Revised: August 18, 2025

ECE 601 Linear Systems

Homework #2

Due Date: September 11, 2025

1. **System Equilibria**: Consider an *n*-dimensional state space system

$$\dot{x} = F(x, u), \quad x(0) \text{ given}$$
 (1a)

$$y = H(x, u). (1b)$$

A fixed $x_e \in \mathbb{R}^n$ and constant input $u_e \in \mathbb{R}$ are called an *equilibrium state* and *equilibrium input*, respectively, if $x(t) = x_e$ for all t > 0 whenever one sets $x(0) = x_e$ and $u(t) = u_e$ is applied.

- (a) Describe how to compute an equilibrium (x_e, u_e) in general.
- (b) Are equilibria (x_e, u_e) unique? Explain.
- 2. Equilibria of the Spring-Electromagnet System: Reconsider the spring-electromagnet system in Homework #1.
 - (a) Derive a state space model of the form given in (1) with states $x_1 = d$ and $x_2 = \dot{d}$.
 - (b) Determine all the equilibria for this system.
 - (c) Now suppose that m=0.01 Kg, g=9.8 m/s, $k_s=15$ N/m, $d_s=0.1$ m, $k_m=0.005$ N m²/A², and $d_m=0.12$ m. Compute u_e so that $x_{1e}=0.11$ m.

Remark: The two problems above do **not** involve linearization in any way.

- 3. Real Sequence Space: Let S denote the set of all infinite real sequences. That is, every element of S looks like $a = (a_1, a_2, ...)$, where $a_i \in \mathbb{R}$ for each $i \geq 1$.
 - (a) Does S have a vector space structure available? Explain in detail.
 - (b) Consider the operator

$$A: S \to S: (a_1, a_2, \ldots) \mapsto (a_1 + a_2, a_2 + a_3, \ldots).$$

Is A a linear operator on S? Explain.

(c) Determine any eigenvalue/eigenvector pairs that A might have.