Revised: October 13, 2025

ECE 302 - Linear System Analysis

Homework #8

Due Date: November 19, 2025

1. Lathi & Green Problem 10.2-4 (Note the system has two outputs, y_1 and y_2 .)

- 2. **Input-Output System:** For the circuit in the previous problem, perform the following:
 - (a) Compute each transfer function $Y_i(s)/X(s)$ directly from the state space model.
 - (b) Plot the pole-zero diagram for each transfer function.
 - (c) Is the system BIBO stable? Explain.

Remark: The MATLAB commands pzmap and ss2tf provide checks for this problem.

3. Unit Step Response: Consider the state space system

$$\begin{split} \dot{q} &= \left[\begin{array}{cc} -1 & -3 \\ 1 & 2 \end{array} \right] q + \left[\begin{array}{c} -1 \\ 0 \end{array} \right] x \\ y &= \left[\begin{array}{cc} -1 & 1 \end{array} \right] q. \end{split}$$

- (a) Compute the output unit step response of this system when the initial condition is zero.
- (b) Simulate this output response using MATLAB. Plot your response from part (a) and the simulated response on the same graph and comment on how they compare.

Remark: The command step is useful in this problem.

4. Transfer Function to State Space Model: Consider the transfer function

$$H(s) = \frac{3s+1}{s^2+3s+7}.$$

- (a) Give two distinct state space realizations for H(s).
- (b) Verify your answers in part (a) by explicitly computing the transfer function for each realization.