Revised: August 22, 2025

ECE 601 Linear Systems

Practice Problems Set #1

Due Date: Not collected. Solutions posted by September 21, 2025.

1. Linearization of State Space Model: an *n*-dimensional state space system

$$\dot{x} = F(x, u), \quad x(0) \text{ given}$$
 (1a)

$$y = H(x, u) \tag{1b}$$

with an equilibrium at (x_e, u_e) . A linear state space model (A, B, C, D) for the system (F, H) is generally computed from the Taylor series of F and H about an equilibrium.

- (a) Derive an explicit formula for the linear model in terms of (F, H) and (x_e, u_e) .
- (b) Apply your results from part (a) to the spring-electromagnet system in Homework #2 for an arbitrary set of parameters m, g, k_s , d_s , k_m , d_m and an arbitrary equilibrium (x_e, u_e) .
- 2. Numerically Solving Hilbert Systems: A Hilbert system is a set of linear equations Hx = b, where H is the Hilbert matrix (this means: $H_{ij} = 1/(i+j-1)$ for all $i, j \ge 1$). For Hilbert matrices of dimension $n = 5, 7, 9, \ldots, 15$, try the following experiment:
 - i. Compute H^{-1} using the MatLab command inv and save.
 - ii. Set $b = [1, 2, \dots, n]^T$.
 - iii. Compute $x = H^{-1}b$.
 - iv. Compute bb := Hx.
 - (a) For each value of n compare b and bb. Do you get what you expect? How big of a Hilbert system can you solve accurately?
 - (b) Plot $\log(1/c(H))$ as a function of n and compare these values against the value of $\log(eps)$ for your MatLab installation. (The MatLab parameter eps can differ from machine to machine.) Can you relate this data to your observations in part (a)? Explain.
- 3. Properties of Condition Numbers: Let $A, B \in \mathbb{R}^{n \times n}$ be arbitrary matrices. (Assume A is invertible when necessary.) For each statement below, either prove its validity in general or provide a specific counterexample to disprove it.
 - (a) $c(A) \ge 1$
 - **(b)** If $A^{-1} = A^T$ then c(A) = 1
 - (c) If c(A) = 1 then $A^{-1} = A^T$
 - (d) $c(A^T) = c(A)$
 - (e) $c(A^{-1}) = (c(A))^{-1}$
 - (f) $c(\alpha A) = \alpha c(A), \forall \alpha \in \mathbb{R}$
 - **(g)** $c(A+B) \le c(A) + c(B)$
 - **(h)** $c(AB) \le c(A)c(B)$