3a. ERRATA

The following have been noted so far. The author would be grateful if further corrections were communicated to him (Durand 117, Stanford, CA 94305, USA). Convention: line k- will mean the k-th line from the bottom of the page.

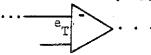
Location

Chapter 1

- p. 11:line -2
- p. 27:Exer. 1.3-5

Corrected Form

...,
$$t > 0$$
-


...
$$v(t) = \exp -3|t|$$
, ...

...
$$w(t) = \frac{\exp -3t}{12} + (3/4) \exp t$$
 ...

- Chapter 2 p. 34:1ine -13
 - p. 34:line -14
 - p. 49:Fig. 2-1-14(b)
 - p. 74:Exer. 2.2-13
 - p. 112:Exer. 2.3-7
 - p. 113:1ine 3
 - p. 114:Exer. 2.3-16.
 - p. 115:Exer. 2.3-23
 - p. 118:Exer. 2.3-30b.
 - p. 120:Exer. 2.3-34
 - p. 128:1ine -15
 - p. 129:Fig. 2.4-3
 - p. 143:line 16
 - p. 143:Eq. (30)
 - p. 157:Exer. 2.4-10b.
 - p. 158:Exer. 2.4-12b.
 - p. 159:Exer. 2.4-19b.
 - p. 173:line -1
 - p. 173:1ine -2
 - p. 174:line -1
 - p. 181:Exer. 2.6-2
 - p. 182:Exer. 2.6-3 solution to part c.

The external ...

... in the output],

... between the matrices A_{c} and A_{o} of the controller ...

This exercise is best postponed to Sec. 3.5.

$$\dots \int_{0}^{\infty} t^{i+1} h(t) dt$$

Part c. should be postponed to Sec. 2.4.3.

$$x = [A^{n-1}b \dots$$

$$\dots = - [h_{n+1} \dots h_{2n}]'$$

It appears one adder should be allowed in the design.

Example 2.4.6 in ...

$$M[1,n-1]$$
 (in 3 places)

$$\begin{bmatrix} \mathbf{a}_{-} & \mathbf{0} \\ \mathbf{a}_{+} & \tilde{\mathbf{B}} \end{bmatrix}$$

should be postponed until after Sec. 3.2.

... identity
$$B =$$

... is
$$c(A - \lambda_1 I)(A - \lambda_2 I)b$$
.

... is
$$c(A - \lambda_1 I)b$$
.

The hint should go with Exer. 2.5-12.

$$[I - A' \otimes A']p = q$$

$$v_3 \ge 0$$
, $\dot{v}_3 = -4[3x_1^2 + 5x_1x_2 + 2x_2^2] < 0$,

so cannot conclude anything about stability.

Chapter 3 p. 196:Exer. 3.1-3 .., provided $-\beta\omega_0^2 < \alpha < \beta$, $\beta > 0$.

... $G_{c}(s) = (13s + 1)/(s + 1)$ Chapter 3 p. 196:Exer. 3.1-4 ... to find $G_f(s)$... In part a., $\xi(s)$ should be written $\xi(\cdot)$ p. 209:Exer. 3.2-4. (the time function). So also for the first £(s) in part b. where A = A - bk, k = ...p. 234:Exer. 3.4-7 ... P is the only stabilizing and ... $= \tilde{a}(s)\tilde{a}(-s)(-1)^n$ p. 235:Exer. 3.4-9b. ... both sides by $b'(-sI - A')^{-1}$... p. 236:Exer. 3.4-14 ... (cf. [38] and ...). p. 237:Exer. 3.4-16 (last line) ... diag(A,N), A nonsingular, N nilpotent. p. 239:footnote there should be a gain of -1 in the feedp. 253:figure back loop ... so that x(2) = 0 ... p. 254:Exer. 3.5-6b Eq. (10): change a^{-1} to a^{-T} Chapter 4 p. 264: Eq. (12): change a^{T} to a^{T} ... a^{T} is an ... p. 264:line 12 $\ell' = (\alpha - a)a^{-T} \dots$:line 21 ... position perturbation. ... p. 268:Exer. 4.1-8 Also change all n to ω (6 places) (6) should be (16); (7) should be (17) p. 290:Fig. 4.3-5 Caption $\dots - [\alpha_{n-1} \dots \alpha_1]'$ p. 291:Exer. 4.3-1 (last line) 2n-th degree characteristic polynomial, say p. 300:lines 7,8 $p(s) = s^{2n} + \dots$ $\dots + p_{n-1}$ and \dots p. 302:line 11 $\dots + \delta_{n-1}$ Eq. (15) δ_n should be δ_{n-1} . p. 303:line 6 ... choosing $p_2 = 0.1$ and ... p. 310:Exer. 4.5-2 replace h_{n+1} by h_n (in 2 places) p. 324:Eq. (30) ... $-\alpha p = (-\alpha) \cdot p$, ... p. 342:line -18 Chapter 5 ... Exercises A.l and A.41 p. 352: Exer. 6.1-2 Chapter 6 Part a. is perhaps best postponed to Sec. 6.3. p. 371:Exer. 6.2-5 Algebra, pp. 153-158, 1977)... p. 399:line -1 \dots of the $S_{\mathbf{t}}$ to \dots p. 402:line 3

10

p. 608:Exer. 9.1-9

p. 609:below the

matrix Φ

Chapter 9

..., $\xi(t) = P(t)x(t)$.

p. 621:Exer. 9.2-15.	Replace ${\mathcal C}$ by ${\mathcal R},$ where
•	$\Re(t_0,t) = \int \Phi(t,\tau)B(\tau)B'(\tau)\Phi'(t,\tau) d\tau$ t_0
	= the reachability Gramian.
p. 622:line 3	vectors $\{\mathbb{R}^{\frac{1}{2}}(t_0,t_1)p\}$, where $\mathbb{R}^{\frac{1}{2}}$ is a square-root of the reachability gramian and p
p. 654:Exer. A.17	We must assume that the first α leading minors of A are nonzero. (Otherwise we can only claim that PA = LDU, for some permutation matrix P.)
p. 657:Exer. A.23.2	\dots of the powers s ⁿ⁻ⁱ in \dots
p. 661:1ine 4	$c(sI - A_s)^{-1}b = \dots$
line 5	$\beta(s) = \beta_n s^{n-1} + \ldots + \beta_1$
p. 662:Exer. A.39.2	set of n linearly independent eigen- vectors,
p. 663:line 1	4. Show
line 3	the rows as in
p. 664:line -3	delete ", with $p > m$ "
	<pre>p. 622:line 3 p. 654:Exer. A.17 p. 657:Exer. A.23.2 p. 661:line 4</pre>

UPDATING THE REFERENCES

- Chapter 3: Ref. 36 appears in <u>IEEE Trans. Automat. Contr.</u>, <u>AC-24</u>, pp. 913-921, Dec. 1979.
- Chapter 5: Ref. 8 does not appear in the conference proceedings (so also Ref. 49, Ch. 10).
- Chapter 6: Ref. 8 is to appear in SIAM J. Contr. and Optim., 1980 (so also Ref. 37a, Ch. 7).
 - Ref. 23 appears in Lin. Alg. and Applns., 27, pp. 103-140, Oct. 1979.
 - Ref. 46 should be dated Dec. 1978.
 - Ref. 49 should be dated 1980 (so also for Ref. 5, Ch. 10).
 - Ref. 51 appears in <u>Int. J. Contr.</u>, <u>30</u>, pp. 235-243, Aug. 1979 (so also Ref. 41, Ch. 7)
- Chapter 9: Ref. 21 appears in <u>IEEE Trans. Automat. Contr.</u>, <u>AC-24</u>, pp. 866-878, Dec. 1979.

35.

ERRATA FOR LINEAR SYSTEMS by T. KAILATH

(Second and Third Printings)

page 11:

$$\dot{x}(t) + 2x(t) = \delta(t), t > 0-, x(0-) = 1$$

page 14:

$$q(t) = \int_0^t i(\tau) d\tau = \begin{cases} Qt/\varepsilon_0 & 0 \le t \le \varepsilon_0 \\ Q & t \ge \varepsilon_0 \\ 0 & t < 0 \end{cases}$$

page 19. Eqn. (13): the right hand side should be $= u^n(\cdot - t)$

page 22, line 2:
$$\int_{-\infty}^{\infty} u(\tau)e^{-j2\pi f\tau} d\tau$$

page 26, Figure for Exercise 1.3-1: x(t) should read y(t)

page 48. Figure 2.1-13: delete (-) sign before $\frac{1}{s+\gamma}$ block.

page 61, 4th line: the last term u should be u_v

page 65, line -9: ... by our original relation (33),

page 66, last line: ... = det $T^{-1}(sI - A)T = \det(sI - T^{-1}AT)$

page 77, Problem 2.2-23: no \cdot at crossover point of wires

page 83, lines 11 and 12: (2.2-5) and (2.2-9) should be interchanged

page 91 Eq. (14): $Y(z) = c(zI - A)^{-1}b \ U(z) +$

page 92, line above Eq. (20): [cf. 2.2-48)]

page 97, line -1: Fig. 2.3-1 not 2.3-2.

page 101, Eq. (34): a_n should be a_{n-1}

page 111, Exercise 2.3-3.: change 'representation' to 'realization'.

page 111, Exercise 2.3-3-b: ... which this realization loses either controllability or observability or both?

page 117, 2.3-28: $\Phi(k,j) = A(k-1) \dots A(j)$, (no commas)

page 118, 2.3-31, line -10: $g_0 + \cdots + g_1 z + \dots + g_m z^{m-1}$

page 124, Lemma 2.4.1: connected by a unique similarity

page 124, line -4: Example 2.3-4 is already ...

page 139, line -9: standard form of Sec. 2.4.2.

page 139 and elsewhere: the statements that modes and natural frequencies are observable, nonobservable, etc., are ambiguous unless the realization has distinct eigenvalues.

page 159, Exercise 2.4-16: delete all words from $\overline{A}_{1,3}$ onwards. Replace by "variables $\overline{x}_{\overline{e}}$ in Eq. (2.4-11) are always noncontrollable. Give the dual argument for the states \overline{x}_0 in Eq. (2..4-16)"

page 163: An upper dot is missing from E(t) in the equation above (17):

$$\frac{d}{dt}[e^{-At}E(t)] = -Ae^{-At}E(t) + e^{-At}\dot{E}(t)$$

page 170: \vec{q}_1 should be \vec{q}_2 and vice versa in Figure 2.5-1

page 171, line 7: Let \vec{q}_1 be

page 171, lines 13, 14: no arrows over p_1 and p_2

page 171, lines -5 and -6: delete the sentence 'Although some'.

page 176, line 1: delete '(only if)'

page 176, line 5: delete '(the "if" part)'

page 181, Exercise 2.6-1: If a constant symmetric matrix P ...

page 196, Exercise 3.1-4.: in the second line, $G_c(s)$ should be $G_f(s)$

page 197, Figure 3.2-1: Add u(t) to the Figure before the block marked b

page 209. Exercise 3.2-4, part b): v(s) and u(s) should be interchanged: $u(s) = v(s) - g(s)\xi(s)$

page 211, line 6: $\pm \sqrt{g/L+1}$ should be $\pm \sqrt{g/L+k}$

page 211, line 10: $k_1 = g/L - 1$ should be $k_1 = -(g/L) - 1$

page 212, line -2: $n^2 \rightarrow \omega^2$

page 213, Exercise 3.3-3, line 8:

$$T = 2\pi/\sqrt{\alpha/g}$$
 should be $T = 2\pi\sqrt{\alpha/g}$

page 214, Exercise 3.3-4, in solution:

$$H_k(0) = -\frac{1}{24} w^2$$
 should be $H_k(0) = -\frac{1}{24\omega^2}$

page 217, 3.3-5, line -5: δ should be u

page 223, line 22:

$$J(k) = \begin{cases} \frac{-(1+rk^2)(a-k)^{-1}}{2}x_0 & -a-k < 0 \\ & & a-k > 0 \end{cases}$$

page 225, last line: Example 3.3-3.

page 230, Eq. (30): the + should be -

page 233, Exercise 3.4-1, last line: delete 'poles with'

page 261, Eqs. (3), (4): $x_0 - \varepsilon$...

page 264, Eqs. (11), (12): O'(c,A) and $O^{-1}(c,A)$.

page 265, Example 4.1-1, Solution:

$$\dot{z} = \begin{bmatrix} 0 & 1 \\ 9 & 0 \end{bmatrix} z + \begin{bmatrix} 0 \\ -1 \end{bmatrix} u$$

page 266, Example 4.1-2: The numerical values are in error: replace

4999.99 by 4900

2499.98 by 1200

2500 by 1250

page 267, line 12: (according to Example 2.4-4)

page 270, line 19: change A20 to A21

page 274, line -5: and e

page 278, Fig. c, top line: $u = -\hat{w}$

page 282, line 2 in footnote: conventional

page 307, Eq. (26c): + not -.

page 332, line 8: \bar{x}_i should not be boldface

page 347, line -6: $d(s) = \cdots - 12s + 9$

page 355, line 5: 'block observer form' not 'block observer canonical form'

page 357, line -12: nm columns of C

page 362, line 3: should say $C(A,B)=TC(\overline{A},\overline{B})$ not $C(A,B)=C(\overline{A},\overline{B})T^{-1}$

page 362, line 9: should say $\bar{x}_c(t) = \bar{A}_c \bar{x}_c(t) + \bar{A}_{12} \bar{X}_{\bar{c}}(t) + \bar{B}_c u(t)$

page 401. Exercise 6.3-18, line 2: polynomial vector in the range of F(s).

page 407, Example 6.4-1: in S(s), s^3 should be s^2 and vice versa.

page 506. Exercise 7.1-1: The (1,2) element of R should be -K, and the (2,2) element should be G^{-1} .

page 556, line -2: the second P(s) should not be boldface.

page 601, Eq. (20a): $\int_{t_0}^{t}$

page 602, line -3: using (25) and (29)

page 602, Fig. 9.1-1: $\Phi(\cdot,t_0)B(\cdot) \rightarrow \Phi(t_0,\cdot)B(\cdot)$: $\varepsilon(\cdot) \rightarrow \xi(\cdot)$

page 603, Exercise 9.1-1, part 2: Q not Q

page 604, line -3: $N(\tau)$ not N(t)

page 621, Exercise 9.2-13, line 4: 2..6-1 not 2.5-1.

page 638, line 3: ... Goodman [21], is ...

page 641, line 3: M. P. Ekstrom ...

page 643, Ref. 45: M. Fliess, "Un codage noncommutatif pour certain systèmes échantillonn ès non linéaires", *Inform. Contr.*, vol 38, pp. 264-287, September 1978.

page 656, line 13: Math. Comp. 29 not 27

page 661, line 1: a_{n-1} not a_n

Index, page 672: Friedlander: drop 226, 253, 296.

Index, page 674; Verghese: drop 226, 247, 253, 296, 619.

Index, page 675: Adjugate matrix, 649, 662.

Index, page 676: add Detectability ... 230

Index, page 676: add Duality, 44, 50, 51, ...

Index, page 677: add Fibonacci sequence, 116