients that
satisfy
[(e.m| < KM(|n[))*, vy e X7 (3.13)

for some real numbers K,M > 0 and s € [0,1). Then for any u €
LT (to), the series

y(t) = Feul(t) = ) (e.n)Eylul(t) (3.14)

neX*
converges absolutely and uniformly on [to,to + T] for any T > 0.

Proof:  Without loss of generality assume that ¢ty = 0. Choose any
T > 0 and pick any u € L7’,(0). Let

R = max { |[ugo.n |, 7'}

If the coefficients of ¢ satisfy the global growth condition (3.13) then
the upper bound (3.5) in the proof of Theorem 3.1 can be strengthened
to

neXx* k=0

Defining the sequence ay := (M R(m + 1))¥/(k!)}=*, it is clear that

. Af+1 .
1 = (M 1)) lim ————— =0.
Jim = (MR(m +1)) lim TS 0

Thus, from the ratio test the series in (3.14) must converge absolutely
and uniformly on [0, 7. ]

The set of all ¢ € R((X)) which satisfy the global growth condi-
tion (3.13) will be denoted by R, ((X)). For any given ¢, a constant

Edition 1.3, Copyright (©) 2025 by W. Steven Gray

S



3.3 Global Input-Output Properties 143

Iy

Fig. 3.7. The Wiener system in Example 3.8.

s for which there exists K, M > 0 satisfying (3.13) is called a Gevrey
order. Clearly if s’ > s then ¢ will also have Gevrey order s’. The infi-
mum of all Gevrey orders of ¢ is written as s*. The following corollary
is a direct consequence of the fact that the extended spaces Lg}e(to),
p € [1, 00| are nested.

Corollary 3.2 Ifc € R, (X)) andu € Ly (to) with p € [1,00], then

,€

the series (3.14) converges on [to,to + T') for any T > 0.

Example 3.7 Let X = {x¢,x1} and consider a linear series

c= Z CA*B zha
k=0

with A € R™" nonzero and B, CT € R"*!. Observe that

— :L‘kil,‘
(e, zbz) < IO 1AI* 1BIL = (Il 1B 1AL~ A=l k> o,

where ||-]| denotes any (sub-multiplicative) matrix/vector norm. In
which case, ¢ € R ((X)) with global growth constants K = ||C|| | B]| -
|A|I 7", M = ||Al| and s* = 0. 0

Example 3.8 Consider the single-input, single-output Wiener system
as shown in Figure 3.7. Observe

(4 k
y(t) _ ez(t) _ Z ( (t))

K
k=0
=3 LER () = Y0 B0
k=0 k=0
- Z B [u] (%)
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144 3. Fliess Operators

= Felu](),

where ¢ = ;- 2%, Clearly, |(c,n)] < 1 for all n € X* with X =
{x0,21}. So c is globally convergent with K = M =1 and s* =0.

The previous example suggests the following global analogue of
Theorem 3.4 when s* = 0. Its proof is just a minor variation of the
earlier proof.? As expected from Theorem 3.3, the corresponding out-
put functions have no finite singularities.

Theorem 3.11 Ifc € Rao((X)) is a mazimal series with growth con-
stants K, M >0 and s* = 0, then for u € Ly (to)

y(t) = Felu](t) = K exp(M Fopar(x)[u](1)).
In addition, the zero-input response has an infinite of convergence.

Example 3.9 This example suggests that the growth condition (3.13)
may only be a sufficient condition for global convergence, i.e., it is not
necessary. Suppose the system in the previous example is cascaded
with a copy of itself to produce the new system

y(t) = exp(Ey, [exp(Ey, [u(?)])]-

It is not immediately evident that this new system has a Fliess operator
representation, this fact will be established in Section 3.6. But observe
that for any u € L1 .(0), the output is well defined for every finite
t. Thus, any corresponding Fliess operator would have to be globally
convergent. However, consider the special case where u(t) = 1 on any
finite interval [0,77] so that

' =t
y(t) =e" "= By, t>0
n:
n=0

as shown in Figure 3.8, where B,,, n > 0 is the integer sequence known
as the Bell numbers. The first few Bell numbers are: 1, 2, 5, 15, 52,
203, 877, 4140. Their asymptotic behavior is known to simultaneously
satisfy the following three limits:

9 The case where 0 < s* < 1 is requires tools from fractional calculus that are

beyond the scope of the current presentation. See the references at the end of
the chapter for information about this case.
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In(In(y())

Fig. 3.8. The function y(¢) = e ~lin Example 3.9 plotted on a double logarithmic
scale (solid line) and the function g(t) = t (dashed line).

B

n—oo

B
lim —nS:oo, 0<s<1

The first two limits imply that the Bell numbers are growing faster
than the global growth rate (3.13), where it is always assumed that
s € [0,1). The third limit indicates a growth rate corresponding to s* =
1 and 0 < M < 1. In which case, there exist globally convergent Fliess
operators which do not satisfy global growth condition (3.13). This
issue will be revisited in Section 3.6 where cascade interconnections
are considered in detail. It is in this context that such systems can
naturally appear. 0

Finally, the global analogue of Theorem 3.8 is considered. This
result will be used in Chapter 6, where state space realizations of [
are considered. The proof is very similar to its local counterpart except
that the global growth condition now permits an arbitrary 7" > 0 to
be handled in much the same way as it was in the previous theorem.
The details are thus left to the reader.
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Theorem 3.12 If ¢ € RE,((X)) and u € L] (to) with p € [1,00] is
real analytic, then y = F.[u] is real analytic on [to,to + T| for any
T > 0.

3.4 Volterra Operators

Volterra operators date back to as early as the 1880s and are arguably
the most widely used class of nonlinear operators in science and en-
gineering. They can be viewed as a natural generalization of a linear
integral operator. Recall from Chapter 1 that a causal linear input-
output system taking m inputs to £ outputs can be expressed in terms
of the linear integral operator

y1(t) :/t w(t, 7)u(r) dr

One could define a second-order integral operator as
m t T2
)= > / / Wigiy (t, T2, T1 )iy (T2)wiy (1) ATy do
i1,i0=1"t0 Jt0
or a k-th order integral operator as

m t Tk T2
yr(t) = Z /to /to /to Wiy ooy (B, They - T1)-

U1yt =1
Wi, (Tg) -+ - ugy (1) dry -+ - d,

This motivates the following definition.”

Definition 3.6 A Volterra operator is any mapping of the form
o0
Viumyt) = Zyk(t),
k=0

where the zero-order (nonhomogeneous) term is formally defined as
Yo(t) = wy(t).

10 Caution, the subscripts on output y are not indicating component functions in
this section

Edition 1.3, Copyright () 2025 by W. Steven Gray



3.4 Volterra Operators 147

Now in the event that the kernel functions w;,..;, are real analytic
over a common domain, the following theorem states that V' can have
a Fliess operator representation.

Theorem 3.13 Suppose V is a Volterra operator, where each kernel
function has a series representation

[e.e]

_ ng Nk—1 0
Wiy iy (6 Thy o, T1) = E (c,xpFasxy " i x°)
nQ,...,nE=0

(t _ Tk)nk (Tk _ Tk_l)nkfl - (7-1 _ to)no

nk' nk_ll s Tlo!

on some domain
Dy ={(t,7h,...,7) ERM itg+ Ty >t > 7 > > 71 > 1o}

If c € RS (X)) and p € [1,00], then there exists R,T > 0 such that
V. = F. on B'(R)[to,to + T]. If c € R4 (X)), then V = F,. on
Ly (to).

p,e

Proof: For k > 1 observe

m o0
yk(t) = Z Z (c, xgkxikfﬂgk*l s 332‘151780)'

[ T2 (t — . )k T — To 1 )E—1
/ / / (7]7)%9(%)( k= Th 1')
to Jto to nk nk_l

71 — to no
Uiy (Tl)¥ dTl .. di
no-
m 00
- Z (C’ xgkxik$gk71 3321$g )
1,0tk =1 n0,...,ny=0
Z‘gk xikxgkfl ey xg() [’LL] (t, to)
When k£ =0
t—to (t —t)?
yolt) = (€. 0) + (e, w0) —= + (e, ) = +
[e.9]
- Z (e, 25" ) Eyno [u] (£, t0).
no=0
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Therefore,

which is well defined for every u on some closed-ball By*(R)[to,to +
T] if ¢ € RY((X)) (Theorem 3.1) and on Ly (to) if ¢ € R4A((X))
(Theorem 3.10). |

Example 3.10 Reconsider the Wiener system in Example 3.3. It was
shown earlier that

Zk'E k[u](t, to)

—1+ / / k‘! up(7g) - ug(my) dry - - - d7,.
to Jio

Thus, by direct observation, the kernel functions of the corresponding
Volterra operator are

w1it..-1 (t,Tk,...,Tl) = k", k >1
~——
k times

w@(t) = 1.

It is clear that the generating series c is locally convergent with growth
constants K = M = 1. So the Volterra operator with tg = 0 is well
defined on By (R)[0, T for sufficiently small R, T > 0. 0

Example 3.11 Consider a series

o0 m
C:Z Z (ANGy - Niyy) @i - - Ty
k=01,....is=0

where N;; € R™", i; € {0,1,...,m} and 7, AT e R™*1. Each word
x;, -+ x; can be rewritten uniquely in the form

ng .. Ng—1 ., IR 15 Iy 0
Lo~ Tiy Lo Lip_q Lo TigLg s
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where now i; € {1,2,...,m} (see equation (2.43)). In which case, c
has the equivalent form

[e.e] m o0
C:Z Z Z ()‘N(?kNikN(?kil"'NilN(?O'V)'
k=01i1,...,ix=1 no,...,np=0
wbag, w2
By inspection, the corresponding Volterra kernel function for any k£ > 1
is
[ee]
’wik...il(t,Tk,...,Tl) = Z ()\N(;LkleNngilNllNgO’}/)
ng,...,np=0
(t _ Tk)nk (Tk _ Tk_l)nkfl c.. (7-1 _ to)no

nk' nk_ll cee Tlo!

_ )\eNO(t—Tk)NikeNO(Tk—kal) .. ]\72.161\70(71—1%)),7

9

and similarly,
wy(t) = AeMNolt=to),

Therefore, the associated Volterra operator is

y(t) = AeNo(t=to) 4

st m t pTR (o)
D / / o [ AeM0l=m) o Notrimi)
to J1o t

k=11i1,....i5=1 0

NileNO(Tl_tO)’y uzk(Tk) c Ugy (Tl) dTl e di.

It is easily verified that ¢ € Rge((X)) (see Theorem 4.1), hence the
operator is well defined on any Lg}e(to) space. Truncating this series
to first order gives the linear input-output mapping

9(t) = yo(t) + v1(t)

m t
_ )\eN()(t—tO),y + Z / AeNo(t=T) NieNO(T_tO)’Y Uz(T) dr.
i=1 710

If, in addition, Ny and N; commute for each ¢ = 1,2,...,m then a
corresponding linear state space system is

m
£=Noz+ Y Nivui, 2(to) =~
i=1
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7= Az.

3.5 Parallel Connections

Given two input-output systems with Fliess operator representations
F, and Fy, it is natural in applications to interconnect them to form
new and more complex systems. In this section and the two subsequent
sections, three elementary types of connections are analyzed in detail:
the parallel connection, the cascade connection, and the feedback con-
nection. In each case, the following questions need to be addressed:

1. Is the composite system well-posed? That is, are the applied inputs
to each subsystem well defined and admissible?

2. Does the composite system have a Chen-Fliess series representa-
tion?

3. If so, how exactly is the generating series of the composite system
computed?

4. What is the nature of the convergence of the Chen-Fliess series rep-
resenting the composite system? Is it divergent, locally convergent,
globally convergent?

5. Finally, what can be said about the radius of convergence of the
composite system if it is known to be only locally convergent?

The starting point is the two parallel connections shown in Fig-
ure 3.9. Both F. and Fy are driven with the same input function,
u, and their respective outputs are either added or multiplied point-
wise in time. In each case, the outputs are also combined component-
wise, therefore, it is assumed throughout that both systems have the
same number of outputs. These interconnections are clearly well-posed
when both generating series are locally convergent in light of apply-
ing Theorem 3.1 using the growth constants K = max (K., K;) and
M = max(M., My). The first theorem states that both parallel con-
nections have Chen-Fliess series representations, and the generating
series is provided in each case.

Theorem 3.14 Given Fliess operators F, and Fy, where c,d € R% (X)),
the parallel connections F.+ F; and F.Fy have generating series ¢+ d
and cw d, respectively. That is, Fo + Fg = Foyq and F . Fy = F. 4.
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v
&

A4

Ey

(a) parallel connection with an adder (parallel sum)

> F

C

> F,;

(b) parallel connection with a multiplier (parallel product)

Fig. 3.9. Parallel system connections under consideration

Proof: For the parallel sum connection, observe that

Fufu + Falu] = ) (e Eyfu] + ) (dn) Eylu]

neX* nex*
= > (c+dn)E,ul
neX*
= Fc+d[u].

For the parallel product connection, in light of the componentwise
definition of the shuffle product and Lemma 2.3, it follows that

Felu)(t)Falu] = ) (e,n)Eylu] Y (d,€)Eglu]

neX* feXx

= > (en)(d&) Byuielu]
n,§eX*

:chd[u]'
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Example 3.12 Reconsider Example 3.3, where

2(t) = /0 u(r) dr, y(t):%z(t).

The corresponding input-output equation can be shown by direct dif-
ferentiation of y to be

y—y*u=0, y(0)=1.

But since y = Fi.[u] with

[ee]
c= Z k! 2k,
k=0

this equation can also be verified starting with F. by computing its
square, which can be viewed as a parallel product connection, and
then comparing the result against the time derivative F,. found via
Theorem 3.6. Specifically, y? = (F.)2 = F, ., ¢, where

o0
cwe= Z kU ah ot
k,1=0

In which case,

Edition 1.3, Copyright () 2025 by W. Steven Gray



3.5 Parallel Connections 153

as expected. 0

The next two theorems show that both R? -((X)) and RS, ((X))
are closed under addition and the shuffle product.

Theorem 3.15 Suppose ¢, d € R%C«X)) with growth constants K.,
M. > 0 and K4, My > 0, respectively. Then ¢ +d € R (X)) and
cuwd € RY L((X)). Specifically,

l(c+d,v)| < (K. + K)MY|u), vu e X*, (3.15)
and

l(cwd,v)| < K KgMY (Jv] +1)!, Yve X*, (3.16)
where M = max{ M., My}.

Note that since n + 1 < 2™ for all n > 0, equation (3.16) implies
the more conventional local convergence upper bound

((cwd,v)| < K KMl v e X*.

Proof: The upper bound regarding ¢ + d is trivial to produce. For the
shuffle product, observe that

||

‘(C\J.ld,l/)’: Z Z (cvn)(dvg)(nu—’&l/)

k=0 716X"7
cexlvi—k

V|

<SS KMER KM T () - R (g, w)

k=0 nGXk

EEX‘V‘ik
2
< K J MY S kL (|Jv] — k)! ('Z')
k=0

v

= KK MMy !
k=0

= KK M"(Ju| +1)!

(see Problem 2.4.3). |
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Theorem 3.16 Let c,d € RS (X)) with the infimum of their Gevrey
orders being st and s%, respectively. Then ¢ +d € RS (<X>> and
cwd € REA((X)), and in particular, sk, , < max(s}, s5) and st o<
max(s}, s3).

cuid =

The proof for the theorem above and various generalizations can
be found in the literature (see the bibliographic notes at the end of
the chapter). A special case is addressed in Problem 3.5.1.

Example 3.13 Let X = {z0, 21} and consider two linear series ¢, d €
Raeo((X)) with corresponding coefficients

(c,xkx)) = C.AFB,, (d,zfx1) = CyA%By, k>0

(see Example 3.7). Then the generating series for the parallel sum
connection has coefficients
(C +d, l‘§$1) = CcAléBc + CdAgBd
= [Ce Cl(diag(Ac, A0))* (B BT, k> 0.

Since this connection produces another linear series in the same class as
c and d, the composite system is also globally convergent with s7, , = 0.

O

Example 3.14 Let Xy = {z¢} and consider two series ¢,d € R[[X(]]
with coefficients

(c,zk) = C.A¥2., (d,zk) = CyAlzy, k>0,

where A, € R"%Xne A, € Rraxnma CT 5 ¢ Rrex1, Cg,zd € Rmax1,
Then

(cwd, zh) Z CAlz)( C’dAdzd)(:EOLuxo,:Elg)
4,j=0
k

Z c ]ZC CdAdZd) <;€>

7=0
k
— o0 |t e a) (5| oo

j=0
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using Problem 2.4.5(b) and Kronecker product identity
(A® B)(C® D)= AB® CD.

From the definition of the Kronecker sum,
A®B=(A®I,,) + (I, ®B),

it follows that

J

k
(Ao B)F =) (47 g BY) <k>
7=0
(see Problem 3.5.2). Therefore, the series ¢ d has coefficients

(cwd,2f) = (Co ® Cq)(Ae ® Ag)* (2 ® 24), k >0,

which is clearly globally convergent. The series ¢ and d are associ-
ated with autonomous linear state space realizations (A., C., z.) and
(Ag, Cyq, 2q), respectively. In which case, the triple (A. @ A4,C. ®
Cy, z.®zq) is a linear state space realization of the input-output system
F. . 4[u] when u = 0. 0

Now that it has been shown that local and global convergence are
preserved for parallel connections, a finer analysis of the local case is
pursued. Specifically, the goal is to determine the radii of convergence
for the generating series of these interconnected systems. The main
insight follows from Theorem 3.4, namely, that if ¢ is a locally maximal
series, then the smallest geometric growth constant can be determined
from the system’s zero-input response.

Lemma 3.2 Suppose X = {xg,21,...,2m}. Let ¢ and d be locally
mazimal series with growth constants K.,M. > 0 and Kg, My > 0,
respectively. If b = ¢ + d, then the sequence (b,,xo) k > 0 has the
exponential generating function

0 k

€T Kc Kd
— bz 20

for everyi=1,2,... L. Moreover, the minimal geometric growth con-
stants for b is
My, = max{M,, My}.

Edition 1.3, Copyright () 2025 by W. Steven Gray



156 3. Fliess Operators

Proof: There is no loss of generality in assuming ¢ = 1. Observe for
any v € X", n >0 that

(b,v) = (&,v) + (d,v) = (KM + KgM7)nl.

Furthermore, (b,v) = (b,z), n > 0. The key idea is that f(t) is the
zero-input response of Fj. Specifically,

o tk
f#) = (b,26) 77 = Fl0] = Fel0] + Fyl0]
k=0
_ ki k kyk __ c d
_kZ_OKcMCt +I§)Kdet =Tt T (3.17)

Since f is analytic at the origin, by Theorem 3.3 the infimum of all
geometric growth constants for the sequence (b, xg), n > 0, and thus for
the full series b, is determined by the location of any singularity nearest
to the origin in the complex plane, say zy. Specifically, M, = 1/|z],
where it is easily verified from (3.17) that 2 is the positive real number

1
~ max{ M., Mg}

This proves the lemma. [

Now the main result is given below. It confirms what was not ob-
vious in Theorem 3.15, i.e., that M, = max{M,., My} is the minimum
geometric growth constant for all parallel sum connections.

Theorem 3.17 Suppose X = {x¢,21,...,2m}. Let c,d € R} o ((X))\
Rgc<(X>> with growth constants K., M, > 0 and K4, Mg > 0, respec-
tively. If b= c+d, then

(b, 0)] < KpMv]l, v e X*

for some Kj, > 0, where My = max{M,., My}. Furthermore, if M. and
My are minimal, then no geometric growth constant smaller than M,
exists. Thus, the radius of convergence for ¢+ d is

1
My(m + 1)
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Proof: First observe that for all v € X* and i =1,2,... ¢

(e +d,v)l < (e, v)| +(d,v)|
< (EZ',V) —|—(di,1/)
= (l_)i’y)7

where ¢, d and b are defined as in Lemma 3.2. Applying this lemma, it
is clear that for any € > 0 and some Kj; > 0

(Bivy) < Kb(Mb +E)‘V||V|!7 veX®

Furthermore, there is no geometric growth constant smaller than M,
since b and b are in the same growth equivalence class. In this specific
case, it was shown in Theorem 3.15 that the bound does apply even
when € = 0. [ |

A similar analysis is now undertaken for the parallel product con-
nection. The following lemma is a prerequisite.

Lemma 3.3 Suppose X = {zo,21,...,T}. Let ¢,d € R} (X)) be
locally mazimal series with growth constants K., M. > 0 and Kg, My >
0, respectively. If b = ¢ .. d, then the sequence (Bi,a:'g), k > 0 has the
exponential generating function

(o) Rl

€T =

O (1= Mewo) (1 — Myao)

for everyi=1,2,..., L. Moreover, the minimal geometric growth con-

stants for b is
Mb = maX{Mc, Md}.

Proof: There is no loss of generality in assuming ¢ = 1. Observe for
any v € X™, n >0 that

n

(67’/): Z (E,U)(Jaﬁ)(nw&’/)

jZO nEXj ]
cexn—J
n ) )
=Y KM KM (n— ) Y (nwé,v)
7=0 nexy
cexn—J
- ; i n
= KMijl KaM)™ (n— j)!< )
- J
7=0
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n
=K JKq | MM~ | nl. (3.18)
=0

Therefore, b and the sequence (b, x(), n > 0 will have the same infimum
of their geometric growth constants. Next note that f(t) is the zero-
input response of Fj. Specifically,

o tk
F#) =D (bis 1) 15 = F[0] = Fe[0] 0]
k=0
=Y K MY K Mt = KcKq

(1 — Mt)(1 — Mgt)

Since f is analytic at the origin, Theorem 3.3 is applied to compute
the infimum of the geometric growth constants, namely, M, = 1/|z],

where
1

- max{M., My}

This proves the theorem. [ |

Now the main convergence result for this interconnection is pre-
sented.

Theorem 3.18 Suppose X = {x¢,21,...,2m}. Let c,d € R} o ((X))\
Rgc<(X>> with growth constants K., M. > 0 and K4, Mg > 0, respec-
tively. If b= cuwid, then for every e >0

(b, v)] < Kp(My, + e)p)), v e X

for some Kj, > 0, where My = max{ M., My}. Furthermore, if M. and
My are minimal, then no geometric growth constant smaller than M,
exists. Thus, the radius of convergence for cud is

1
Mb(m + 1) '

Proof: Assume ¢ =1 and observe for all v € X* that

C|_ud1/|<z Z C77||d£|(77‘—'457y)

7=0 neXJ_
cexn—j
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3

< E (éa n)(d7 f)(nw& V)
j:(] nGXj
cexn—j

= (l_),lj),

where b, ¢ and d are defined as in Lemma 3.3. A direct application of
this lemma gives for any € > 0

(b,v) < Kp(My + e)"|v|!, v € X*

for some Kj, > 0. Furthermore, (b, z§), n > 0 can not be bounded by
any smaller geometric growth constant. Thus, the theorem is proved.
|

Since the exponential generating functions in Lemma 3.2 and
Lemma 3.3 have identical sets of singularities, the parallel sum and
parallel product connections must have the same radii of convergence.
However, their behavior exactly at the boundary of the region of con-
vergence is different. Specifically, the parallel sum connection is well
defined at the boundary, while the parallel product connection is not.
To see this, set M = M. = My in the proof of Lemma 3.3 and
define M, = M(1 + ¢€) with € > 0. If there exists a K} such that
(b,v) < KM |u|! for all v € X*, then necessarily

o (B0)
1/6)1(:)* M ’V"

< Kp < o0.

From (3.18) it follows directly that

(b,v) lv|+1
su =K.K; sup ———— = K. K.,
pexs Mool ~ 0 R gl — e

where K, := sup,cy-(|v| +1)/(1 + ¢). An upper bound for K, is
found by showing that fc(z) = (x +1)/(1+4€)” has a single maximum
at xf = (1/log(1+€)) —1 >0 when 0 < € < e — 1. Therefore,

1+e

K5<Ke:: € 5= _17'
- fe(we) =e log(1 + €)

In this case, the upper bound is tight (see Figure 3.10). For € > e —
1, K. = 1 and K. > 1, and thus this upper bound is conservative.
In addition, since K. becomes unbounded as € vanishes, this parallel
product connection is not well defined directly on the boundary of the
region of convergence.
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g -
foz(w) - *fi(oz

7+ Jor(z) —— ~ Ko,
Jo.0s() Koos

6l

5L

90 100
x
Fig. 3.10. Sample plots of f.(z) and K..
v
U ——> F, > 1 ———>y
(a) Wiener-Fliess system
v
U ———> F, > F, >y

(b) cascade connection of two Fliess operators

Fig. 3.11. Cascade system connections

3.6 Cascade Connections

A cascade or series connection is an interconnection where the output
of one system is passed to the input of another system. Two examples
of cascade connections are shown in Figure 3.11. The Wiener-Fliess
system is a generalization of the classical Wiener system, where the
linear operator in the first (left-most) system is replaced by a Fliess
operator (see Example 3.3). The cascade of two Fliess operators is an
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interconnection of two dynamical systems. The Wiener-Fliess system
is mot a special case of such an interconnection since in general Fliess
operators are not memoryless (Fg,[u](t) = ¢y € R for all u and ¢ be-
ing the only exception). Therefore, the underlying algebraic structures
describing these two types of cascade are distinct.

As with the parallel connections, the same set of five basic questions
needs to be addressed. Consider first, as an example, the well-posedness
of the cascade connection of two Fliess operators with m = £. The main
issue is whether the output of the first system v is an admissible input
to the second system F,. This is most easily handled by applying The-
orem 3.2 twice, once for v = Fy[u| and once for y = F.[v]. Specifically,
set M = max{M,., My} and select R., R4, and T such that

1

o= I RTE N | Y e —

Ry, max{R, T} < m E )
1

Ryg:= RyTY9. T} < ————.

v = maxt Ry T < oy

In which case, operators F. and F,; converge on [0,7] provided u €
B,(R4)[0,T] and v € By(R.)[0,T]. Their corresponding outputs must
reside in By (S.)[0,T] and By (S4)[0, T'], respectively, where

5 K. T/
°c 1— (m+ 1)MR17C
K T4
Sy d

T 1-(m+1)MRyg

Therefore, the output of £ will be an admissible input for ¥, whenever
B,(Sq)[0,T] C By(R.)[0,T]. That is, when

K T4
1-— (m + 1)MR1’d

< R..

Observe that if this is not the case, then T can always be decreased
to produce this condition. Hence, this cascade connection can always
well-posed. A similar argument can be given for Wiener-Fliess systems.

Determining whether a cascade system has a Chen-Fliess series rep-
resentation and what are the convergence properties of the composite
system requires much more work. The first two theorems below state
that for each case shown in Figure 3.11 the cascade system does have
a Chen-Fliess series representation, and an explicit expression is given
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for its generating series using composition products as described in
Section 2.7.

Theorem 3.19 Let X = {x0,21,...,2m} and X = {&1, &, ..., %m}
Given a Fliess operator Fy, d € R}, ((X)) and a function f.: R™ —
R® with generating series c € R . [[X]] at z = (d, ), namely,
~ (Z — (d7 @))ﬁ
fc(Z) = Z (Can)Tu
neX*
the cascade connection f.o Fy has the generating series in R ((X))
~ (d_ (d7®))‘_uf]
cod:= Z (C,?])T.
neX*
That is, foo Fy= Foq.

Proof:  The proof follows from elementary properties of the shuffle
product. Defining the proper series d := d — (d, (), observe that

feoFalul= > (c,ﬁ)wﬂ

! z=Fy[u]
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- Y [ S e

HEX* ﬁeX*

= Z (C © d7 T,)Eﬁ[u]

neX*

= L'cod [’LL] .

Recall that the properness of d ensures that cod is a well defined series
in R((X)) (see Theorem 2.12). |

Example 3.15 Consider a Wiener system where f.(z) = K/(1—Mz)
for some K,M > 0 and Fylu] = > ", Ey[u]. This is a modest
generalization of the system in Example 3.3. Here X = {#;} and
X = {zo,21,...,%m} such that ¢ = Zk>OKMkk!:%]f, and d is the
proper polynomial char(X). Then f. o Fy=F,.q with
cod= Z(C ﬁ)ﬂ :iKMkklw
- 7 7! . k!
neX* k=0
o0
= ZKMkk:! char(X*) = Z KM ),
k=0 neEX*

where the identity in Problem 2.4.6(b) has been used. Therefore, a
locally maximal series is the generating series for the Wiener system
y = K/(1 — M Fgar(x)[u]) (see Theorem 3.4). 0

Next, the generating series for the cascade connection of two Fliess
operators is described.

Theorem 3.20 Let X = {x9,21,...,2Zn} and X = {Zo,Z1,..., T}
Given Fliess operators F. and Fy, where ¢ € R} (X)) and d €
RT((X)), the cascade connection F. o F; has the generating series

in RY((X))
cod=Y" (e val@) (1),
feX*

where 1y is the continuous (in the ultrametric sense) algebra homo-

morphism from R{(X)) into End(R((X))) uniquely specified by

Va(@im) = pa(Z;) @ Ya(), ;€ X, 7€ X"
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using the family of mappings
Ya(Z:) : R{(X)) = R{{X)), e = zo(d; wie),
i=0,1,...,m. Here dy := 1, and ¥4(0) denotes the identity map on
R{(X)). That is, F.o Fq = Foq.
Proof: 1t is first shown by induction on the length of the word 7 € X*
that Ej o Fyy = Fjjoq for any d € R™((X)). Trivially,
(Ep o Fa)lu] = Ep[Falu]] = Eylu] = Fy,@)1)lul-

Now assume that the claim holds for words 7 up to length k. Then for
any r; € X observe that

B[ Falul](t, to) =/ Fy, [u](r) B[ Falu]l(1,t0) dT

to
= Firo(d; 1 a() (1)) [ ()
= Fy, (@) lul(t)-

Thus, the identity in question holds for every 77 € X*. Finally,

(Feo F)[ul = Y (e, BylFalul] = > (e,) Fyyip Ul

neX* neX*
= Z (Ca 77) Z (1/%1(77)(1): V)Eu[u]
neX* veX*

Example 3.16 In the case of linear time-invariant systems, there are
two approaches to describing the cascade connection of F,. and Fy.
In the context of linear system theory, each system can be uniquely
identified in terms of its impulse response, he(t) = Y5 (c, zix1 )t /i!
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and hg(t) = 3 .~(d, zhz1)t/il, respectively. The cascade connection
is then characterized by the convolution product:

(he * ha)(t)
_ / helt — T)ha(7) dr
0

& . t—7) ; I
Z (c, x’oml)g (d,z}z1)— dr
0 7! J!

4,5=0

™

-

&
Il
o

. t . .
(c, :Eéxl)(d, xf):nl),i, / (t—7)'7dr
a3 Jo

o

i j 1 [ e [ .
(c,xoxl)(d,m{)xl)ﬁz<k>(_1)kt k/o ki g
k=0

4,7=0
. it i 1
= > Caha@aen o |3 (1) 0
141
et gt = k kE+j+1
=S (e (d )
5= (i+47+1)!
oo |k—1 ik
k—j—1 j
:Z (67330 ! $1)(d,$6l‘1) E
k=1 | j=0 ’
= Z(CO d, xlél"l)g
k=1 ’
hcod(t)a

where the following identity for integer sequences has been used,

Ny L1 ilj! ,
-1 = , 1>0 3.19
]§<k>( s A (8.19)

(see Problem 3.6.1), as well as the formula for the composition product
of two linear series as computed in Example 2.33.

A second approach is to use Theorem 3.20 directly. In which case
one first needs to determine the generating series for each subsystem.
Following the discussion in Section 1.3, recall that

Flu](t) = /0 he(t — 7)u(r) dr
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t —r k
(c,a;lgazl)/o %U(T)Ch'

M

=
i
o

M

(c.aljr) B ey, [u] (1),

b
I

0

and likewise for Fj. Thus, F, o F; = F,.,4, where the definition of the
composition product gives

T
L

(CO d7 33‘]5$1) = (Cv 517]8_j—1331)(d, 33‘6$1), k> 0.

<.
Il
o

as the only nonzero coefficients of ¢ o d. Therefore, reversing the steps
above,

Fooqlu)(t) = /0 heod(t — T)u(T) dr

as expected. 0

Example 3.17 Consider the cascade of F;; and Fy, where c = >, o k! zk
and d = z;. Using the identity in Problem 2.7.7(a), it follows that

[ee] [ee]
cod= Zk‘!:ﬂ'foa:l = Z(:Eoznl)m'“.
k=0 k=0

Therefore,

Fcod[u] = Z E(xoml) Lk [’LL] = Z Eﬁoml [’LL]
k=0 k=0

1
1- Emowl [u] '

This can be viewed as another generalization of the Wiener system
in Example 3.3, where the single integrator is replaced with a double
integrator. (See also Problem 3.6.4.) 0

Suppose the operator F is given with ¢ € RY ((X)), and one wants
to explicitly compute the output y = F.[u] on some interval [t, o+ T
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corresponding to a specific input « which is real analytic at ¢t = to. In
light of Theorem 3.8, y must be real analytic at ¢t = ¢y. So it suffices to
compute its generating series, ¢, € R} -[[Xo]], where Xo = {zo}. The
theorem below provides an explicit formula for this series.

Theorem 3.21 Consider an operator F. with ¢ € R} ((X)). Select
any mput u which is real analytic at t =ty and has generating series
cy € R7A[[Xo]]. Then the output functiony = F.[u] is also real analytic
at t =ty and has the generating series ¢, = co ¢, € R [[X0]].

Proof: Only the claim regarding the generating series for ¢, remains
to be shown. Observe that for any admissible v € By (R)[to,to + T

Fe,[v] =y = Fe[u] = Fo[Fe, [v]] = Feoe, [v].

Applying Theorem 3.7 gives directly that ¢, = c o ¢,. Note, however,
that the input v is just a dummy argument since both generating series
¢y and ¢, have no input letters x;, ¢ # 0, and thus, their corresponding
Fliess operators do not depend on v. [

In Section 3.8, the mapping ¢, — co ¢, will serve as the defini-
tion of a formal Fliess operator with generating series c. Since it has
been established that this composition is always well defined (via The-
orem 2.11), convergence assumptions play no role in this setting. But
when they are available, the formal Fliess operator and the convergent
Fliess operator coincide, which explains why the convergence assump-
tions made at the beginning of this section did not play a direct role
in the algebraic analysis.

Example 3.18 Consider the casual linear integral operator

y(t) = /0 Bt - 7)u(r) dr,

where the kernel function h is real analytic at ¢ = 0. Then y = F[u]
with (c,zfz;) = h¥(0), & > 0 and zero otherwise. If u(t) =
Zkzo(cu,xlg) t#/k!, then it follows that y(t) = > nsoley,zg) t/nl,
where

[e.9]

k k
Cy=Ccocy = E (c,xgw1) TET1L © €y
k=0
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Therefore,

(cy7x8) = Z(Cv xlgxl) (Cu,l'g - k)? n =1,
k=0

which is the same convolution sum produced in Examples 2.5, 2.33,
and 3.16. O

Example 3.19 Reconsider the Wiener system in Example 3.3, where
it was shown that the input-output mapping v — y = F.[u] has the
generating series ¢ = Y, okl ¥, If u(t) = t"/nl, t > 0 then clearly
cu = . From Theorem 3.21 and the identities in Problems 2.4.5(d)
and 2.7.7(a) it follows that

Cy = ik' af ozl = i(ﬂc()ﬁl) k= f: EEZ - 1;@ g
k=0 k=0 k=0
Consequently, the output response is
s 1)k)! Dk - p(nt1)k 1
,;0 DYF (n+ k)l ,; ((n+DDF ~ 1 2L
on the interval [0, ((n + 1))1/7+1). 0

Next convergence properties are considered. For both cascade con-
nections, it is claimed that local and global convergence are preserved
in the sense that if each subsystem has a locally (globally) generating
series then the Fliess operator representation of the cascaded system
is locally (globally) convergent. The radius of convergence is also given
for the case where the generating series for the component systems are
only locally convergent. The proofs of these results are quite technical,
so they will be left to the literature. In the global case, no claim will
be made about the growth rate of the generating series of a compos-
ite system. It turns out that the composite system, as suggested by
Example 3.9, can be globally convergent without its generating series
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being globally convergent as currently defined. This is not entirely un-
expected as coefficient growth rates were never shown to be a necessary
condition for any notion of operator convergence.

The main results for the Wiener-Fliess system are given first. As
discussed in Section 1.1, for any analytic function f : R™ — R with
generating series ¢ € RY[[X]], the multivariable Cauchy integral for-
mula provides that there exist real numbers K., M. > 0 such that

(e, )| < KM 7, 7 e X*

Analogous to the noncommutative case, the set of all locally convergent
series in R [[X]] will be denoted by R ., [[X]] and likewise for globally
convergent series.

Theorem 3.22 Suppose ¢ € ]R‘;C [[X]]\Réc [X]] and d € R7((X))\
(X)) with growth constants K., M, > 0 and Kq, My > 0, respec-
tively. If b= cod, then for every e >0

(b, v)| < Kyp(My, + )|y, ve X
for some K > 0, where
M, = (1 + mMch)Md.

Furthermore, if M., Kq and My are minimal, then no geometric growth
constant smaller than My exists. Thus, the radius of convergence for

b=cod is
1

(L+mMEKqg)Ma(m + 1)

Example 3.20 Reconsider a Wiener system in Example 3.15, where
fe(z) = 1/(1 — 2) and Fylu| = > Ey,[u]. Clearly, ¢ is a locally
maximal series with K, = M, = 1. On the other hand, d is locally
convergent, but has no coefficient growth after a certain point. The
growth constants K4, My can therefore be selected in any manner such
that K;My; = 1. In this case, Theorem 3.22 gives M, = 1+ ¢, € > 0,
which is consistent with the series ¢ o d computed in this example.

O

Example 3.21 Consider a Wiener-Fliess system where X = {7},
X =A{zo, 21}, ¢ = 3 450 k! ¥ and d = > nex+ nl'n. Then f(z) =
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45

40+

30

Fig. 3.12. Zero-input response of the cascade system Fi.q in Example 3.21.

1/(1—=(2—1)) =1/(2— 2) (since (d,0) = 1), and from Theorem 3.4
Fylul = 1/(1 — Egy44,[u]). The composite system is therefore

1 - Exo z1
Fooa = felFalu) = 1) = Tﬁ%

The zero-input response is clearly y = (1 —t)/(1 — 2¢) as shown in
Figure 3.12. The presence of a finite escape time at t.s. = 0.5 implies
that My, = 1/t.sc = 2. This is consistent with the radius of convergence
given in Theorem 3.22 with m = 0 since both ¢ and d are locally max-
imal series for the class of series with the growth rate corresponding
tOKC:MC:Kd:Md:L O

The Wiener-Fliess system comprised of two globally convergent
subsystems is considered next.

Theorem 3.23 A Wiener-Fliess system where each subsystem has a
generating series satisfying the global growth rate (3.13) has a radius
of convergence equal to infinity. Hence, the output of such a system
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is always well defined over any finite interval of time when its input
u < LTe(to).

It was pointed out in Example 3.9 that the growth condition (3.13)
is not a necessary condition for a Fliess operator to converge globally.
The following example illustrates how this issue arises for a Wiener-
Fliess system.

Example 3.22 Consider a Wiener-Fliess system where X = {Z;},
X = {wo,01}, ¢ = Yoo KcMF &%, and d = 32, (. KaM)'n. A cal-
culation analogous to the one given in Theorem 3.4 yields f.(z) = K.
exp(M.z) and Fylu] = Kgexp (MgEy +z,[u]) (see Problem 3.3.3).
Therefore, the cascaded system is

y= Fcod[u] = K. exp(Mch eXp(MdEﬂco-l-m [’LL])),

so that the zero-input response when K, =e ! and M, = K; = M, =
1is y(t) = e ~1. That is, (co d, xy) = By, n > 0, where By, n > 0,
are the Bell numbers as described in Example 3.9. Thus, cod can not
have Gevrey order less one, i.e., s* = 1, even though by Theorem 3.23
the operator F.,; must be globally convergent. 0

An interesting fact about the Bell numbers is that their asymptotic
behavior is described by

By ™3 (\(m))"F2eX 07,

where A\(n) = n/W(n), and W(n) denotes the Lambert W -function.
The Lambert W-function is a multivalued function defined by the
branches Wy, k € Z of the inverse relation of the function

g(z) = zexp(z) z € C.

Here W(x) := Wy(z) denotes the principal branch as shown in Fig-
ure 3.13 along with the branch W_j(x). This function often appears
explicitly whenever cascade structures are present. This will be the
case, for example, when two Fliess operators are cascaded as addressed
next.

Consider next the interconnection of two Fliess operators whose
generating series are only locally convergent. The theorem below states
that the cascade system is also only locally convergent, and the radius
of convergence is given.
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Wo(z)
W_i(x)
| I

Fig. 3.13. Branches Wy(z) and W_1(z) of the Lambert W-function.

Theorem 3.24 Suppose c € RZLC«X’))\REYC((X)) and d € RT((X))\
(X)) with growth constants K., M, > 0 and Kq, My > 0, respec-
tively. If b= cod, then for every e >0

[(b,v)| < Ky(My + )M|y)l, ve X
for some K > 0, where
Mg
1—mK,W (thKd exp (%JCVLAI?Z)) '

Furthermore, if M., K4 and My are minimal, then no geometric growth
constant smaller than M, exists. Thus, the radius of convergence for
b=cod is

My =

1 ~ 1 Mc - Md
My(m+ 1) [1 - mEaW <mKd xp ( MK, >>} ‘
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Example 3.23 Let X = {zg,z1} and ¢,d € R((X)) such that M =
M. = M. Using a series expansion about K ; = oo it follows that

M
1— KqW (1/Kq)

3 1
= K M
<2+ d+O<Kd>>
~ K M

when K; > 1. On the other hand, if K; = 1 then M, = (1 —
W (1)) M = 2.3102M. 0

M, =

Example 3.24 Consider the linear series ¢ = ), < (¢, z{x1) x5z and
d=>3",5o(d,xfx1) 2Bz in Rpe((X)) with growth constants K., M, >
0 and K4, My > 0, respectively. From the calculation in Example 3.16,
it is apparent that

k-1
‘(cod,xlgazl)‘ = (c, 33]8 g )(d,xéxl)
=0
k—1 ] .
< SOKMEI (ke — (K MG+ 1))
=0

(k-1
kE+1
= K KaMM! < 3:1) (k+1)!
| 7=0 J

k
= KK MM <k * 1) (k+ 1),

| 7=1

where M = max{M,, M} and assuming the convention Z ;a; =0
when k < j. Applying the combinatorial inequality Zk:l (k)_ < 1,
n > 2 (see Problem 3.6.6), it follows directly that

(cod,v)| < K.K;M" ||, ve X

For the case where K. = K; =1 and M. = My, it evident that M, =
M, which is an improvement over the more general case described in
the previous example. That is, using the specific structure of ¢ and d,
a smaller geometric growth constant can be determined as compared
to the general case where only the growth constants are known. 0
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Example 3.25 Let X = {z(,z1}, and suppose ¢ = Zn>0(n!)2 xl.
Then according to Lemma 2.5, co0 = 0 and 10 ¢ = 1. That is, it is
possible that c o d can be locally convergent even when c or d is not.

O

It was shown in Theorem 3.21 that the composition product can
be used to determine the coefficients of an output function produced
by a Fliess operator with an analytic input. The following corollary of
Theorem 3.24 describes a lower bound for the interval of convergence
for such an output function.

Corollary 3.3 Let X = {xo,z1,...,2m} and Xo = {xo}. Suppose
¢ € RECUXD))\RS (X)) with growth constants K., M. > 0 and ¢, €
R7A[ X0 \RE[[Xo]] with growth constants K., M., , respectively. If
Cy = €O ¢y, then for every e >0

(cy, 28)| < Ko, (M, + €)*k!, k>0 (3.20)
for some K., >0, where
M.,
Mc—Me, ’
L maeW (s e () )

Furthermore, if M., K., and M., are minimal, then no smaller geo-
metric growth constant can satisfy (3.20). Thus, the interval of con-
vergence for the output y is at least as large as T = 1/M.,.

M,, =

Example 3.26 The zero-input response corresponds to taking the
limit K., — 0 in Corollary 3.3. This yields M., = M, and is consis-
tent with the fact that yo(t) = >_,<,(c, 25)tF /k! has coefficients which
are bounded by the same growth rate as the entire generating series
c. Therefore, as demonstrated in Example 3.5, yg should converge at
least on the interval [to,to + 1/M., ). 0

Example 3.27 Let X = {x1} and ¢ be a locally maximal series with
growth constants K, M > 0. From Theorem 3.4 it follows that
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B K
1 — ME,,[u](t,0)"

y(t)

Assume that K., = K and M., = M. For any ¢ > 0 in the interval of
convergence for u, it follows that

Setting u(t) = K/(1 — Mt) gives

B [ul(t,0) = S m <

<t<1/M
i >,0_</,

1— Mt

so that
K
y(t) = ;

Applying Corollary 3.3 in this setting yields

. 0<t<1/M.

1 1
=—(1-KW(1/K)).
W = g KWO/E)
The image of the monotonically decreasing function f(K) = 1 —
KW (1/K) on (0,00) is (0,1). Therefore, 1/M., < 1/M as expected.

O

The section is concluded by considering the cascade connection of
two Fliess operators whose generating series are globally convergent.
The following theorem is the main result.

Theorem 3.25 The cascade connection of Fliess operators each hav-
ing a generating series satisfying the global growth rate (3.18) has a
radius of convergence equal to infinity. Hence, the output of such a
system is always well defined over any finite interval of time when its
input u € L, (to).
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Example 3.28 Reconsider the linear series ¢ = ano(c, xgx1)Trge
and d =} ~o(d,zf5z1)rgz; in Example 3.24, except here both ¢,d €
Reeo((X)) with s* = 0. In which case,

N

—1
(cod chen)| = | (e ab™ ) (d )

J

Il
o

< S (K METY (KM

Ead
—_

<.
Il
o

= K K M1k
< K Kq(2M)F,

Therefore, global convergence is preserved, and s’ ; = 0. 0

Example 3.29 Suppose X = {zg,z1} and ¢ = d = 3 ;- 2%, The
output of the cascade system is exactly that of the system considered
in Example 3.9, namely,

y(t) = Feoalu](t) = exp(Eq, [exp(Eq, [u(t)])].

Therefore, when u(t) =1
i~ n
ENCLES B
y(t) = €° —ZBnm.
n=0

So the Bell numbers also appear from a simple cascade of two Fliess
operators. 0

3.7 Feedback Connections

In this section, the feedback connection of two Fliess operators as
shown in Figure 3.14 is considered. Such closed-loop systems appear
frequently in control engineering. As with cascade connections, one
could also replace Fy in the feedback path with a static function f,.
But the focus here will be on the former case. The latter can be
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Fy

A

Fig. 3.14. Feedback connection of two Fliess operators

found in the literature. Similar to the interconnections in the pre-
vious sections, five basic questions must be addressed. But now the
analysis is considerably more difficult because feedback is generally
described only in implicit terms. That is, given any ¢, d € R}« ((X))
with X = {z¢,z1,...,2mn}, the output y of the corresponding closed-
loop system must satisfy the feedback equation

y = Felu+ Faly]] (3.21)

for any admissible input u. The interconnection is well-posed when y is
an admissible input for Fy, and u+ Fy[y] is an admissible input for F..
Fortunately, this issue can be handled in much the same manner as it
was for cascade connections (see Problem 3.7.1). When there exists a
locally generating series e € RY'-((X)) so that y = F,[u], the feedback
equation becomes equivalent to

F.lu] = Folu + Faoe[ul], (3.22)

and the output feedback product of ¢ and d, denoted by ¢Qd, is defined
to be e. The first obstacle in the analysis is that F, is required to
be the composition of two operators, F, and I + Fj,. as shown in
Figure 3.15, where one of the operators is not a Fliess operator due to
the presence of identity operator I acting as a direct feed term. Here
I+ Fy,. will be referred to as a unital Fliess operator in order to make
this distinction. The corresponding set of all unital Chen-Fliess series
is denoted by I +.% = {I + F, : ¢ € R™((X))}. The central claim is
that this mixed composition always renders another Chen-Fliess series.
However, none of the composition products introduced so far describe
this type of composition. To address the issue, it is first convenient
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Table 3.1. Composition products involving ¢, d, ¢s = § + ¢, ds = 0 + d when
X ={z0,21,...,Tm}

name symbol ‘ map

composition cod RE((X)) x R™ (X)) — RE((X))

mixed composition cdds RE((X)) x 6+ R™((X)) — RE(X))

group composition cod R™ (X)) x R™((X)) = R™((X))

group product csods | 6 +R™

to introduce the symbol 0 as the (fictitious) generating series for the
identity map. That is, F5 := I such that I + F, := Fs . = F; with
¢s := 0 + ¢. The set of all such generating series for I + .% will be
denoted by d +R™{(X)).}! The ultrametric on R™((X)) generalizes
to 0+R™((X)) in the obvious way. The following theorem describes the
generating series for this new type of composition in terms of what will
be called the mized composition product. (See Table 3.1 for a summary
of all the series compositions encountered in this section.)

Theorem 3.26 Let X = {xg,x1,...,2m}. Given a Fliess operator
F. and unital Fliess operator Fy,, where ¢ € RY (X)) and ds €

0 + R ((X)), the cascade connection F.oFy, has the generating series
in RY((X))

cods =Y (e;n) da(n)(1), (3.23)

nex*

where ¢q is the continuous (in the ultrametric sense) algebra homo-
morphism from R{(X)) into End(R((X))) uniquely specified by

ba(zin) = ¢pa(xi) ® pa(n), ;€ X, ne€ X~
using the family of mappings
da(xi)(e) = xie + xo(d; we),

i=0,1,...,m. Here dy :== 0, and ¢4(0) denotes the identity map on
R <X>> That z's, FCOFd6 = Lecods-

1A suitable subscript like ‘LC’ will be added when the set is restricted to series
satisfying a certain growth condition.
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Fig. 3.15. Mixed composition of two Fliess operators

Proof: Observe that the mixed composition product is identical to
that used for the usual composition product in Theorem 3.20 except
for the extra leading term z;e in each operator ¢q4(x;). It is precisely
this term that implements the direct feed component I. In which case,
the proof is very similar to previous proof modulo an insertion of this
extra term in each step (see Problem 3.7.4). |

It can be verified in a manner completely analogous to the regular
composition product for Fliess operators that the mixed composition
product is always well defined (summable) and ultrametric continuous
in both arguments. Some basic properties of this product are given
next.

Lemma 3.4 Let X = {zg,21,...,2m}. The mized composition prod-
uct (3.23) has the following properties:

1. left R-linearity;

cols =c;

cdds = k1, k € R for any fired ds if and only if ¢ = k1;
(xic) 8ds = zi(c Sds) + xo(di w (cSds)) for all x; € X;
(cwd)des = (coes)w(ddes);

(cod)des =co(ddes);

7. (cSds)des =co(ddes+ e)s,

S s Lo

where ¢, d, and e are suitably compatible formal power series over X.

Proof:

1. This fact follows directly from the definition of the mixed composi-
tion product.

2. The claim is immediate since ¢o(n)(1) =n for all n € X*.

3. The only nontrivial assertion is that ¢ 6ds = k implies ¢ = k. This
claim is best handled later once the Hopf algebra context is developed
(see page 192).

4. Observe
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i=1,2,...,m.
5. For any es € 0 +R((X)), one can define a shuffle product on
End(R((X))) via

Pe(@in) w de(5€) = Pe(i) @ [de(n) w Pe(;€)]+
Pe(;) @ [de(win) w e (E)]-

In which case, ¢, acts as an algebra map between the shuffle algebra on
R((X)) and the shuffle algebra on End(R((X))). That is, ¢.(cd) =
¢e(c) i @e(d). Hence, (cud)des = de(cnd)(1) = ¢e(c)(1) 1 ge(d)(1)
= (cdes5) w (ddes) (cf. Problem 3.7.5).

6. See Problems 3.7.4 and 3.7.5.

7. This identity has another interpretation, which will be presented in
Lemma 3.5 (mixed associativity). So the proof is deferred until then.
Also, see Problem 3.7.5. [ |

Of particular importance here is the fact that the feedback equation
(3.22) can be written in terms of the mixed composition product as

F. [u] = Fcé(doe)(g [u]
In light of the uniqueness of generating series (Theorem 3.7 for the
locally convergent case and Theorem 3.40 for the formal case) this

implies that
e =co(doe)s. (3.24)

This equation suggests the possibility of describing e as a fixed point
of a contractive iterated mapping. Consider the following theorem.

Theorem 3.27 For any ¢ € R™((X)), the mapping ds — ¢ Sds is an
ultrametric contraction from 6 +R™((X)) to R™((X)).

Proof: The proof is a minor variation of the previous result for the reg-
ular composition product of two Fliess operators, i.e., Theorem 2.15.
The contraction coefficient, o, is unaffected by the required modifica-
tions (see Problem 3.7.4). [ ]

The first main result of this section is given below and addresses
question 2.
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Theorem 3.28 Let ¢,d € R™((X)). Then the following propositions
hold:

1. The mapping
S R™((X)) = R™((X)),
€= €iy1 ==¢C o (d o ei)g (325)

has a unique fized point in R™((X)), cQd := lim;_, €;, which is
independent of eg.
2. The generating series cQd satisfies the feedback equation (3.24).

Proof:
1. The mapping S is a contraction on R™((X)) since by Theorems 2.15
and 3.27:

dist(S(e;), S(e;)) < o dist((d o e;)s, (d o ej)s) < o* dist(e;, e5).

Therefore, the mapping S has a unique fixed point, c@d, that is inde-
pendent of eg, i.e.,
cQd = ¢35 (do (cQd))s. (3.26)

2. The claim follows directly from comparing (3.24) and (3.26). |

Now that it has been established that the closed-loop system in
Figure 3.14 has a Chen-Fliess series representation, the next question
is how to actually compute its generating series. Equivalently, how can
(3.24) be solved to determine e = c@d? Observe that the function v in
Figure 3.14 must satisfy the identity

v =1u~+ Fyo[v].

Therefore,
(I + F_goc) [v] = w.

Now suppose there exists a series (—d o ¢)~! such that
(I + Fleasey1) o (T4 Fioaee) = 1.
Then it would follow that
v=(I+ F_goe)-1) [u],

and thus,
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Feadlu] = Felv] = Fe[(I + F(_go)—1 ) [u]]
= Fc 5 (—doc)g1 [u]

In which case, the feedback product can be written in the form cQd =
co(—do c)g1 provided this inverse series can be determined. This
suggests that two issues need to be investigated. First, the presence
of an inverse implies that some group is involved in this calculation.
What is this underlying group? Second, the group element (—d o 0)6_1
is interacting with the generating series ¢ describing the forward path
via the mixed composition product. What is the exact nature of this
interaction? This latter question motivates the following definition.

Definition 3.7 Let G be a group and S a given set. Then G is said
to act as a transformation group on the right of S if there exists a
mapping A: S x G — S : (h,g) — hg such that:

1. h1 = h, where 1 is the identity element of G;
ii. h(g192) = (hg1)ge for all g1,92 € G.
The action A is said to be free if hg = h implies that g = 1.

Example 3.30 Suppose the two Fliess operators F. and F, in Fig-
ure 3.14 are linear time-invariant systems with m x m transfer ma-
trices H and G, respectively. In this case, the corresponding feedback
equation

H,=H(I+GHg) (3.27)

can be solved directly by substitution

— H(I + GH + GHG[H(I + GHy)))

= H(I - GH)™". (3.28)

One can verify that the set of transfer functions {I + G}, where G is
an m x m matrix of strictly proper rational functions, is a group under
the product

(I+G1)I+G2)=1+G1+ G2+ GGy
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with identity element I and inverse (I+G)~! = >, ,(—G)*. In which
case, (3.28) can be interpreted as this group acting on the operator H
from the right to produce the transfer function for the closed-loop sys-
tem, H. (see Problem 3.7.2). One subtle point is that the inverse of
(I — GH)™ ! is clearly (I — GH). So applying this transformation will
remove the feedback, but it is not clear what, if any, system inter-
connection this second action corresponds to. Nevertheless, there is a
system interconnection that will remove the feedback loop. This issue
will be addressed later in this section. 0

Moving on to the more general setting, the key idea is that (I +
F,0,1) forms a group under the composition

Foyo Fay = (I+ F)o (I +Fy)
— I+ Fy+ Foo(I+Fy)
=1+ F;+ Fezqs

= C(;Od(; )

where
csods:=0+d+ (cdds) =20+ cod. (3.29)

Note that the same symbol will be used for composition on R ((X))
and 0 + R™((X)). As elements in these two sets have a distinct nota-
tion, i.e., ¢ versus cg, respectively, it will always be clear which product
is at play. The following lemma summarizes some key properties of the
composition product on ¢ + R™((X)).

Lemma 3.5 Let X = {xg,x1,...,2Zn}. The composition product (3.29)
has the following properties:

1. 05005 205005 = C§;,
2. (cdds)des = co(dsoes) (mized associativity);
3. associativity,

where ¢, d, and e are suitably compatible formal power series over X.

Proof:

1. Observe 05 0 ¢s = ¢5 + 06 ¢cs = ¢s using Lemma 3.4 item 1. On the
other hand, c5005 = 05 +¢305 =6+ >, v« (¢,m)¢0(n)(1) = c5 using
the fact that ¢o(n)(1) = n for all n € X*.

2. In light of item 1 in Lemma 3.4, it is sufficient to prove the claim
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only for ¢ =1 € X* k > 0. The cases k = 0 and k = 1 are trivial.
Assume the claim holds up to some fixed k£ > 0. Then via Lemma 3.4,
item 4, and the induction hypothesis it follows that

((wom) 5.ds) Ses = (zo(n S5ds)) Ses
= xo((n 5ds) Ses)
= xo(n S (ds o e5))

= (xon) 6 (ds o es).

In a similar fashion, for ¢ = 1,2,...,m apply the properties in
Lemma 3.4, items 1, 4, and 5 to get

((zin) ods) Ses
[zi(n Sds) + xo(di w (nSds))] Ses
= [zi(n S ds)] des + [wo(d; wi (n S5ds))] Ses
= x4[(n 5.ds) S e5] + wole; w ((n S ds) Ses)] + zo[(di w (n 5ds)) & es]
= x;[(n dds) S es] + xo(€; + di Ses) wi((nSds) Ses)].
Nt i)/

(doe);
Now employ the induction hypothesis so that
((zin) ©ds) 0 e5 = x4 (ds © e5)] + zo[(d @ €)i wi (1 (ds © €5))]
= (zin) © (ds 0 €5).

Therefore, the claim holds for all n € X*, and the identity is proved.
Note that this identity is equivalent to the one given in Lemma 3.4,
item 7.

3. First apply (3.29) twice, then Lemma 3.4, item 1, and finally mixed
associativity to get

(csods)oes=(d

Hence, the lemma is proved. [ |

Given the uniqueness of generating series for Chen-Fliess series,
(I+.%,0,1) is a group if and only if (6 + R™((X)),0,0) is a group. The
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main proposition is that this latter group acts as a right transformation
group on R™((X)) via the mixed composition product. The following
theorem establishes this fact. Henceforth, this group will be called the
output feedback group since, as will be shown shortly, it will be used
to provide an explicit formula for the output feedback product.

Theorem 3.29 The triple (§ + R™((X)),0,d) forms a group. This
group acts as a right transformation group on R™((X)).

Proof: In light of Lemma 3.5, the only open issue in establishing that
d +R™((X)) is a group is demonstrating the existence of an inverse.
Specifically, for a fixed ¢5 € 6 + R™((X)), the composition inverse,
66_1 = § + ¢!, must satisfy ¢5 o 66_1 = J and 66_1 ocs = d. From the
first equation,

65066_1 =04ct 566_1 =,

which reduces to
ct=(-c)sch. (3.30)
Likewise, from the second equation,

c=(—c1) 5. (3.31)

Now it was established in Theorem 3.27 that e — (—c) es is a con-
traction in the ultrametric sense on R™((X)) as a complete ultrametric
space and thus has a unique fixed point. So it follows directly that 65_1
is a right inverse of cg, i.e., satisfies (3.30). To see that this same series
is also a left inverse, first observe that (3.30) is equivalent to

1305 +cdc;t =0, (3.32)

using the identity ¢! 505 = ¢! and the left linearity of the mixed
composition product. Substituting (3.32) back into itself where zero
appears on the left-hand side and applying Lemma 3.4, item 7 gives

cla(coc;t +c)s+cdc;t =0

(ctocs)de;t +edeyt =0.
Again from left linearity of the mixed composition product it follows

that
(clses+c)de;t =0.

Finally, Lemma 3.4, item 3 implies that ¢! S¢s + ¢ = 0, which is
equivalent to (3.31). Therefore, every element of § + R™((X)) has an
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inverse. Finally, it is clear that 6 +R™((X)) acts as a right transfor-
mation group on R™((X)) in light of Lemma 3.5, item 2, namely, the
mixed associativity property. [ |

Example 3.31 If ¢,d € R7~((X)), and c is a linear series then
Fcéd5 [u] = Fc[u + Fd[u“ = Fc[u] + Fcod[u]a
or equivalently,
céds =c+cod (3.33)

Similarly,
co(dy +ds) =cody +cods.

Therefore, using (3.30) and then (3.33) repeatedly, it follows that

66_1 =6+c!

_ ~ 1
=0 —coc

=d—c—coc!
=0—c—co(—cdc;t)
=0—c—co(—c—coc)

=§—c+coctcococ

=0—c+c?—cB 4.,

where ¢ denotes the composition product power. This is equivalent
to the series expansion of the inverse appearing in (3.28). When ¢ =
observe

(64+21) =8 — a1 + w0y — TRTy -
=4§— (—xo)*xl,

where d* := > .., d". In contrast, the series ¢ = z is not linear, and
in this case

5—330—1—3382—3383—1—"':5—330+330—ZE0+"',

which is neither locally finite nor summable. Nevertheless, it can be
easily verified directly that (§ + 29)~' = 6 — xg. So the element is
invertible but does not have a series expansion of the type available
for linear series. 0
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The explicit formula for the output feedback product conjectured
above is presented next (see also Problem 3.7.8).

Theorem 3.30 For any ¢,d € R™((X)), it follows that
c@d=cd(~doc);'. (3.34)

Proof: Recall that the feedback equation for the system in Figure 3.14
reduces to the fixed point equation

e=co(doe)s.

where e = c@d. The solution above can be checked by direct substitu-
tion with the aid of the identity in Lemma 3.4, item 6, and (3.30):

c5(doe)s| cd(do(cd(—doc);"))s
((doc)d(—doc)yt)s
co(—do c)g1

€.

e=cd (—doc)g1

ot

C

The goal now is to describe a Faa di Bruno type Hopf algebra asso-
ciated with the group (6 + R™((X)),o,d), whose antipode facilitates
the explicit computation of the inverse of the group element appearing
in the feedback product above. The coordinate maps for this group
have the form

afi 0+ R™(X)) = R, ¢5 = (ci,m),

where n € X* and i = 1,2,...,m.'? In addition, a special co-
ordinate function 15 is introduced with the defining property that
cs € §+R™((X)) maps to one in every case.’® Let V denote the
R-vector space spanned by these maps. If the degree of afz is defined
as deg(ay) = 2[nl,, + 27, nl,, + 1, then V' is a connected graded
vector space. That is, V = €, -, Vi, with

'? Given the bijection between § +R™((X)) and R™((X)), al(cs) will often be
abbreviated by a},(c).

13 The subscript 6 is added here to distinguish between this coordinate function and
the monomial 1 = 1), namely, the unit for the catenation and shuffle algebras.
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V, = spanR{a; : deg(af]) =n}, n>0,

and V) = R1;.
Consider next the free unital commutative R-algebra, H, with prod-
uct ‘ '
,u:a%@aéb—)af?aé
and unit 15. This product is clearly associative. The grading on V
induces a connected grading on H with deg(a%aﬂ )= deg(a%) +deg(a2)
and deg(15) = 0. Specifically, H = ,,~, Hy, where

¢

H,, = spang af;laff? e affz : Zdeg(a%) =ny,, n>0,
j=1

and Hyp = R1s.

Two coproducts and a coaction are now introduced (see Prob-
lem 3.7.6). The first coproduct is used to define the Hopf algebra on
H. The second coproduct and coaction provide a recursive manner in
which to compute it. Recalling that cs o ds = 6 + ¢ ® d, define A for
any aj, € V't := @, V, such that

Aay(c,d) = a;(c©@d) = (¢; © d, ).

The coassociativity of A follows from the associativity of the group
product. Specifically, for any ¢, d,e € R™((X)):

(ld ® A) © Aafy(cv d, 6) = (Ci © (d © 6)7 77)
=((c@d)i@en)

=(A®id)o Aa;(c, d,e).
Therefore, (id ® A)o A = (A®1id) o A as required.

The second coproduct is A7, (V) C V@V ™, which is isomorphic
to sh* via the coordinate maps. That is,

AT aly = a) ® a% (3.35a)
A o= (0 @id+id®@6) 0 A, (3.35b)

where id is the identity map on VT, and 6; denotes the endomor-
i

phism on VT specified by Hka% = ay, for k = 0,1,...,m and
ij=1,2,...,m.
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Example 3.32 The first few terms of A, are
AJ;JJ a% = aé, ® a%
AT aﬁcil = %Z ® aw + a@ ®al

Al ahy . =, @) +d, ®al +a, ®ad +
a@ ® ag%ml1
A Gy o an = Qs © G+ 0, © 0%+
Uz, @, F Gy @, o
afvizxil ®a ]x13 + axl @ a ]xlgle"i_
aﬁcil ® a’?cszl + CL@ ® a:cz3:c22 T4y

O

The coaction is Aa Aa —15® a% or, equivalently, the coaction
induced by the 1dent1ty

Aa%(c, d) = (¢; 6ds,m) Z al 77(2 y(d).

A key observation is that this coaction can be computed recursively
as described in the next lemma. It is not difficult to show using items
2 and 3 of this lemma that a;(l) € V' and aﬁm) € H, and thus,

AVt CV*T®H.

Lemma 3.6 The following identities hold:

1. ANa% =aj® 15

2. AOG—(H ®1d)oA . '

3 Aoby=(fy®id)o A+ ;@ p)o(A®id)o A, ,
i=1,2,...,m, where id denotes the identity map on H.'*

Proof:

1. First note that any series ¢ can be uniquely decomposed as ¢ =
(c,)) + z;c', i = 0,1,...,m, where the series ¢’ are arbitrary. In
which case, using the left linearity of the mixed composition product
and Lemma 3.4, item 4, it follows that

4 The Einstein summation notation is used in item 3 and throughout to indicate
summations from either 0 or 1 to m, e.g., > i, a;b’ = a;b*. It will be clear from
the context which lower bound is applicable.
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2. For any n € X™ observe
(Ao Hi)a%(c, d) = Aa;m(c, d)
= al,, (vi(c* 8 ds) + zo(dp o (" 3.dy)))
= a%(ci odys)
= Aaj(ci d)
= Z a 17(2 c ,d)

=26 “n(l) ® ayz) (e, )
= (0; ® id) o Ad}(c,d).

Note that since a’ (1) € V| the operation 0; (aa(l)) is well defined.
3. Proceeding as in the previous item, it follows that

(Ao by)al(c,d)

n
= ay,,(cods)

— a5 dg) + mo(dy (¢ 5.dy)))
= 77(c Od5+djm(07 Od(;))

=a}("3ds) + > Al dl(c] 5ds,d)

= Aa%(co,d) —1—2 Z (n,&wv) (Aa%@aﬁ)(cj,d,d)

= (6p ®id) o Ad’ (c,d) + (0; ® id)o
Z (m,&wv) (Aaé ®al)(c,d,d)

EreX*
= (6o ®id) o Aa}(c,d) + (0; ® p) o (Aoid) o AT, af(c,d).
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The next theorem is a central result describing the algebraic un-
derpinnings of the feedback connection.

Theorem 3.31 (H,pu, A) is a connected graded commutative nonco-
commutative unital Hopf algebra.

Proof: From the development above, it is clear that (H,pu,A) is a
bialgebra with unit 15 and counit € defined by €(a,) = 0 for all n € X*
and €(15) = 1. Here it is shown that this bialgebra is graded and
connected. Therefore, H automatically has an antipode, and thus, is
a Hopf algebra by Theorem 2.10. Specifically, since the algebra H is
graded by H,, n > 0 with Hy = R1s, it only needs to be shown for
any a% € VT that

Adye VI @ H)y= @ V;® H. (3.36)

Jj+k=n
j=1,k=>0

This fact is evident from the first few terms computed via Lemma 3.6:
nzl:Aa@—a@@)lg
nzZ:Aaij =ag, ®1;
- . ’
n=3:Aa,, = x0®15+a;e®a@
n=3:Ad o —axﬂk®15

n:4:AaWc = Gy, ®15+aw®a +am ® aj

n:4:AaxxO— ®15—|—ax_u®a@
n:4:Aa; gra —am rkrz®15

. _ 4 ) ¢
n=>5: Aax% = ax(g) ® 1s +CLW ® gy + U,y @ g+
i ¢ ' ¢
a;oxe ®ap+ agﬁeu’vu ® a@a6’

where i, 5, k,l = 1,2, ... m. In which case, using the identities A(anag)

Aa%Aag and Aaf7 = Aan + 15 ® an, it follows that AH,, C (H ® H),,
and this would complete the proof. To prove (3.36), the following facts
are essential:

1. deg(ay) = deg(ay) +1,1=1,2,...,m
2. deg(foa;) = deg(a
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3. Al ap € (VY @V T )y, n= deg(al).

The proof is via induction on the length of . When || = 0 then
clearly Aa% = a% ®1s € V1 ® Hy and n = 1. Assume now that (3.36)
holds for words up to some fixed length [n[ > 0. Let n = deg(az).
There are two ways to increase the length of 7. First consider a’

, i
for some I # 0. From item 1 above deg(ay,,) = n + 1, and from
Lemma 3.6 ANai,m = (f®id) o Aafr Therefore, using the induction

hypothesis, Aa;lan € @j+k:n Vis1 ® Hy, C (V ® H)pq1, which proves

the assertion. Consider next a;(m. From item 2 above deg(ay,,) = n+2.
Lemma 3.6 is employed as in the first case. First note that item 3
above A7 a% € (VT ®V™),41, and so using the induction hypothesis
it follows that (A®id)o AT a, € (VT ®@ H®@V*),y1. In which case,
(0i @ p) o (A®id) o A, a) € (VT & H)pyz. By a similar argument,
(0o ®id) o A~af7 € (V* ® H),yo. Thus, ANa;(m € (V' ® H),y2, which
again proves the assertion and completes the proof. [ |

The deferred proof from Lemma 3.4 is addressed next.

Proof of Lemma 3.4, item 3: Recall the claim is that ¢ ds = k1
implies ¢ = k1, k € R®. If ¢ 5ds = k1 then clearly k; = aj(cods) =
Aay(c,d) = aye, i = 1,2,..., L. Furthermore, for any z; € X with
j#£0,0= g, (cdds) = Aaf,cj (c,d) = ag, ¢, i =1,2,... ,£. Now suppose
apc =0,1=1,2,... 0 for all a; € Vi with k = 1,2,...,n. Then for
any r; € X

0= Aa;jn(c’ d) = aﬁva‘nc T Z aﬁvm(l)(c) a;jn(2) (d),

% jn)7 1
where in general aim(l) #* a%. Therefore, aijnc =0,i=1,2,..., 4. In
which, case ¢ = k1. [

Example 3.33 Recall that Lemma 3.4, item 3 was used to establish
that 6 + R™((X)) constitutes a transformation group. But once estab-
lished, this identity becomes trivial to justify. Namely, if cods = k1
then

c=cd(dsod;") = (cods)ods' =kl1od;* = k1.
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The following result supports the primary application of the Hopf
algebra (H, u, A) in computing the feedback product.

Lemma 3.7 The Hopf algebra (H, pu, A) has an antipode S satisfying

aj(c™) = (Saj)(c) for alln € X* and ¢ € R™((X)).

Proof: The claim follows directly from (2.32). |

Finally, it was established in Theorem 2.10 that the antipode, S,
of any graded connected Hopf algebra (H, u, A) can be computed for
any a € HT by

Sa=—a— Z(Sa'(l))a'(z), (3.37)
or alternatively,

Sa=—a— Z al(l)Sa/(Q), (3.38)

where the reduced coproduct is A'a = Aa —a ® 15 — 1s @ a =
> a’(l) ® ay . This can be viewed as being partially recursive in that
the coproduct needs to be computed first before the antipode recursion
can be applied. The next theorem provides a fully recursive algorithm
to compute the antipode for the output feedback group.

Theorem 3.32 The antipode, S, of any a% € V' in the output feed-
back Hopf algebra can be computed by the following algorithm.:

i. Recursively compute AT, via (3.35).

1. Recursively compute A via Lemma 3.6.

iii. Recursively compute S via (3.37) or (3.38) with

I i AT )
Aan—Aan—a,Z@lg.

Proof: In light of the previous results, the only detail is the minor
observation that S is the antipode of the Hopf algebra with coproduct
Aa = Aa+15®a. In which case, the corresponding reduced coproduct
is as described in step iii. [ |

Applying the algorithm above via the left antipode formula (3.37)
gives the antipode of the first few coordinate maps:

Hi : Sa% = —aé) (3.39a)
Hy : Sap, = —ag, (3.39b)

J
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Hs: Sal, = —al +al af (3.39¢)
Hs: Saijmk = —aijmk (3.39d)
Hy: Saﬁcoxj = —aﬁcoxj + aﬁclaij + ai,ﬂjag (3.3%)
Hy: Sal 0 = —ab g + ab @ (3.39f)
Hy:Sal, 0 =~ 4, (3.39g)
Hs: Sa;g = —(liz - (Saﬁc )aﬁo - (Sa;exo)aé - (Saioxl)aé—

(Saxﬂ )a@a@
T S BN A i ¢
- axg ( amg)axo ( ango +gwgm/ydgja@
i i v i vy, L i v
(_agcogcg + amyaxg + amymga@)a@ - (_ 77, ) Ay
_ i v L
= —a, x3 + al‘zal‘o + axwoa@ + axoxeaﬂ) Qg Aoy =

aiyzeagaé, (3.39h)

where i, j, k, [ = . m. The explicit calculations for Sa’ 23 e shown
above to dlsplay the inter-term cancellation. This is the same phe-
nomenon observed for the classical Faa di Bruno Hopf algebra pre-
sented in Section 2.6. As with that Hopf algebra, the right antipode
formula here is also known to be cancellation free and thus is pre-
ferred for calculations. Finally, it should be noted when m = 1, i.e.,
the single-input, single-output case, that all the summations above
vanish.

Example 3.34 Consider a linear time-invariant system with an mxm
transfer function H(s) and state space realization (A, B,C). The
corresponding components of the linear generating series are ¢; =
> k>0 Z;nzl(ci,x’§$j) x’§$j, where (ci,:nlng) = C’iAkBj, k>0, and C;,
Bj denote the i-th row of C' and the j-th column of B, respectively.
The composition inverse of the return difference matrix I + H(s) is
computed directly as

(I+C(sI—A)™'B)y'=1-0C(sI - (A—BC))!
Therefore, it follows that
(c; ' wfxj) = —Ci(A— BC)*B;, k>0, i,j=1,2,...,m.

Expanding this product gives results which are consistent with the
antipode formulas (3.39). For example,
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(ci_l,xoa:j) = —CZ(A — BC)B]
= —C;AB; + C;BCB;

= —CiABj + Z C,’BngBj
/=1

NE

= —(ci,zoxj) + ) (ci,we)(ce, ;)

- (_axomj + a.ibga.ibj + axnga@)c

= (Sagya, e,
where the fact that (¢, z¢x;) = (¢,0) = 0 has been used in the second
to the last line. 0

A unity feedback system is one where the operator Fy in Figure 3.14
is replaced with the identity map Fs = I. At first glance, it does
not appear that the output feedback formula (3.34) will apply to this
situation. However, if the loop generating series —doc in this formula is
replaced with —c this corresponds exactly to a unity feedback system,
and the formula does render the correct closed-loop generating series.
So introducing a slight abuse of notation, the generating series for a
unity feedback system will be denoted by ¢Qd := ¢ o (—0)6_1, and it is
evident from (3.30) that c@§ = (—c)~!, and therefore, ¢~ = (—c)@$.
That is, every inverse generating series can be viewed as coming from
a unity feedback system.

Example 3.35 Let ¢ = Ekzo k! x’f The generating series for the

unity feedback system c@§ = (—c)~! is computed directly from (3.39).

For example, the coefficients for all the degree four terms are:

(—c) ™Y zoz1) = Sagye, (—¢)
= g, (—21)az, (—21) + azy2, (2! 2121)ag(—1) = 3
(—e) ™Y z120) = Sag,py(—c)
= Qpyq, (—2!z121)09(—1) = 2
(—e) Y zym121) = Sag,py2,(—C)

= —GQgyzy0, (=3 T12121) = 6.

Therefore, the polynomial

Edition 1.3, Copyright () 2025 by W. Steven Gray



196 3. Fliess Operators

as = 61’? + 31’01’1 + 21’11’0

is comprised of all the degree 4 terms appearing in c@¢§. Continuing in
this way, cQd =, -, ay, where

a; =1

a2 = X1

as = 2x% + 20

ay = 6xi’ + 3zgr1 + 22170

as = 24:17‘11 + 12x0:17% + 8x1x021 + 6:17%:170 + 3x(2)

ag = 120x? + GOxOx:{’ + 403:13:0:5% + 303:%3:03;1 + 243:‘?’3:0—#

15x(2)x1 + 12x0x120 + 8x1x(2).

These are the Devlin polynomials. They are known to be related by
the simple linear recursion

an = (n—1)ap—121 + (n — 2)ap_2x9, N> 2, (3.40)

where ap = 0 and a1 = 1. 0

In applications, generally the plant, modeled by F. in Figure 3.14
is fixed and the feedback law F} is considered variable. In which case,
there is an underlying additive feedback transformation group in this
setting.

Definition 3.8 For any fized c € R{((X)), define
O, ={es € 0+ R((X)) :e5=(doc)s, d€ R((X))}.

Theorem 3.33 For any fized series ¢ € R((X)), the triple (O, +,9)
defines an additive group, where

es+es=(doc)s+ (d oc)s = ((d+d)oc)s
for any e5 = (doc)s, el = (d oc)s € O..

Proof: The claim follows directly from the left linearity of the compo-
sition product on the R-vector space R((X)). ]

The group (O, +,9) is isomorphic to the additive transformation
group described in the following theorem.
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Theorem 3.34 The additive group (R{(X)),+,0) acts on the set
R({(X)) as a right transformation group, where the action is given by
the output feedback product. That is, cQ0 = ¢ and

(C@dl)@dg = C@(dl + dg).

Proof: The first identity is trivial. For the second, two algebraic facts
are needed. First, as described in Lemma 3.7, the composition inverse
is defined in terms of a Hopf algebra antipode, S, using the group
(6 + R((X)),0,0). Such an S is always an antihomomorphism for both
the algebra and the coalgebra structures on H, for example, S(ajas) =
S(a)S(a1),Yai,ay € H. Therefore, it follows directly that (csods) ™! =
d5_1 o 65_1. Second, from Lemma 3.4, item 6, recall that

co(ddes) = (cod)des.

Proceeding with the calculation, it follows by definition of the output
feedback product and the fact that (R((X)),o,d) is known to act as a
right transformation on R((X)) via the product ¢ &ds that

(C@dl)@dg
= (co(—dyoc);")Qdy

I
o
ot
—
—~
|
QU
—
(0]
2}
SN—
Sc)
o
—
|
U
)
(0]
—
o
ot
—~
|
QU
—
(0]
9}
~
bl
_
~—
S—
&
—_
[

Now apply the first fact stated above, the definition of the group prod-
uct on § + R((X)), and the second fact in this order to get

(c@dy)@dy = 5 [(—dy o (¢35 (—dy 0 c);1))s0

(—dy oc)g]_l

—co [(—dl ) C) + (—d2 o (C o (_dl o 6)5_1)) o
(—dioc)s)s

—¢d [(—dl oc)+ ((=dgoc)d(—djo 0)5_1) )
(—di 0 0)s];

Finally, just simplify the result using properties already stated so that

(cQdy)@dy = c5 [(—dyoc)+ (—dyoc)d((—dioc);'o
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(—dyo c)(;)]é
¢8(—(dy +da) o))"
= C@(dl + da).

Example 3.36 Returning to the linear time-invariant case in Exam-
ple 3.30, the above theorem reduces to a simple identity concerning
transfer functions. Namely, if H is the transfer function for the plant
and feedback Gy is applied, then the closed-loop system has the trans-
fer function

Hy,=H(I -G H)™

If a second feedback loop G is then applied the resulting closed-loop
transfer function is

Hyo=Hu (I — GoHyq) ™
= H([ —(G1 + GQ)H)_l.

Clearly, the second feedback loop will cancel the first feedback loop
when Gy = —Gi. It is easy to see that (I — (G1 + Go)H)™! #
(I — G1H)™Y(I — GoH)™!. Therefore, what is essentially a compo-
sitional group in Example 3.30 will not describe the output feedback
transformation group consider here. Nevertheless, all inverse opera-
tions above are with respect to this composition group. So it is still an
essential concept. 0

Finally, issues connected with convergence are addressed. As with
the cascade connection, the main results will be stated along with il-
lustrative examples, but the most difficult proofs will be left to the
literature. The first theorem states that local convergence is preserved
under the composition inverse. The radius of convergence for this op-
eration is also given.

Theorem 3.35 Suppose X = {xo,1,...,Tn}. Let ¢ € R7((X))\
mL (X)) with growth constants K., M. > 0. If b = ¢™1, then for

every € > 0
(b, m)| < Ky (My + €)™ ]!, 5 € X*,

for some Kp > 0, where
M.

M, = .
1—mEn (14 )
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Therefore, b € R ((X)). Furthermore, if K. and M. are minimal,
then no geometric growth constant smaller than M, exists. Thus, the
radius of convergence for the composition inverse operation is

1 1
7Mc(m+1) [1 —mK.In <1+ ch>} .

Example 3.37 In Example 3.35 it was shown that if ¢ = >, klaf
then (—c)™! = 3", ax, where qj, are the Devlin polynomials. Define
the integer sequence

by =
g gggg(ak, n)

corresponding to the largest coefficient in a; for a given word length n.
A straightforward inductive argument using (3.40) (see Problem 3.7.9)
yields the identity

(2n)!

which is usually denoted as the double factorial (2n — 1)!l. Note, in
particular, that

(2n — 1)!! = deg(1) deg(xo) - - - deg(zp ™).

This implies that the fastest growing subsequence of coefficients of
(—c)~! with respect to word length corresponds to those coefficients
attached to the words :17’8 , k >0, since it is known in general that

n—1
(ak7 Ly Lig * " xin) - H deg(xilxiz T xij)
j=1

when k = deg(z;,z;, -+ x;,) and n > 2. Therefore, in light of Theo-
rem 3.35 with K. = M. = 1, it should be true that for some K > 0

n-1I <K ( ) n! = K(3.25889...)"n!

1—1log2

for all n > 1. To see this is so, one can employ the well known identity

1 1
2n — DIl = =2 -
(2n -1l = — <n+2>,

where I" denotes the gamma function. The claim is now evident since
I'(n+3)<I'(n+1)=n!foralln=1,2,.... 0
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Two immediate consequences of the previous theorem are the fol-
lowing.

Theorem 3.36 The triple (0 + R} ((X)),0,0) is a subgroup of the
group (6 +R™{{X)),0,0).

Proof: The set of generating series § + R7'~((X)) is closed under com-
position since the set R} ((X)) is closed under addition and mixed
composition (the proof is similar to that of Theorem 3.24). In light of
Theorem 3.35, 0 + R~ ((X)) is also closed under inversion. Hence, the
theorem is proved. [ |

Theorem 3.37 If c,d € R} ((X)), then cQd € R7'-((X)).

Proof: Since the composition product, the mixed composition product,
and the composition inverse all preserve local convergence, the claim
follows directly from Theorem 3.30. [ |

The radius of convergence of the output feedback product is given
in the following theorem.

Theorem 3.38 Suppose X = {xg,x1,...,Tm}. Let c,d € RT~((X))\
RE~((X)) with growth constants K., M. > 0 and K4, My > 0, respec-
tively. If e = cQd, then for every e >0

[(e,m)| < Ke(M, +)"|nlt, n e X7,

for some K., > 0, where

1
M. —
e 1/Me W (exp(f(2)))
o' T esuey ¢
and
1— Myz (1 MZ)%
_ - Md~ T er) T
[@) == gt mK,

Furthermore, if K., M., Kq and My are minimal, then no geometric
growth constant smaller than M, exists. Thus, the radius of conver-
gence for e = cQd is
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/1/Mc Wiexp(f(2)) (3.42)
0

(m+1) 1+ Wi(exp(f(2)))

Example 3.38 Suppose X = {xg,z1}. Recall from Theorem 3.4 that
if ¢ is a locally maximal series with growth constants K., M. then

K.

:FC = .
v=Fl = T Rl

Setting z; = y and computing the derivative gives directly a state
space realization for this input-output system, namely,

. M

4= A0 ), 20) = K
K.

y=z

(see Problem 3.6.5). An analogous realization exists for Fy if d is locally
maximal. If these two systems are now interconnected as shown in
Figure 3.14, then a realization for the closed-loop system F.aq is

M.

4 = ?z% (1420 4+u), 2(0) =K, (3.43a)
M,

=2 (1+2), 2(0) =Ky (3.43b)
Ky

Yy =z (3.43c)

A numerical simulation of (3.43) with K. = 1, M. = 2, K3 = 3 and
My = 4 and u=0 gives the response shown in Figure 3.16. There is a
finite escape time at t.s. ~ 0.0723. As discussed earlier for the parallel
and cascade connections, it is known that the zero-input response of
locally maximal series defines the radius of convergence for the corre-
sponding connection. The same is true here. Numerically integrating
(3.42) for this case gives t.s. = 0.0723 as expected. 0

The following corollary gives the radius of convergence for a unity
feedback system.

Corollary 3.4 Suppose X = {xo,z1,...,om}. Let ¢ € R7((X))\
REA((X)) with growth constants K., M. > 0. If e = cQ¢, then for
every € > 0
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Fig. 3.16. Zero-input response of feedback system in Example 3.38

(e, m)| < Ke(Me + )|, e X,
for some K, > 0, where
M,

M, = .
1—mK.In (1—1—%&)

(3.44)

Furthermore, if K. and M. are minimal, then no geometric growth
constant smaller than M. exists. Thus, the radius of convergence for

e = cQf is
1

Mom+1) [“’”Kcln <1+m§<c>]'

The next corollary is useful for the convergence analysis of unity
feedback systems having analytic inputs.

Corollary 3.5 Suppose X = {wo,21,...,Tm}. Let ¢ € RT-((X))\
Go((X)) with growth constants K., M, > 0. Assume e = cQ6 and let

M. be as defined in (3.44). If ¢, € R7'A[[Xo]\RE[[Xo]] with growth

constants K., , M., >0 and ¢, = e oc,, then for every e >0

((cy,28)| < Ko, (M, + €)*K!, k>0,

for some K., >0, where
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I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
t

Fig. 3.17. Zero-input response of feedback system in Example 3.39

_ Mcu
v Me—Mey, \
1—mK., W (m}{% exp (FK%Me))

Thus, the interval of convergence for the output y = Fe, [u] is at least
as large as T = 1/M.,.

M.

Proof: The proof is an immediate consequence of Corollaries 3.3 and
3.4. ]

Example 3.39 Let X = {zg,z1}. Suppose e = c@Qd, where ¢ is a
locally maximal series with growth constants K., M. > 0. The zero-
input response of the feedback system is described by the solution of
the state space system

M,
4= fj(zQ +2%), 2(0) = K.
Y=z
Numerical solutions of this system are shown in Figure 3.17 when K, =
M. =1 and when K. =4, M. = 0.5. As expected from Corollary 3.4,

the respective finite escape times are t.sc = 1 — In(2) ~ 0.3069 and
tese = 2(1 — 4log(5/4)) ~ 0.2149. 0
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Example 3.40 Let X = {xz¢, z1} and consider the case where e = c@Qd
with ¢ = Zn>0n z'. In comparison to the previous example, ¢ has
most of its coefficients equal to zero. Therefore, it is likely that the
output will be finite over a longer interval. The zero-input response of
the unity feedback system is described by the solution of

s=2% 2(0)=1
Y=z
Therefore, y(t) = 1/+/1 — 2t is finite up to ¢t = 0.5, which is longer

than the finite escape time of t.s. = 0.3069 obtained in the previous
example. 0

The next example illustrates an important distinction between
the feedback connection and all previous interconnections considered,
namely, feedback does not preserve global convergence.

Example 3.41 Consider a feedback interconnection involving the
globally convergent series ¢ = z; and d = ) ;- a;'f Setting z; =
F.lu] = Ey u] and z9 = Fy[u] = exp|Ey, [u]], it is clear that 2 = u
and 29 = zou. In which case, F.aq has the state space realization

21 = 29 + u, 21(0) =0

22 = 21792, ZQ(O) =1

y=z.

Setting u = 0, y satisfies the initial value problem §—yy = 0, y(0) = 0,
9(0) = 1, which has the solution

oo

) = Vatan (1) = Sy B
= ko (2k —1)!
3 t5 7 9

for 0 <t < 71/\/5 ~ 2.2214, where Bj denotes the k-th Bernoulli
number. A numerical simulation of the state space realization confirms
a finite escape time at t.s. = 2.2214. Hence, the closed-loop system is
not globally convergent. 0
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While global convergence is not preserved under feedback, there is
no doubt in light of Theorem 3.37 that the closed-loop system still
has a locally convergent generating series. It stands to reason that
the radius of convergence in this case might be larger than that given
by Theorem 3.38 since stronger growth bound have been imposed on
the generating series of the component systems. The first theorem
describes the radius of convergence of the feedback connection of two
globally convergent subsystems with Gevrey order s = 0. Then the
unity feedback case is presented as a corollary. It is easy to directly
compare radii of convergence in this latter case as illustrated by an
example.

Theorem 3.39 Suppose X = {xg,x1,...,Tm}. Let ¢,d € RE((X))
with growth constants K., M. > 0 and K4, My > 0, respectively, and
Gevrey order s=0. If e = cQd, then for every e >0

()] < Ke(Me+ )l ne X*,

for some K, > 0, where

1

= T 1 )
fo W (exp(F(2))) dz

M. (3.45)

and

. chMd

f(2) % (exp(Mcz) — 1) + Mgz + mK; + In(mKy).

C
Furthermore, if K., M., Kq, and Mg are minimal, then no geometric
growth constant smaller than M, exists. Thus, the radius of conver-

gence for e = cQd is

1 o0 1
CESY [/0 T W e ) (3.46)

Example 3.42 Suppose X = {xg,x1}. Recall from Example 3.22 that
a maximal series with Gevrey order s = 0 and growth constants K., M,
yields the Fliess operator

y = Felu] = Keexp (McEygia, [u]) .-
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Fig. 3.18. Zero-input response of feedback system in Example 3.42

Setting z; = y gives directly the state space realization

2"1 = Mczl(l + u), 2’1(0) = Kc
Yy =z.
Therefore, the feedback interconnection of two such systems is realized
by
21 =M.z (14 20+ u), z1(0) =K,
Zo = Myzo (1 + Zl) R 22(0) =Ky
Yi = 21.
A numerical simulation of this system with growth constants K. =
1,M,.=2,K; =3 and My = 4 gives the zero-input response shown in

Figure 3.18. Numerical integration of (3.46) for this case gives tes. =
0.1570 as observed in the figure. 0

Corollary 3.6 Suppose X = {xg,x1,...,2m}. Let c € RE~((X)) with
growth constants K., M. > 0 and Gevrey order s = 0. If e = cQ6, then
for every e > 0

()] < Ke(Me + )t ne X*,
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()

0 0.1 02 03 0.4 05 0.6 0.7 038
Fig. 3.19. Zero-input responses of the feedback system in Example 3.43

for some K. > 0, where
n (14 7% )

Furthermore, if K. and M. are minimal, then no geometric growth
constant smaller than M, exists. Thus, the radius of convergence for

e = cQf is
M.(m+1) mK. /)|’

Proof: Set K. = Kqand M. = My in (3.45) and then evaluate directly.
| ]

M.

Example 3.43 Suppose X = {zg,z1}. Let e = ¢@Q§ with ¢ being a
maximal series with growth constants K., M. and s = 0. This is the
global version of Example 3.39. The zero-input response of the unity
feedback system is described by the solution of the state space system

5= Md(z+2%), 2(0) =K,
y =z
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Numerically generated solutions of this system are shown in Fig-
ure 3.19 when K. = M, =1 and when K. =4, M. = 0.5. From Corol-
lary 3.6 the respective finite escape times are t.s. = In(2) ~ 0.6931
and tese = 2log(5/4) ~ 0.4463. Note that these escape times are about
twice that of the respective cases in Example 3.39. To see why this hap-
pens, observe that the geometric growth constant for the local case in
Corollary 3.4 has the form M, = a(K.)M,., where

B 1
- .
1= min (1+ )

oK)

while for the global case in Corollary 3.6, M, = v(K.)M,., where
B 1
T

In light of the series expansions about K. = oco:

v(Ke)

4 1

1 1
V(Kc)_§+Kc+O<E>7

the radius of convergence for the global case with s = 0 is always about
twice that for the local case, especially when K. > 1. 0

Example 3.44 Suppose X = {zg,z1} and consider the case where
e =cQf withc =), -, «7. The series ¢ has the same growth constants
K., = M, =1 as in Example 3.43 except most of its coefficients are
zero. Thus, the zero-input response is expected to be finite over a
longer interval. The zero-input response of the unity feedback system
is described by the solution of

1=22 2(0)=1
Y=z

Therefore, y(t) = 1/(1 — t) is finite up to ¢ = 1, which exceeds the
finite escape time of t.s. = 0.6931 in the previous example. 0
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Table 3.2. Radii of convergence for connections of only locally convergent systems

connection ¢, d € RECUXN\REC (X)) source
parallel m Theorem 317
1
prOduCt m Theorem 318
cascade
(L=m m [1 —mKqW (m}(d exp (%))} Theorem 3.24
for d)
1 1/Me _W(exp(f(2)))
edback mm o’ T %
eedbac KoM
(6 =m) _ Mgz (1= M,2) KaMe Theorem 3.38
f(Z) - mKy +n mKg
unity
feedback m [1 —mK.In (1 + ﬁ)] Corollary 3.4
(t=m)

Finally, a summary of the radii of convergence for all four elemen-
tary system interconnections is given in Table 3.2 for the case where
the subsystems have only locally convergence generating series. The
analogous summary for the globally convergent case is given in Ta-
ble 3.3. Here the distinction is made between the composite system
having a globally convergent generating series in the sense of (3.13)
(GC) versus having only the corresponding operator being globally
convergent.

3.8 Formal Fliess Operators

All the focus up to this point has been on Fliess operators which have
at least a locally convergent generating series. This provides for a well
defined mapping from a ball of input functions in Ly’ [to, to+T] to a ball
of output functions in Lf[ [to, to + T. In this section, this requirement
will be relaxed and instead, the class of formal Fliess operators will be
defined without any reference to convergence. Theorem 3.21 motivates
the approach, namely, that F, can be viewed as a mapping from the set
of formal inputs, R™[[Xo]], to the set of formal outputs, R*[[X,]], using
the composition product. After all, the composition product of two
series as induced by operator composition is well defined (summable)
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Table 3.3. Radii of convergence for connections of globally convergent systems

connection c,d € RGo((X)) source
parallel oo (GO) Theorem 3.16
product oo (GC) Theorem 3.16
1 Ea;safii d) 00 Theorem 3.25

1 foo 1 da
feedback (m+1) Jo  THW(exp(F()))
(t=m,s=0) f(z) = %(exp(Mcz) — 1)+ Myz Theorem 3.39
+mKq + In(mKq)

unity feedback

(L=m,s—=0) 7MC(71H+1) In (1 + —mkc) Corollary 3.6

independent of whether its arguments are convergent in any sense. The
following definition makes this notion precise.

Definition 3.9 The set of formal Fliess operators is the collection
of mappings

F = {R™[[Xo]] = R[[X0]] : cu = ¢y = cocy, c € RYX))}.

As was shown in Theorem 3.7 for the locally convergent case, the
generating series of a formal Fliess operator is unique. It should be
noted from the onset, however, that the method of proof for The-
orem 3.7 does not apply here. The piecewise constant test input u
employed earlier is not in general characterized over [tg,to+ 1] by any
single generating series, cz. Thus, a completely different approach is
needed here.

Theorem 3.40 Let ¢,d € RQ(X)). If coc, = docy, for all ¢, €
R™[[Xo]] then ¢ =d.

The following three lemmas are essential to the development of a
proof. They recast the composition product in a different light, showing
more of its combinatoric nature. (This approach will also be useful in
Chapter 5 for defining Chen series.)

Lemma 3.8 Let c € RY((X)) and c, € R™[[Xo]]. Then for anyn >0

(COCu, :EO C :EO +Z Z <C Pljll ljkk )) (Cuil 5 3361) e (Cuik ) :L'g]k)7

121 ,,,,, Zk 1
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where ¢y, is the i-th component series of ¢, and

DJ1 " Jk _ § J1Jk Nk oo pT e 2700
Plllk (n) - XTLO nk( )‘TO xzk xO ‘Tzlxo

ng,...,nE=0
18 a polynomial with coefficients

Xy (1)

= (et o o e P o ) )

Clearly, X#o Jr’fk (n) = 0 whenever ng +nq1 + -+ +np +k+ j1 + jo +

g #n. So Pfll Z]’“( ) is homogeneous of degree n — j, where j :=

J1+jo+ -+ jr when k <n—j, and P77 (n) =0 when k > n — j.

11

Proof: From the definition of the composition product,

(cocua) = 3 (em)nocuah)

nex*

= (Cv ‘/EBL) +Z Z(Cv n)(ﬁocmxg), (3'47)

k=1 T]GFk

where

Nii=q&eX Y ¢, =k

j=1

Let n be any word in I'y. Substitute ¢, = ;5 q(cu, :Eé) componentwise
into the following expression and use the R-linearity of the shuffle
product:

(10 cu,zp)
= ((ﬂjgkﬂjzk U ‘/E(T)leil‘rgo) O Cu, 338)
_1+1
= (o e o5 e, w2 e, waf]- [l af)
[oe)

= > (B e e e e ) ) )

J15eeJi=0

(Cuh ’ xg)l) e (CUik x(])k)

= Z X%lo ]rlfk (Cuil ) x(J)l) e (Cuik ’ xg)k)
.]17 7.]k =0
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Finally, substitute the above identity in equation (3.47)

(cocy, xy)

o0 m
= (eaf) + > D (eafra, o aften ) il 2, ()

and the lemma is proved. [ |

An alternative identity for (c o ¢,,z{)) can be deduced from the
one in Lemma 3.8 by introducing an ordering on the coefficients
(Cus,» a0 ) -~ (Cuyy »w"). For each k > 1 define the set of 2 x k ma-
trices

Sk:{<‘7.1 J2 ?k>:1§il§m,j,20,
11 2 ... 1

(1.0) < (i1.1) < g(ik,m},

where “ <7 denotes the lexicographic order on the set {(i,7) : 1,7 €
No}. Define the positive integers sq,...,s, for a given element of Sy
by

o ‘ 51"'ﬁ1 ﬁ"'ﬁz 5 ~Bp
(]1 ja oo ]k)

. . . = aq *Qp
11 12 ... 1 %/—/ %/—/ H,—/

S2 Sp

Using this ordering, the lemma below follows naturally.

Lemma 3.9 Let c € RY(X)) and ¢, € R™[[Xo]]. Then

(coey,zi) = (c,zq) +ZZ T ‘ <c pZJll ijk(n))

k=1 Sk
(Cuz'l ) ‘/EO ) (Cuz'k ) xg)k)’

where the inner sum is taken over all elements of Sy such that k+j < n
and
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J1ed . plo (1) Jo (k)
Pill"'ikk (n) := Z Pia(1)"'ia(k) (n).
oelly,
Here II}, denotes the permutation group defined on the set {1,2,...,k}.

Proof: This new expression follows from Lemma 3.8 by grouping the
terms related by permutation. [ |

Example 3.45 Consider the single-input, single-output case so that
X = {xg,z1} and ¢ = 1. Here the lower indices of P and P are such
that ¢1---4, = 1---1 in every case, so they are suppressed in the
notation. For k = 3, the first few polynomials P719273(n) are written
below in terms of the polynomials P717273 (n) using the definition:

pj1j2j3(n) — Ppiij2js (n) + pI1isiz (n) + JEXVE! (n)—l—
PJ2iait (n) +13j3j1j2 (n) _|_pj3j2j1 (n)

For example,

O

A more compact form of the above identity is possible if one associates
a family of polynomials in R(X) with each ¢, € R™[[Xy]]:

Pe,(n) =g + Z Z ﬁpzjllzjkk (n) (CUil Ty ) (Cu@-,c ,T5°),s
k=1 Sk p
(3.48)
n > 0. Clearly, deg(P.,(n)) = n and

(cocu,zg) = (¢, P, (n)), n=0.

Therefore,
o0

coc, = Z(C, P, (n)) zg.

n=0
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Example 3.46 Continuing the previous example, it follows directly
from the definition of P, (n) that

(0)=1

(== (cu, )

L(2) = 2 + 21 (cy, o) + (wox1 + 2120 (o, ) + 22 (cy, D)
(3) = 3 4+ 21 (cu, 23) + (wox1 + 22120) (Cu» o)+

3x%(0u7 0)(cus o) + (x(z)xl + xlx(z) + zox120)(Cus 0)+

(zox? 4 T12021 + 2320) (Cut, 0) + 23 (cy, 0)3

2

O

The next lemma combined with the previous one provides the core
argument for the uniqueness of the generating series of a formal Fliess
operator.

Lemma 3.10 Let X = {x1,29,...,2,} and p € R[X]. Define the
corresponding generating function on R"
Pl

() =Y ()=

.
neX* 77'
Then fp(z) =0 for all z € R™ if and only if p = 0.

Proof: For any n = x;, ---x;, € X* define the partial differentiation
operator
" oF
921 Dz, 0z -+ Oz,
Assume the support of p is ordered. If f,(z) = 0 everywhere on R"
then it follows that
N

@fp(z) . = (p,n) =0, V1 € supp(p).

Thus, p = 0. The converse claim is trivial. [ |

Proof of Theorem 3.40: Since coc, = doc, is equivalent to (¢c—d)oc, =
0, it is sufficient to prove that if co ¢, = 0 for all ¢, € R™[[X]]
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then ¢ = 0. From co 0 = 0 it follows directly using Lemma 3.9 that
(c,zg) = 0 for all n > 0. Thus, it is only necessary to show that
(¢,n) = 0 for every n € Iy, k > 1. This fact is proved by contradiction.
That is, suppose ¢ # 0 but coc,, = 0 for all ¢, € R™[[Xy]]. For any fixed
n > 1, it is immediately evident from Lemma 3.9 that (co ¢y, z() is a

polynomial in the ordered variables 2y := (cy,,, z)f), ¢ =1,...,n with
coefficients proportional to (c, Pljllfk’“ (n)), k < n — j. In which case,

an ordered alphabet can be introduced so that this polynomial can be
represented exactly as p in Lemma 3.10. Since f,(z) = (cocy,2™) =0
for any z (i.e, any ¢, ), it follows from the lemma that

<c, P (n)) =0 (3.49)

i1

for every n > 1 and any set of indices <J:1"'jk> € Sk. This by itself,

Q1 dg
however, is not sufficient to conclude that ¢ = 0. Suppose there exists
for some fixed k > 1 a word 79 € I such that (c,n9) # 0. Define a
corresponding language

Q={nely:Inl, =nol,,i=0,1,...,m},

which is comprised of all words which are permutations of the letters
of ng. With {2 one can associate a nonzero polynomial

Q=> (c;n)n.

nes?

Observe for any n > 0 and d,, € R™[[X(]] that
(Qody,z5)

(¢, n) e _ _

1 o . :
= Z PN (Ca PZ]:ZJ; (n)> (duil ) x{f) T (dUiE ) x{)k)

using (3.49), the definition of @, and letting
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SE:{@ j2 e ?E)es,;:jw—mo\,

1 12 ...
_ n no
TIO — xo sz st xo .Z'Zl.il'o } .

But since @ is a polynomial, it is locally convergent. It is already
known from Theorem 3.21 that if Q o d, = 0 for all locally convergent
d,, in R™[[X(]] then @ = 0. But this contradicts the assumed property
that @ # 0, which had followed from the assumption that (c,n9) # 0.
Hence, ¢ = 0, and the theorem is proved. [ |

In Chapter 1, the notion of the formal Laplace-Borel transform of
a function was introduced. Namely, given a function v : R — R, which
is either analytic at a point ¢ty € R or is a function in the formal sense,
one can construct its generating series

oo

Cu = Z(cu,mg)a:g

n=0

directly from its Taylor series expansion. The formal Laplace transform
in this setting is the mapping

Lyt u = cy, (3.50)

and its inverse is the formal Borel transform. In light of Theorems 3.7
and 3.40, an analogous definition is possible for any Fliess operator,
convergent or formal. Slightly abusing the notation, elements in .7 will
be written as Fr.

Definition 3.10 The formal Laplace transform on F is defined
as the mapping
Ly F = RYUX)), Fe— e

The corresponding inverse transform, the formal Borel transform
on RE((X)), is
By :RYX)) = F, e F..

Note that when m = 0, this definition is consistent with (3.50) in
the sense that a given function u can be represented as a constant
operator F,, that is, u = F, [v] for any signal v, and Zfu] = ¢, =
Zs[Fe,]. In fact, as the following example shows, this point of view is
implicit in the classical treatment of linear time-invari