ECE 302 - Linear System Analysis

Homework #2

Due Date: September 10, 2025

- 1. **Signal Classification:** For each signal below determine whether it is (i) continuous-time or discrete-time and (ii) analog or digital. Clearly and explicitly justify your answers for full credit.
 - (a) $x(t) = |\sin(t)|, t \in \mathbb{R}$
 - (b) x(t) = n, $n \le t < n + 1$, $t \in \mathbb{R}^+$, n is any nonnegative integer
 - (c) $x(n) = 2^n$ for each integer n
- 2. Signal Models: Sketch and numerically label the following functions:
 - (a) x(t) = u(2t) + 1
 - **(b)** $x(t) = 2\delta(t-2) 3\delta(t-1)$
 - (c) $x(t) = \delta(t-1) + 2u(-t)$.
- 3. Properties of Impulse Functions: Simplify the following expressions:
 - (a) $(at^2 + bt + c) \delta(t+1), a, b, c \in \mathbb{R}$
 - **(b)** $e^{-j\pi t} \left[\delta(t-2) \delta(t+2) \right]$
 - (c) $\sum_{k=1}^{\infty} \frac{1}{t} \delta(t-k).$
- 4. Impulse Functions and Integrals: Evaluate the following integrals:
 - (a) $\int_{-\infty}^{\infty} \cosh(2\pi\tau) \, \delta(\tau 2) \, d\tau$
 - **(b)** $\int_{-\infty}^{t} \cosh(2\pi\tau) \, \delta(\tau 2) \, d\tau$
 - (c) $\int_{t}^{\infty} \cosh(2\pi\tau) \, \delta(\tau-2) \, d\tau.$
- 5. Rectangular/Polar Forms of Complex Numbers: For each complex number below, compute either its rectangular form or its polar form (whichever is missing) and plot the point in the complex plane.
 - (a) 2 j3
 - **(b)** 2 + j2
 - (c) $e^{j6\pi}$
 - (d) $3e^{-j5\pi/4}$