
Usefulness of Software Architecture Description Languages
for Modeling and Analysis of Federates and Federation Architectures

Frederic D. McKenzie1, Mikel D. Petty2, and Qingwen Xu2

1Department of Electrical and Computer Engineering

Old Dominion University, Norfolk VA 23529
fmckenzi@ece.odu.edu

2Virginia Modeling Analysis & Simulation Center

Old Dominion University, Norfolk VA 23529
mpetty@vmasc.odu.edu, xu_q@cs.odu.edu

Keywords: Software architecture, architecture description languages, performance analysis.

Abstract

Software architecture is high-level software design, dealing with the structure and
organization of large software systems. The architecture of a software system is defined in terms
of computational components and interactions among those components. Architecture
Description Languages (ADLs) are languages designed to represent software designs at the
architecture level. Different ADLs often have different design intents; for example, the ADL
Rapide supports architecture simulation and the ADL Acme is intended to be both a language
and an interchange format.

ADLs are not widely used in the development of simulation systems. This research
investigates the utility and effectiveness of ADLs for architecture-level design and analysis of
simulation systems. Experimental applications of two ADLs to specification and analysis of
simulation architectures were conducted. Rapide was used to model the EnviroFed federation
architecture and analyze data volume with and without interest management. Acme was used to
model the ModSAF federate architecture and to analyze execution time at the component and
federate levels in ModSAF. The experiments showed that ADLs could be used to discover
important features of simulation system architectures.

1. Introduction
Software architecture is high-level software design, dealing with the structure and

organization of large software systems. Architecture Description Languages (ADLs) are
languages that represent software designs at the architecture level, typically in terms of
computational components and interactions among them. Formal tools and techniques for
software architecture design, including ADLs, have so far been underutilized in the modeling
and simulation development community. A motivating question of this research was whether
there was a reason for the underutilization, i.e., whether there was some characteristic of
simulation systems that made conventional ADLs unsuitable for them. To examine the utility
and effectiveness of using ADLs for architecture-level design of simulation systems, two
different ADLs were experimentally applied to the task of representing two existing military
simulation software systems, one at the federation level and one at the federate level. These
experiments are among the first applications of general-purpose ADLs to simulation systems.

This paper has three main sections. First, an introductory description of software architecture
and software architecture description languages is provided. Second, the project goals and
methodology are explained. Finally, the architecture model and the results of the run-time
performance analysis based on the model are presented for each experiment.

2. Software Architecture
This section introduces software architecture and software architecture description languages,

and discusses their application to simulation systems.

2.1 Introduction to software architecture
What is software architecture? Perhaps because the discipline of software architecture is

relatively new, no two definitions of software architecture are quite identical, but most are
substantially in agreement.

Software architecture involves the description of elements from which systems are built,
interactions among those elements, patterns that guide their composition, and constraints
on these patterns. … The architecture of a software system defines that system in terms
of computational components and interactions among those components [1].

The essential idea of software architecture is that software at a high level of abstraction
can be described as a number of distinct elements or subsystems together with their
interconnection and interactions [2].

A software architecture describes a software system as a configuration of components
and connectors [3].

Software architecture can be understood as the subset of software design that is concerned

with the software’s structural aspects. Those structural aspects are centered on the components
of the system and the connections between them. Software architecture can also be understood
as the highest (least detailed) level of software design. At the highest level of software design
most details are eliminated from consideration, leaving or revealing the structure. Detailed
software design issues such as specific algorithms and data structures, while important, are not
generally the concern of software architecture, unless they affect the overall organizational
structure of the software system.

Software design in general, and software architecture in particular, includes the notion of
design patterns. Design patterns are design and organizational structures that have proven to be
useful, flexible, or efficient, and reappear in multiple systems [29]. An architecture design
pattern is “an abstraction over a family of software architectures” [3]. It is possible to “identify a
set of architecture patterns, or styles, that currently form the basic repertoire of a software
architect” [1]. Many architecture patterns have been developed and promulgated as software
architects and system designers have recognized architecture patterns that are consistently useful.

A basic principle of architecture design is that system or component architectures at one
design level may be composed into larger systems at a higher level and/or decomposed into sub-
systems at lower levels. Indeed, software architectures are often developed in practice by
composition. Software architecture patterns are in many ways patterns of composition. An
architecture pattern describes a way to compose components, connectors, and other architecture

objects. As stated in [1], “composing a system from subsystems is unlike programming the
algorithms and data structures that lie within the primitive subsystems”; the composition activity
takes place at the architecture level.

2.2 Specifying software architectures
Descriptions of large software systems often include a representation of the system

architecture, which is valuable, but those representations typically use an informal graphical
notation known as a “box-and-line” diagram. In box-and-line diagrams, boxes usually represent
system components or layers, and lines usually represent some dataflow or control connection
between the components. Such diagrams are ubiquitous, widely understood at a general level,
and are certainly better than nothing. Unfortunately, because box-and-line diagrams are informal
the semantic meanings of the boxes and lines vary from one box-and-line diagram to the next
[4]; indeed, they often vary within a single diagram.

Textual description is also used informally in software architecture practice. The text may
mention a particular architecture pattern, e.g. “client-server”, it is rare see a detailed explanation
of how the architecture being described is consistent with, and differs from, the named pattern.
While such descriptive text is again certainly better than nothing, like informal box-and-line
diagrams it is generally ambiguous and not amenable to analysis.

Less informal than box-and-line diagrams, the Unified Modeling Language (UML) is a
graphical language in which various aspects of a system are represented by different types of
diagrams [30]. UML can represent significant structural aspects of a system that have been
defined to be software architecture; e.g., the UML class diagrams show the packages and
component classes of a system and UML interaction and state chart diagrams show the behavior
of the components. While it is powerful and widely used, UML may yet still be too broad and
not deep enough for use specifically at the architecture and architecture design levels.

Formal specification languages (FSLs) are characterized by their mathematical formality,
including precisely defined syntax and unambiguous semantics. FSLs are intended to be
sufficiently formal to be the subject of logical analysis, proofs of correctness, and automated
reasoning. For example, the FSL Z (pronounced “zed”), developed primarily at the University of
Oxford and perhaps the most widely used FSL, is based on first-order logic and set theory [31].
The reasoning potential provided by the formality of FSLs is appealing. However, the actual
structure of the architecture pattern can be difficult to discern in an FSL specification and the
non-intuitive and unfamiliar syntax of FSLs can be an obstacle to their use by many practicing
software architects. FSLs are generally more often used to specify the details of systems at the
computation or interface design levels rather than the architectural levels.

Architecture description languages (ADLs) have been developed to avoid the shortcomings
of informal architecture specification methods and general-purpose design notations. An ADL is
“a notation that allows for a precise description of the externally visible properties of a software
architecture” [3]. In particular, ADLs “provide constructs for specifying architectural
abstractions in a descriptive notation. They provide mechanisms for decomposing a system into
components and connectors, specifying how these elements are combined to form a
configuration and defining families of architectures or styles” [5]. They generally contain
language elements for components and connections that define those types of objects rigorously
enough to perform architectural reasoning about them without delving too deeply into the lower-
level details of computation and interfaces. ADLs are “… aimed at giving practitioners better
ways of writing down architectures so that they can be communicated to others and in many

cases analyzed with tools” [1]. ADL examples include Darwin [9] [10], Aesop [1] [11], Unicon
[1], Wright [1] [12], Rapide [13] [15], and Acme [17] [18].

It has been claimed that six types of ADL language elements form a sufficient vocabulary for
expressing any software architecture [1]. They are listed below and illustrated in Figure 1.
1. Component. Components perform computation and retain state; they are “independent units

of computation” [5] and “loci of computation and state” [6]. Components correspond to the
boxes in informal box-and-line diagrams. They are “black box entities that encapsulates
services behind well-defined interfaces” and “static abstractions with plugs” [3].
Components may have a type, such as “filter” or “manager”; these types are analogous to a
type definition in a conventional programming language or a class definition in an object-
oriented language. Components may be primitive, not further decomposable at the
architecture level and generally implemented as compilation units in a programming
language, or composite, formed by composing other architecture objects. Components have
interfaces, through which they interact with other parts of the system.

2. Connector. Connectors are relations between components; they “represent interactions
among components” and “model interactions among components and rules that govern those
interactions” [5]. They are not objects to be connected in an architecture, they do the
connecting. They embody the expected patterns of communication and interactions between
components. Connectors represent any type of interaction, such as dataflow and control,
between components. Connector descriptions may specify which types of interactions they
represent and which protocols are associated with those interactions. Unlike components,
connectors do not generally correspond to compilation units. Like components, connectors
may be primitive or composite, and connectors may be typed, with the types definable in the
ADL; “pipeline” and “event” are examples of connector types.

3. Port. A port is a component’s point of interaction with the rest of the architecture. Ports
may have interface and protocol details associated with them. Ports on components connect
to roles on connectors (roles are defined next).

4. Role. A role is a connector’s point of interaction with the rest of the architecture. Roles may
have interface and protocol details associated with them. Roles on connectors connect to
ports on components.

5. Representation. For a composite object (component or connector), a representation is a
description of the subordinate objects that have been composed to form the composite object.

6. Binding. For a composite object, a binding specifies the mapping or correspondence between
the interfaces (ports or roles) of the objects that have been composed and the external
interfaces of the composite object.
Using an ADL is similar to using a general purpose programming language or specialized

modeling language in both mechanics and difficulty. Different ADLs are defined in textual or
graphical forms (or both in some cases). Creating an architecture specification in an ADL
requires entering the text or arranging the graphical elements as one would do for a program in a
general-purpose language. The elements of the ADL are generally those architectural elements
just listed, so ADL statements (or symbols) define the attributes and characteristics of
components, connectors, and so on, in the architecture, and especially how the elements are
linked. Many of the features of an ADL as a language would seem familiar to most
programmers; for example, some ADLs allow the definition of types (and type hierarchies) of
components and connectors, with specialized attributes and characteristics, for later use. ADLs
also have features specialized for architectural specification, and in this way are similar to

specialized modeling languages. Once an architecture specification has been entered in an ADL,
it can be processed in various ways, including simulating the architecture (as for Rapide,
described below) or statically analyzed (as for Acme, also described below).

ADLs provide greater formality of representation than informal box-and-line diagrams
during the design process. This forces the architect to consider and specify his/her design for the
system with more precision, thereby uncovering architectural problems earlier. ADLs increase
the likelihood of correctly designed connections (i.e., interfaces, protocols, and dataflows)
between the components (i.e., modules, algorithms, and data structures) in an architecture [1].

ADLs also allow more powerful analysis of designs. ADLs that are sufficiently formal and
rigorous so as to express architectural properties in unambiguous ways provide a basis for
reliable reasoning, manual and automated, about the properties of software systems. Indeed,
some ADLs support the simulation of an architecture represented in the ADL. The goal is that
such ADL-enabled reasoning and simulation will reveal architectural properties earlier in the
development cycle, when changes are easier and less costly, than would occur otherwise [1].

2.3 Software architecture of simulation systems
The architecture of a software system can depend on both the computational requirements of

the system and the application domain of the system. Simulation systems are generally software
systems, at least in part, so our discussion of software architecture and ADLs in general apply to
simulation systems as a special case. Beyond this general applicability, software design patterns
specific to particular application domains, sometimes called “reference architectures”, have been
receiving increasing research attention [1]. M&S is such an application domain. It is clear that
architecture patterns have emerged for simulation software. One example of an architecture
pattern in the M&S domain is distributed simulation; distributed simulation systems are
assembled from sets of communicating simulations that cooperate to simulate a common
simulated scenario. In the military domain distributed simulations are enable by interoperability
protocols such as Simulator Networking (SIMNET) [32][33][34], Distributed Interactive
Simulation (DIS) [35][36][37][38][39], and High Level Architecture (HLA)
[40][41][42][43][44], which combine both communications standards and system architecture
requirements. An example of a different sort of architecture pattern in the M&S domain is
discrete event simulation (DES). DES is a venerable and widely applied simulation paradigm [7]
[8]. In a discrete event simulation, simulated objects change state at discrete instants in time,
called events, typically doing so while flowing through a series of discrete process steps. The
DES paradigm combines both modeling methods and a software architecture pattern. An
example of the latter is the event queue, a data structure where pending events are maintained
and organized, which is nearly universal in DES implementations. The point of these examples
is that architecture patterns exist in the simulation domain. Note also that patterns exist at
different levels; distributed simulation is primarily a system level architecture pattern, as
distinguished from a individual simulation level architecture pattern such as DES.

The relationship between software architecture, composition, ADLs, and simulation
composability is important. Because software architectures are often developed by composition,
an ADL should have a composition operator or notation or capability; ideally, the semantics of
composition in the ADL should be equivalent to the actual effect of composing software.
Simulation composability is more than just architecture or software composition. It is the ability
to assemble sets of simulation components into simulation systems specific to particular
applications [45]. To achieve simulation composability it is not enough that the components can
be combined as software modules; the composition must also produce a valid model of the

system being simulated. Hence architectural composition as defined here is necessary but not
sufficient to support simulation composability.

3. Research Overview
Experimental applications of two ADLs were conducted to determine the utility and

effectiveness of using ADLs to specify and analyze simulation architectures. Two different
existing simulation architectures, EnviroFed and ModSAF, at two different levels of
organization, federation and federate respectively, were modeled so as to provide a range of
architectural aspects to model. Existing simulations, instead of new ones, were modeled to
provide realistic tests of the languages, access to documentation upon which to base the
architecture models, and bases for comparison with the results of the architecture models.

Because different simulations were used, a single aspect of the architectures, run-time
performance, was chosen for analysis to provide some basis for comparison. Run-time
performance is often a crucial issue in simulation applications, so ADL support for automated
analysis of expected performance at the architecture level could be quite valuable.

 Six specific ADLs were considered for the experiments: Darwin [9] [10], Aesop [1] [11],
Unicon [1], Wright [1] [12], Rapide [13] [15], and Acme [17] [18]. Two of the ADLs, Rapide
and Acme, were selected. Two ADLs were chosen, rather than one, so as to gain experience
with more than one language. Rapide was selected because its architecture simulation
capabilities were well suited to run-time performance analysis. Though both Wright and Acme
support static architecture analysis, Acme appeared to be a better choice for the second ADL
because of its design intent as an architecture interchange language, a characteristic that could
also be valuable in the simulation development community, and the fact that Acme could be
automatically analyzed without recourse to an embedded formal language (unlike Wright, which
requires another language called CSP).

4. EnviroFed Experiment
In the first experiment, Rapide was used to simulate a federation architecture. The

experiment was intended to determine if an ADL could be effectively and usefully applied at the
federation level and if ADL-based architecture simulation could be used to analyze a federation’s
performance. Rapide was used to model the EnviroFed federation architecture and to analyze its
run-time performance. The EnviroFed experiment had two specific objectives; first, to
determine if an ADL could be effectively and usefully applied at the federation level, and
second, to determine if ADL-based architecture simulation could be used to analyze a
federation’s performance. The experiment simulated dataflow in the EnviroFed federation in
two modes: HLA’s interest management services Data Distribution Management (DDM) in use,
and not in use. The Rapide architecture model was used to identify federates within the
federation that might be unable to process the incoming data quickly enough.

4.1 Rapide capabilities
Rapide is a language for defining and executing software architectures. Rapide is an ADL

oriented towards architecture simulation [13]. It simulates patterns of events that occur in an
architecture as it executes [16]. The development of Rapide was initially funded by the Defense
Advance Research Projects Agency (DARPA) and subsequently by the Air Force Office of
Scientific Research (AFOSR).

The output of Rapide after a simulation run is an event list that provides causal and timing
relationships among the events. Sets of causal events are termed partially ordered event sets or
posets [25] [16]. These posets are powerful in that they may be searched and analyzed for
patterns that could impose constraints on systems of interest. This is a particularly powerful
capability for simulations in that the notion of events and causality are central to the core of
simulation architectures and may easily be applied to distributed and concurrent systems. For
example, one may develop a constraint (pattern) for a family of simulation systems or a
particular federation and test the architecture model for compliance with the constraint.

Rapide uses a method of encapsulating the outgoing procedure calls in addition to the typical
public interface to a component into a structure called an interface [26]. Interfaces are then
connected together instead of the components themselves. This interface connection architecture
(as opposed to an object connection architecture) may be used in two ways. One way is to
specify the expected behavior of underlying components in the interfaces themselves that allows
the execution of an architecture model without actually creating models for the components. The
second way is to create models for the components and allow the outgoing calls of a particular
component to access its own interface instead of the public interface of the target component.
This second method is a powerful feature for both static and dynamic composability. For static
composability, this feature can be used to ensure that composable components conform not only
to a public interface but also to an internal behavioral expectation. For dynamic composability,
there is an added benefit that components that conform to a given interface can be mapped and
executed at runtime.

Using Rapide’s interface connection architecture, one can determine if a system’s design
conforms to a particular architecture “family” or class of architectures, such as HLA federations.
Conformance may imply the following [13]:
1. The components in the system design comply with the reference architecture interfaces.
2. The components comply with the reference behavior identified by their interfaces.
3. The components are connected in a manner identified by the reference architecture.
4. All constraints within the reference architecture are satisfied.

The last point is important because constraints can define what an architecture cannot do as
well as what it must do. Such constraints are expressed as an event pattern that may or may not
appear in a poset. When comparing a test architecture and a reference architecture, Rapide uses
only points 1 and 4 above.

In addition to conformance testing, Rapide claims an “architecture-driven system
development” capability [25]. The idea is to first model the system architecture from the system
requirements using Rapide. This is done with only interfaces and connections without
implementing the components. Then, Rapide’s analysis methods are used to verify and validate
the architecture in simulation. Finally, components are added incrementally until the system’s
modules are developed to the satisfaction of the architecture.

In the actual simulation execution of architectures, Rapide uses three analysis methods:
constraint checking, poset browsing, and animation. Constraint checking is automatically done
during the execution of the architecture. Poset browsing is performed after the execution
completes. The posets may be searched and queried to find interesting sequences of events that
occurred during the simulation of the architecture. Animation occurs during the execution and is
a human friendly visual check of the system simulation.

Rapide’s architectural simulation capabilities allow consistency checking and performance
analysis for race conditions and other execution sequence issues [5]. Rapide can produce

executable code in C, C++, or Ada, in order to execute a model, making its analysis capabilities
more powerful and accessible.

In Rapide, graphical models can be exported to a Rapide file with corresponding interface,
module, and architecture components. The Rapide file may then be edited directly to add further
complexity.

4.2 EnviroFed architecture model in Rapide
Given Rapide’s close ties to distributed simulation architectures and defense, it is no surprise

that Rapide has already been used to study HLA [27] [14]. These studies concentrated primarily
on HLA interface specification robustness and compliance; for example, the mechanism and
sequence of attribute ownership transfer was examined. However, Rapide was deemed useful
for other applications as well, including the analysis of simulation behavior models and their
conformance to standard architectures.

Rapide was used to specify and simulate the architecture of EnviroFed, a distributed
simulation system based on HLA. EnviroFed was developed under the sponsorship of the
Defense Modeling Simulation Office (DMSO) to “demonstrate the state-of-the-art with regard to
the representation of the natural environment in DoD simulations” [19] [28]. It is an HLA
federation composed of a variety of models that either produce or make use of high fidelity
environmental features or capabilities. In EnviroFed, environmental impacts are manifested as
dynamic terrain and weather, such as muddy soil and high winds, that affect simulation events,
such as vehicle mobility or chemical weapon plume dispersion. The HLA-compliant federates in
EnviroFed include:
1. JSAF. Constructive simulation; generates and controls battlefield entities, such as vehicles,

troops, sonar systems, and other sensors.
2. WALTS (Weapons Analysis and Lethality Tool Set). Calculates combat damage and provides

realistic weapon effects modeling.
3. CUSP (Combined Urban Dispersion Model). Models the dispersion of chemical and

biological contaminants.
4. OASES (Ocean Atmospheric Space Environment Server). Models current weather

conditions.
5. DTSim. Models dynamic terrain and provides polygons for dynamic terrain features, such as

craters. Works closely with HydroSim to model terrain effects.
6. HydroSim. Models effects of wet conditions on terrain trafficability.
7. ModStealth. Synthetic environment viewer.
8. WARCON. Aircraft carrier simulation; models the logistics of launching aircraft from a

carrier, including below deck operations.
9. hlaControl. Controls federation execution.
10. hlaResults. Logs and analyzes federation execution.

Figure 2 shows the Rapide model of the EnviroFed federation. The architecture components
that represent the federates are connected by another component that represents the HLA RTI
and the network. Note that this view is a logical view of the federation; some the logical
federates, may actually be composed of more than one federate joined to the federation
execution. However, for the purposes of the experiment, this logical view was sufficient. Figure
2 also shows the simulation with animation of the EnviroFed model executing in Rapide. The
visualization capability in Rapide is called Rapide Animator (Raptor). The shaded boxes
indicate control and data flow events involving a variety of federates occurring, in this case,

concurrently. The white alert box is a behavior implementation of an “overload” constraint,
discussed later.

This Rapide model of the EnviroFed federation was designed for studying data flow between
the federates. Table 1 shows the data exchanged among the federates; columns in the table
identify the data published and subscribed to by each federate. Unless otherwise noted, data
exchanges are a one-time occurrence of 48 bytes occurring after an indicated sequence of
activity. For example, consider the JSAF entry in the table. It indicates that JSAF publishes
entity updates, crater requests, dynamic road requests, contamination reports, and weapon target
impact data. The frequency that the data is provided varies depending upon the type of
information. JSAF entity updates are modeled to occur every ten seconds for each entity and the
size of the data is arbitrarily chosen at 48 bytes per entity. (The 48 byte message size
corresponds to the size of one of the most common messages on the network, a HydroSim
feature. That size was used as the default size for other messages whose sizes were not known.)
As for data subscribed to, JSAF does not subscribe to all of the published data from the federates
identified in the table, and every JSAF federate (in federations with more than one) does not
subscribe to the same data; different JSAF federates subscribe to different data depending on
their role in the simulation. However, JSAF federates subscribe to the majority of all data
published and the data not subscribed to by a typical JSAF federate is relatively insignificant.

In the EnviroFed Rapide architecture model, DTSim and HydroSim were treated as a single
federate because of the close relationship of their processing and dataflow characteristics.

The experiment compared the performance of the federation architecture with and without
employing DDM. The final column in Table 1 indicates the significance of DDM to a particular
federate. The difference between DDM and no DDM is seen in amount of data on the network
and the amount of data passed on to the federate from the network interface, which in the model
is also part of the network component. Based on an assumption that DDM is implemented using
multicast and the federation is implemented on a local area network (LAN), in the model the
amount of data on the network will increase when going from no DDM to DDM. In a wide area
network configuration where different subnets are separated by routers, multicast addressed data
have the opportunity to be screened and, therefore, the data on a particular subnet may be
reduced. However, the only opportunity for the data to be screened on a purely LAN
configuration (all federates on the same network) is at the network interface for each federate.
Therefore, in the model’s assumed LAN configuration, data on the network increases as packets
are repeated for each multicast address required for the data.

Nevertheless, because DDM filters data before it gets to the federate, not all network data has
to be processed by the federate itself, resulting in a decrease in data processed by the federate
when DDM is used. In the model not using DDM means less data on the network but more for
the federate, while using DDM means more data on the network but less for the federate.

A Rapide constraint was defined to detect when a federate was overloaded with incoming
data, which was the condition of interest in the experiment. When a given incoming data limit
was exceeded, the federate was deemed to be overloaded; if that occurred, the overload alert
message was displayed for that federate, as shown in Figure 2.

Figure 3 illustrates Rapide interface descriptions, using the JSAF federate as an example.
The grayed dialog box allows one to choose the interface to edit where upon the rightmost dialog
box may then be used to input actions and behaviors into the interface. Actions indicate the
public functionality of a module as well as the internal function calls of the module. Behaviors
define rules for executing the actions and provide the basis for executing the architecture. Figure

3 also shows an example of a constraint. The constraint is commented out in the figure as this
architecture is to be simulated. If the architecture were to be used as a reference architecture, the
constraint would be applicable while the behavior portion would be commented. In this
particular example the constraint requires that JSAF never receive more than 1024 Kbytes of
data in one time interval.

The excerpt below is an example specifying component behavior in Rapide, again for the
JSAF federate. In essence, the behavior specified is for JSAF to send out a contamination report
when a contamination detection event is received from CUSP. The first line in the example
identifies three relevant variables for the behavior, ?t, ?ObjID, and ?DATA. The second line
in the example obtains values for two of the variables via a network event. The
Packets_Receive and Packets_Send behavior generate events that are stored and
sequenced. Finally, the where statement test that the event is of type ContamDetect and
initiates the sending of a ContamReport upon a successful test. Note that the DDM_flag
static variable provides information as to whether or not the data was sent using DDM.

 In this particular case, the J_NTS interface component indicates to the DT_NTS interface
component in the network module whether DDM is to be used. The DT_NTS component
resolves the routing of the data depending upon Table 1 and the usage of DDM.

(?t: time; ?ObjID : Integer; ?DATA : Integer)
 J_NTS.Packets_Receive(?ObjID, ?DATA, DDM_flag)
 where(?ObjID = CUSP_ContamDetect)
 => J_NTS.Packets_Send(JSAF_ContamReport, 48, DDM_flag);;

The next excerpt is from the Rapide definition for the overall EnviroFed federation. The
excerpt shows the connections of the module interfaces to the RTI or network module interface.
Global constraints that cover many or disparate modules may be added here and just as the
behaviors in interface components the connections in this architectural component would be
commented. As shown in the excerpt, modules the represent federates must communicate via the
NETWORK module, which represents the HLA federate rule stating that all federates must
communicate through the RTI [42].

ARCHITECTURE NTFED () is
-- EnviroFed architecture: Top level module, containing
-- a network module and eight federation modules.

NETWORKmod : NETWORK;
JSAFmod : JSAF;
WALTSmod : WALTS;
CUSPmod : CUSP;
WARCONmod : WARCON;
OASESmod : OASES;
DTSIMmod : DTSIM;
MODSTEALTHmod : MODSTEALTH;
HLACRmod : HLACR;

-- Architecture constraint rules can be added here, if any

-- Below is a set of connection rules that define
-- communication between the modules
connect
 JSAFmod.J_NTS => NETWORKmod.DJ_NTS;
 WALTSmod.W_NTS => NETWORKmod.DW_NTS;
 CUSPmod.C_NTS => NETWORKmod.DC_NTS;
 WARCONmod.WC_NTS => NETWORKmod.DWC_NTS;
 OASESmod.O_NTS => NETWORKmod.DO_NTS;
 DTSIMmod.D_NTS => NETWORKmod.DD_NTS;
 MODSTEALTHmod.M_NTS => NETWORKmod.DM_NTS;
 HLACRmod.H_NTS => NETWORKmod.DH_NTS;
END;

In this simple model, further HLA details beyond those already mentioned are not
implemented and are assumed to be within the federation modules. For complex software like
EnviroFed we may have many different views of its software architecture. The Rapide language
is flexible enough to simulate them at different levels of detail, from the abstract level
implemented here to more detailed levels as desired.

As mentioned, a Rapide architecture simulation produces as output a poset whose event
causality and timing may be examined. Figure 4 shows an example portion of the poset
generated from an execution of the EnviroFed model. The full EnviroFed poset is quite
extensive, approximately 50 times as large as that shown in the example. Rapide provides a
browser capability that allows queries on a poset. These queries may be used to search for
anomalies or to verify that a certain sequence of events always or never occurs. Further, it is
possible to specify operations and relationships among events and test for their existence in a
poset. As seen Figure 4, the ContamSensor event in JSAF (highlighted in yellow) is sent to
CUSP and eventually triggers a ContamDetect which is sent back from CUSP to JSAF. The
yellow ContamSensor is triggered by a CURRENT_TIME event. The rest of the events in the
figure represent a causal audit trail of behavior from the model execution which includes sets of
dual network events that indicate communication from federates to the network and
communication from the network back to federates.

The objective of this experiment was not to produce a high-fidelity model of a particular
distributed simulation federation (specifically, EnviroFed), but rather to assess the effectiveness
of Rapide at modeling and analyzing such architectures. As much information as possible about
the EnviroFed federation and its federates was gleaned from the available documentation, such
as [28], but some detail (e.g., data send frequencies) was not available. Therefore the EnviroFed
architecture model contains assumptions with respect to the actual EnviroFed architecture,
primarily in the size and frequency of inter-federate data transfers. For that reason, the model
architecture might more accurately be called “EnviroFed-like”, rather than EnviroFed, but we
use the latter term for expository convenience. The changes and assumptions may affect the
numerical analysis results with respect to EnviroFed, but they do not affect the experimental
findings with respect to using Rapide for architectural analysis of a federation like EnviroFed.

4.3 EnviroFed experiment findings
The Rapide model enabled the analysis of dataflow in the EnviroFed architecture.

Predictions of federates that could become overloaded by dataflow in the federation were found

using the Rapide architecture model. In the model, using DDM produced more outgoing
dataflow per federate but reduced the incoming dataflow per federate compared to not using
DDM, as would be expected. Outgoing dataflow per federate is thought to be less important, as
it was believed to be a burden on the network interface card and not the federate itself.
Therefore, if adequate network bandwidth is available, using DDM reduces a federate’s burden
in processing extraneous messages, as evidenced by the architecture simulation results.

As far as the general utility of Rapide and the Rapide development environment, Rapide
provides some added user-friendly capabilities that make the utilization of an ADL attractive:
1. Graphical editor. The graphical editor provided a quick startup capability in creating the

architecture and entering the interface and architecture components.
2. Animation capability. The animation capability provided the ability to convey architecture

simulations and issues in a user-friendly way.
3. Behavior rules. The behavior rules allowed the simulation execution of the architecture

without defining the component modules.
4. Constraints. The constraints allow the definition of a reference architecture that can be

compared to other architecture designs and tested for conformance.
5. Poset browser. The poset browser allowed the close examination of event causality and

timing.
Additionally, the utility of a reference architecture may be increased when using a reference

FOM. Using a Rapide model, a federation architect could be able to test both whether the
federation architecture complies with the reference FOM and also whether the federates in the
federation follow necessary sequences of events during the federation execution.

5. ModSAF Experiment
For the second experiment, the focus of the experiment was narrowed from a federation to a

federate. ModSAF was selected as the subject of the experiment because of its widespread use,
its importance as the basis for other federates, and its familiarity. Acme was used to model the
ModSAF federate architecture and to analyze its run-time performance. The experiment
analyzed execution time within the ModSAF architecture and its components while simulating
differing numbers of internal and external entities. The analysis was used to determine how
many internal and external entities the architecture could simulate before becoming overloaded.

5.1 Acme capabilities
 Acme is a simple, generic ADL that can be used to specify software architectures and

families of architectures (styles) [17]. Acme was developed at Carnegie Mellon University.
Acme is intended not only be an ADL in its own right but to serve as a common interchange
format for ADLs and ADL tools [11]. The process of modeling an architecture with Acme has
three basic steps [20]:
1. Identify types. Identify the architectural objects in the architecture that correspond to the

Acme language elements.
2. Define family. Define a family or set of families for the model. A family is a set of

architectural object types specialized for a particular architecture or set of architectures.
Define a component, connector, port, or role type to represent each of the architectural
concepts in the family.

3. Specify architecture. Using the architecture object types in the family, specify the
architecture to be modeled.

Acme is supported by a development environment called AcmeStudio [21]. AcmeStudio is a
Windows application for graphically editing architectural descriptions written in Acme, which is
a textual language. In AcmeStudio, Acme descriptions can be opened, edited graphically, and
saved in text form. AcmeStudio provides simple general support for externally developed
architecture tools, which allow third-party tools to be added into the environment.

One such tool integrated into the AcmeStudio environment (in fact, the only one in the
AcmeStudio version used for this work) is a performance analysis tool [22]. The performance
analysis tool can be used to perform static analyses of the system performance of architectures
modeled in Acme. The basis of the tool’s analysis is queuing theory [23]. In a general queuing
network the basic units are requests, service centers, and queues, connected in network or
flowchart. Requests arrive and move through the network, wait at queues for their turn to
receive service at a service center, and receive service. When their service is complete they
again move through the network. To analyze an architecture’s performance using the tool,
requests are associated with components, representing processing. Requests may be initiated
locally in the component or triggered by a request arriving from another component. A request
can trigger one or more requests in other components, with the probability of doing so a
parameter. A request transfers from one component to another along connectors. The user
specifies the arrival rate of initiated requests. Requests triggered in a component are serviced by
that component. The user also specifies the service time of each component. Only one service
time can be specified for a component. Initiating a request requires no service time. The
utilization of a component is arrival rate multiplied by service time.

5.2 ModSAF architecture model in Acme

An Acme architecture family, ModSAF_Family, was created for the ModSAF architecture
model. The ModSAF software architecture in Acme is shown graphically in Figure 5. (Figure 5
is a screen capture from the AcmeStudio graphical development environment for Acme. The
Acme textual code equivalent to the graphical version can be found in [24].)

The ModSAF architecture model consists of thirteen interacting components. They are of
two component types, which are not pre-defined types but were user-defined in
ModSAF_Family:
1. Internal component. A component within, i.e., part of, the ModSAF federate.
2. External component. A component outside the ModSAF federate.

The only external component in the model is federation, which is not part of ModSAF
itself but is included in the model for analysis purposes; it represents all of the other federates
that ModSAF may interact with in a federation and is the source and sink of network
communication requests. It is connected to the ModSAF internal component
network_interface by the network connector, which represents the physical network as
well as the network communications infrastructure, including the HLA RTI. The other
components in the model are all internal ModSAF components.

The connectors also fall into two connector types defined in ModSAF_Family:
1. Control connector. A connector that mediates control invocation between components.
2. Dataflow connector. A connector that passes data between components.

Control connectors connect the scheduler component and the components below it
(entity_model, task, task_manager, terr_u, sim_u) and between the
task_manager and task components. The remaining connectors are dataflow connectors,
representing data passing between components. Most of the connectors in the model represent

bi-directional dataflow. Acme models normally use one connector between two components,
instead of two, to represent bi-directional dataflow. However, at several places in the model two
or more connectors were required between two components for performance analysis (the reason
is described later). One port type and one role type were defined in ModSAF_Family.

Table 2 lists the components, gives their service times, and summarizes their ModSAF
function. Of course, the components don’t actually perform those functions in the Acme
architecture model, rather they generate and/or service Acme requests with the given service
times; a model component servicing a request represents the processing of the actual ModSAF
components the component corresponds to. The set of components in the ModSAF model is a
simplification of the actual ModSAF architecture, but it is sufficient to test the utility of Acme
for modeling a ModSAF-like architecture.

In the ModSAF architectural model, Acme requests are used to model flow of control and
processing by the architecture components. Different types of requests represent different
processing tasks by the components. Components pass requests to represent one component
invoking or initiating another. Table 3 lists all of the request types in the ModSAF architecture
model. As can be seen from the table, requests may have successors, meaning that when such a
request is services, the servicing may produce another request, which itself may have a successor
as well, and so on. The successor requests are generated in the component servicing the request
according to the probabilities for each type of successor request shown in the table. The requests
flow from component to component on the connectors in the architecture model.

Two of the components (federation and scheduler) have service times of 0.0 in
Table 2 because they don’t service requests; they generate initial requests (requests without
predecessors). These initial requests have special roles in the model. Initial requests generated
in the federation component represent the arrival of network messages from the federation
that must be processed by the ModSAF architecture. The request that models the arriving
network message net_msg_in triggers another request that models the receipt of the network
message by the network_interface component. There another request, which may be of
one of three different types, is generated probabilistically; the three types correspond to three
different types of network messages, each requiring different actions within the architecture.
They are sent to different components and are serviced at the destination components. This
probabilistic flow of requests is intended to model the processing that may result from the arrival
of a network message. The requests in this flow move along dataflow connectors. The
scheduler component generates five different types of initial requests. These requests move
along control connectors and are serviced at the destination components. These requests model
the execution “ticks” for entity_model and service manager (task, task_manager,
terr_u, and sim_u) components in the architecture.

The independent variables in the ModSAF architecture model are the number of external
entities being simulated by the rest of the federation and the number of internal entities being
simulated by the ModSAF federate. These independent variables are modeled by the rate of
generation of initial requests in federation and scheduler respectively; additional
external entities are modeled by additional network message requests, and additional internal
entities are modeled by additional execution tick requests of various types. Both external and
internal entities impose processing requirements on the ModSAF architecture, modeled by the
service times of the components processing the corresponding requests. Service times of 0.2
msec per request for the network interface and database components and 0.5 msec per request for
the other components are assumed.

The model simulates a single ModSAF processing cycle of 200 milliseconds (msec). During
a processing cycle each arriving network message should be processed and each internal entity
model should be given a chance to execute, i.e., “ticked”. In a cycle, request net_msg_in is
generated once per external entity and request tick_em is generated once per internal entity.
Requests tick_tm, tick_tu, and tick_su are generated once per cycle. One tick_t
request is generated per cycle for every 5 internal entities. In Acme, requests are generated
according to user supplied arrival rates, so to achieve the frequencies desired for the initial
requests, those frequencies were converted to equivalent arrival rates. For example, if the
internal entity count is 50, the arrival rate of tick_em requests is 50 * 0.005 msec = 0.25 msec
and the arrival rate of tick_t requests is 10 * 0.005 msec = 0.05 msec. (The arrival rate
multiplier of 0.005 msec corresponds to 1 arrival per 200 msec.)

As with the first experiment, the objective of the ModSAF experiment was not to produce a
high-fidelity model of a particular federate (ModSAF), but rather to understand the effectiveness
of Acme at modeling and analyzing such architectures. The parameters of the ModSAF
architecture model, including processing cycle duration, entities per task, and component request
service times are based on experience profiling ModSAF implementations and are reasonable
values, but should be considered approximations for experimental purposes. The approximations
may affect the numerical analysis results with respect to ModSAF, but they do not affect the
experimental findings with respect to using Acme for architectural analysis of a federate like
ModSAF.

5.3 ModSAF experiment findings
Tables 4 and 5 show the results of the static performance analysis of the ModSAF

architecture model using the parameters mentioned with different independent variables, i.e.,
internal and external entity counts. The tables’ entries are component utilization values. The last
row in the table is the processing utilization of the overall ModSAF system. It is the sum of
individual utilization of components. If the overall utilization value reaches or exceeds 1.0, then
the architecture is overloaded and cannot complete all the required processing within the
processing cycle, typically resulting in the internal entity models are not being ticked often
enough.

Table 4 shows the results of multiple analyses when the internal entity number was held
constant at 50 and the external entity count was increased from 100. According to the analysis,
the architecture becomes overloaded when the external entity number reaches 147.

Table 5 shows the results when the external entity count was held constant at 100 and the
internal entity count was increased from 50. According to the analysis, the architecture becomes
overloaded when the internal entity number reaches 60. In the tables we observe processing
concentrated in entity_model and po_db; this was expected because these modules are
involved in the processing associated with internal entities in the ModSAF architecture. Because
these modules are the busiest, and adding internal entities directly increases the processing of
these modules, it makes sense that more external entities can be added than internal entities
before an overload is detected.

Note that the federation and network_interface components are not included in
Tables 3 and 4 because they have service times of 0.0, and so their utilization is always also 0.

At the conceptual level the process of using Acme to construct an architectural model of
ModSAF was straightforward. The Acme language elements were easy to understand and
Acme’s typing capabilities were sufficient to create specialized types for the type family

ModSAF_Family. As an ADL, Acme was easy to use and powerful, for the most part well
able to express the structure of the ModSAF architecture. The question here is not whether 147
is the actual number of external entities or 60 is the actual number of internal entities at which a
real ModSAF federate becomes overloaded; it is whether Acme can usefully support such
analyses. These results, with numerical values that are generally consistent with practical
ModSAF experience, indicate that it can.

Turning from the Acme language to the AcmeStudio development environment, its utility in
this experiment was mixed. The graphical work environment was certainly more convenient and
accessible than writing Acme code directly. The features of AcmeStudio, if they all worked
properly, would have made a software architect using it to create Acme architecture designs and
families quite productive. Unfortunately, the available version of the AcmeStudio tool was both
unstable crashing repeatedly with loss of data during use, and incomplete, in that some of its
features did not work properly. It is possible that these problems have been corrected in newer
versions of AcmeStudio.

The performance analysis tool in AcmeStudio had a number of shortcomings when applied to
a complex architecture such as ModSAF. The architecture was simplified significantly to fit the
limitations of the tool, yet even with those simplifications many details of the architecture are
hidden or implied in the parameters of the model. The most important of those issues are:
1. Entity counts. Entity counts could not be explicitly given as parameters in the system. The

number of entities, external and internal, is represented implicitly in the request arrival rates
at the federation and scheduler components respectively.

2. Utilization analysis. The overall utilization values had to be summed manually from the
utilization values for the individual components. This would have been impractical for large
or multi-level architecture models.

3. Connectors and requests. Because of the way requests and connectors are associated, it was
necessary to have two or more connectors between two components if one request in a
component triggered two or more requests in another component.

4. Single service times. One component in the system can only have only one service time for
all types of requests serviced in the component. This is clearly a serious problem in the type
of analysis attempted in this experiment, where different request types represent different
types of processing in the component.

5. Static analysis. Dynamic analysis with request arrival rates, service times, and flows that
change over time are not possible. The analysis is static.
However, even with these shortcomings, the performance analysis tool could be very helpful

at the architecture design stage when the designers do not yet have many details but would like
to identify possible bottlenecks or inefficiencies in the architecture. It was encouraging to be
able to use the ModSAF architecture model, simplified as it was, to determine entity count
overload levels that were in the same range as those found for some real ModSAF federates.

6. Conclusions
The ADL experiments were successful. In the first experiment, a Rapide simulation allowed

a prediction of which federates in a federation might be overloaded when faced with expected
federation data volume, and what effect HLA DDM might have on that flow. In the second
experiment, an Acme analysis produced an estimate of how many internal and external simulated
entities a federate architecture could support before encountering performance problems. In each
experiment a relatively simple architecture model, developed with a modest level of effort,

produced a finding about the architecture that would have been quite valuable in a non-
experimental context. In a full-scale development effort such findings early in the development
process could be very valuable.

Informal software architecture design methods are widely used in the modeling and
simulation development community. Would that community benefit from a more formal
approach to software architecture that includes using ADLs? From this study, the answer seems
to be yes. Contrary to expectations, no fundamental problems were found with applying general-
purpose ADLs to simulation systems. The conclusion from this finding is that there are no
architectural-level characteristics of simulation systems that make them different enough from
software systems in general to explain the observed underutilization of ADLs in the simulation
development community. We found that ADLs could be applied to simulation systems and that
application could benefit the simulation development process. The possible benefits include:
1. Robustness. Simulation architectures that are more reliable, stable and expandable than

previous and current architectures will result from the employment of software architecture
discipline, with or without the explicit use of ADLs.

2. Composability. The use of ADLs will support the community goal of composability, at least
at the conceptual level, by making explicit the notions of simulation components, connectors,
and their interfaces, at a level of detail more accessible than an API, and helping architects to
see their simulation systems as compositions.

3. Knowledge transfer. Simulation architectures specified using ADLs can be studied as
examples of good (or bad) design, and ADL descriptions for production simulations will
serve as a good starting point for developers who need to become familiar with a system.

4. Risk reduction. Analysis of architectures using ADL-based reasoning can, as demonstrated
in this study, reveal key aspects of simulation architectures, such as performance. This
should lead to identification of potential problems earlier in the development cycle.
Though some benefits will accrue even from the use of any or multiple ADLs, we believe

that the simulation community will derive maximum benefit from adoption of a standard
community-wide ADL, due to the usual benefits of standardization. More study and research are
needed to identify or develop an appropriate ADL for the simulation community.

7. Acknowledgements
This work was sponsored by the U. S. Army Program Executive Office for Simulation,

Training, and Instrumentation, under contract N61339-01-P-0293. We gratefully acknowledge
that support. We also thank the anonymous referees for their helpful ideas and
recommendations.

8. References
[1] M. Shaw and D. Garlan, Software Architecture, Perspectives on an Emerging Discipline,

Prentice Hall, Upper Saddle River NJ, 1996.
[2] L. Barroca, J. Hall, and P. Hall, “An Introduction and History of Software Architectures,

Components, and Reuse”, in L. Barroca, J. Hall, and P. Hall (Editors), Software
Architectures, Advances and Applications, Springer, London UK, 2000, pp. 1-11.

[3] J. Schneider and O. Nierstrasz, “Components, Scripts, and Glue”, in L. Barroca, J. Hall, and
P. Hall (Editors), Software Architectures, Advances and Applications, Springer, London UK,
2000, pp. 13-25.

[4] D. Garlan and M. Shaw, “An introduction to software architecture”, in V. Ambriola and G.
Tortora (Editors), Advances in Software Engineering and Knowledge Engineering, World
Scientific Publishing, Singapore, 1993, pp. 1-39.

[5] A. D. Fuxman, “A Survey of Architecture Description Languages”, Technical Report CSRG-
407, Department of Computer Science, University of Toronto, 1999.

[6] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik, “Abstractions for
software architecture and tools to support them”, IEEE Transactions on Software
Engineering, Vol. 21, No. 4, April 1995, pp. 314-335.

[7] J. Banks, J. S. Carson, and B. L. Nelson, Discrete-Event System Simulation, Second Edition,
Prentice Hall, Upper Saddle River NJ, 1996.

[8] J. Banks (Editor), Handbook of Simulation, Principles, Methodology, Advances,
Applications, and Practice, John Wiley & Sons, New York NY, 1998.

[9] M. Jazayeri, A. Ran, and F. van der Linden, Software Architecture for Product Families,
Principles and Practice, Addison-Wesley, Boston MA, 2000.

[10] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying distributed software
architectures”, Proceedings of the Fifth European Software Engineering Conference ESEC
’95, Sitges Spain, September 25-28 1995, pp. 137-153.

[11] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting style in architecture design
environments”, Proceedings of SIGSOFT ’94: Foundations of Software Engineering, ACM
Press, New Orleans LA, December 6-9 1994, pp. 175-188.

[12] R. Allen, A Formal Approach to Software Architecture, Ph.D. Thesis, Carnegie Mellon
University, Pittsburgh PA, 1997.

[13] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera, D. Bryan, and W. Mann,
“Specification and analysis of system architecture using Rapide”, IEEE Transactions on
Software Engineering, Vol. 21, No. 4, April 1995, pp. 336-355.

[14] D. C. Luckham, F. V. Guimbretierre, H. Wang, and Y. Lu, “Applying Event-Based
Modelling to the ADS High Level Architecture Development Process”, Unpublished paper,
August 1995b.

[15] D. C. Luckham and J. Vera, “An Event-Based Architecture Definition Language”, IEEE
Transactions on Software Engineering, Vol. 21, No. 9, September 1995, pp. 717-734.

[16] D. C. Luckham, “Rapide: A Language and Toolset for Simulation of Distributed Systems
by Partial Orderings of Events”, DIMACS Workshop on Partial Order Methods In
Verification, Princeton University, July 24-26 1996, pp. 329-358.

[17] Carnegie Mellon University, The Acme Architectural Description Language, On-line at
http://www-2.cs.cmu.edu/~acme/, 1998.

[18] D. Garlan, R. T. Monroe, and D. Wile, “Acme: An Architecture Description Interchange
Language”, Proceedings of CASCON ’97, Toronto Canada, November 11 1997, pp. 169-183.

[19] INE - Integrated Natural Environment, EnviroFed Phase III Demonstration CD, Defense
Modeling and Simulation Office, November 8 2001.

[20] A. Kompanek, Modelling a System with Acme, On-line at http://www-
2.cs.cmu.edu/~acme/acme_extending_acme.html/, 1998a.

[21] A. Kompanek, AcmeStudio User’s Manual, On-line at http://www-
2.cs.cmu.edu/~acme/acme_documentation.html/, 1998b.

[22] R. T. Monroe, Capturing Software Architecture Design Expertise with Armani, Technical
Report CMU-CS-98-163, CMU School of Computer Science, 1998.

[23] B. Spitznagel and D. Garlan, “Architecture-Based Performance Analysis”, Proceedings of
the 1998 Conference on Software Engineering and Knowledge Engineering, San Francisco
CA, June 19-20 1998.

[24] M. D. Petty, F. D. McKenzie, and Q. Xu, Software Architecture Description Languages for
Simulation Applications; Tutorial, Survey, and Experiment Report, VMASC Technical
Report, 2002.

[25] Rapide Design Team, Guide to the Rapide 1.0 Language Reference Manual (Draft),
Computer Systems Lab, Stanford University, 1997.

[26] D. Katiyar, D. C. Luckham, and J. Mitchell, “A type system for prototyping languages”,
Proceedings of the 21st ACM Symposium on Principles of Programming Languages, Portland
OR, January 17-21 1994, pp. 138-150.

[27] F. V. Guimbretiere, D. C. Luckham, and F. C. Belz, “Rapide ADS HLA Simulation: A
Simple Illustrative Demonstration”, Unpublished paper, April 1995.

[28] EnviroFed Phase III Demonstration CD, Integrated Natural Environment, Defense
Modeling and Simulation Office, November 8 2001.

[29] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading MA, 1995.

[30] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference
Manual, Addison-Wesley, Reading MA, 1999.

[31] B. Potter, J. Sinclair, and D. Till, An Introduction to Formal Specification and Z,
Prentice-Hall, London UK, 1991.

[32] J. A. Thorpe, “The New Technology of Large Scale Simulator Networking: Implications
for Mastering the Art of Warfighting”, Proceedings of the 9th Interservice/Industry Training
Systems Conference, Orlando FL, November 30-December 2 1987, pp. 492-501.

[33] A. R. Pope, The SIMNET Network and Protocols, Report No. 7102, BBN Systems and
Technologies, July 1989.

[34] L. N. Cosby, “SIMNET: An Insider’s Perspective”, in T. L. Clarke (Editor), Distributed
Interactive Simulation Systems for Simulation and Training in the Aerospace Environment,
SPIE Critical Reviews of Optical Science and Technology, Vol. CR58, SPIE Press,
Bellingham WA, 1995, pp. 59-72.

[35] Institute for Electrical and Electronics Engineers, IEEE Standard for Distributed
Interactive Simulation–Application Protocols, IEEE Standard 1278.1-1995.

[36] Institute for Electrical and Electronics Engineers, IEEE Standard for Distributed
Interactive Simulation–Application Protocols, IEEE Standard 1278.1a-1998.

[37] Institute for Electrical and Electronics Engineers, IEEE Standard for Distributed
Interactive Simulation–Communication Services and Profiles, IEEE Standard 1278.2-1995.

[38] Institute for Electrical and Electronics Engineers, IEEE Standard for Distributed
Interactive Simulation–Exercise Management and Feedback, IEEE Standard 1278.3-1996.

[39] Institute for Electrical and Electronics Engineers, IEEE Standard for Distributed
Interactive Simulation–Verification, Validation and Accreditation, IEEE Standard 1278.4-
1997.

[40] F. Kuhl, R. Weatherly, and J. S. Dahmann, Creating Computer Simulation Systems,
Prentice Hall, Englewood Cliffs NJ, 1999.

[41] J. S. Dahmann, F. Kuhl, and R. Weatherly, “Standards for Simulation: As Simple as
Possible But Not Simpler: The High Level Architecture for Simulation,” SIMULATION,
Vol. 71, No. 6, December 1998, pp. 378-387.

[42] Institute of Electrical and Electronics Engineers, IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA)—Framework and Rules, IEEE Standard
1516-2000.

[43] Institute of Electrical and Electronics Engineers, IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA)—Object Model Template (OMT)
Specification, IEEE Standard 1516.2-2000.

[44] Institute of Electrical and Electronics Engineers, IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA)—Federate Interface Specification, IEEE
Standard 1516.1-2000.

[45] M. D. Petty and E. W. Weisel, “A Composability Lexicon”, Proceedings of the Spring
2003 Simulation Interoperability Workshop, Orlando FL, March 30-April 4 2003, pp. 181-
187.

9. Authors’ biographies
Frederic (Rick) D. McKenzie is an Assistant Professor of Electrical and Computer Engineering
at Old Dominion University. He received a Ph.D. in Computer Engineering from the University
of Central Florida in 1994. Dr. McKenzie previously held a senior scientist position at Science
Applications International Corporation. He has had several years of research and development
experience in the software and artificial intelligence fields. Both his M.S. and Ph.D. work were
in artificial intelligence.

Mikel D. Petty is Chief Scientist of the Virginia Modeling, Analysis and Simulation Center at
Old Dominion University. He received a Ph.D. in Computer Science from the University of
Central Florida in 1997, as well as M.S. and B.S. degrees, also in Computer Science. Dr. Petty
has worked in modeling and simulation research and development since 1990 in areas that
include simulation interoperability, computer generated forces, multi-resolution simulation, and
applications of theory to simulation. He has served on a National Research Council committee
on modeling and simulation and was the dissertation advisor to the first two students to complete
Ph.D.s in M&S at ODU.

Qingwen Xu is a Ph.D. student in Computer Science at Old Dominion University and a
Graduate Research Assistant at the Virginia Modeling, Analysis and Simulation Center. He
received a M.S. degree in Computer Science from Wake Forest University in 1999 and a B.S.
degree in Auditing from Wuhan Unversity in 1991. His dissertation research involves self-
organizing wireless sensor networks.

Configuration

Composite component A

Port of A Port of A

Component DBinding Component B

Ports of B Ports of D

BindingConnector C

Roles of C

Configuration

Composite component A

Port of A Port of A

Component DComponent DBinding Component BComponent BComponent B

Ports of B Ports of D

BindingConnector C

Roles of C

Figure 1. Generic architecture description elements (adapted from [1]).

Figure 2. Simulation of EnviroFed model in Rapide.

Figure 3. Rapide interface definitions for EnviroFed model.

Figure 4. Rapide poset example.

entity_model task task_manager sim_uterr_u

po_db ev_db c2_db ter_db

federation

network_interface

cfg_db

scheduler

Figure 5. ModSAF software architecture in Acme.

Federate Data Published Data Subscribed DDM?

JSAF Entity updates (vehicles, troops, sonar, sensors) for ~100
entities: 48 bytes/entity/10 secs
Requests (crater requests, dynamic road requests):
 48 bytes/3 mins
ContamSensor: 48 bytes/3 mins
ContamReport: 48 bytes/3 mins
WeaponTargetImpact: 48 bytes/3 mins

OASES
DTSIM (HYDROSIM)
WARCON (PC-SWAT)
CUSP

Yes

WALTS AgentRelease: 48 bytes/3 mins JSAF: WeaponTargetImpact No

CUSP Entity dosage updates:
 1 Kbytes/entity/10 secs
ContamDetect: 48 bytes/3 mins

OASES
WALTS: AgentRelease
JSAF: ContamSensor, ContamReport

No

OASES Sea state object updates (wind, wave, precipitation, clouds,
and haze on rectangular grid; salinity, temp, current,
and tides on curvilinear grid):
 1 Kbytes/3 mins

None No

DTSim & HydroSim Repolygonalization service and terrain modification report:
 1 Kbytes/request/3 mins
Feature updates for ~1000 features: 48 bytes/feature/3 mins

JSAF
OASES

Yes

ModStealth None All No

WARCON Aircraft launch: 48 bytes/3 mins
Mine detection probability: 48 bytes/3 mins

OASES
JSAF: sonar, mine

No

hlaControl None All No

hlaResults None All No

Table 1. Dataflow among federates in Rapide model of EnviroFed.

Component Service

Time Represented Functionality

federation 0.0 Represent entire federation outside ModSAF;
source of incoming network messages

scheduler 0.0 Control execution flow within ModSAF;
initiate execution of other internal components

entity_model 0.5 Simulate physical dynamics of individual entities
task 0.5 Simulate tactical behaviors of groups of entities
task_manager 0.5 Initiate and control execution of tactical behaviors
terr_u 0.5 Provide terrain services to other components
sim_u 0.5 Provide initialization and parameter services
ter_db 0.2 Maintain and access terrain database
cfg_db 0.2 Maintain and access parameter database
po_db 0.2 Maintain and access simulated entity database
ev_db 0.2 Maintain and access event database
c2_db 0.2 Maintain and access command and control database
network_interface 0.2 Receive incoming network messages

Table 2. ModSAF architecture model components.

Request Servicing

Component
Predecessor

Request
Successor
Request(s)

Successor
Probability

net_msg_in federation None get_net_msg_in 1.00
net_msg_out federation get_net_msg_out None n.a.
get_net_msg_in network_interface net_msg_in po_update_ext 0.95
 ev_update_ext 0.04
 c2_update_ext 0.01
get_net_msg_out network_interface po_update_out net_msg_out 1.00
po_query entity_model tick_em po_data 1.00
po_update_int entity_model tick_em rec_po_update_int 0.90
 po_update_out 0.10
po_data_return entity_model po_data None n.a.
ev_query entity_model tick_em ev_data 1.00
ev_update_int entity_model tick_em rec_ev_update_int 1.00
ev_data_return entity_model ev_data None n.a.
c2_query task tick_t c2_data 1.00
c2_data_return task c2_data None n.a.
task_control task_manager tick_tm None n.a.
cfg_query sim_u tick_su cfg_data 1.00
cfg_data_return sim_u c2_data None n.a.
tdb_query terr_u tick_tu tdb_data 1.00
tdb_data_return terr_u tdb_data None n.a.
po_data po_db po_query po_data_return 1.00
po_update_ext po_db get_net_msg_in None n.a.
rec_po_update_int po_db po_update_int None n.a.
po_update_out po_db get_net_msg_out net_msg_out 1.00
ev_data ev_db ev_query ev_data_return 1.00
rec_ev_update_int ev_db ev_update_int None n.a.
ev_update_ext ev_db get_net_msg_in None n.a.
c2_data c2_db c2_query c2_data_return 1.00
c2_update_ext c2_db get_net_msg_in None n.a.
tdb_data ter_db tdb_query tdb_data_return 1.00
cfg_data cfg_db cfg_query cfg_data_return 1.00
tick_em scheduler None po_update_int 1.00
 po_query 0.50
 ev_update_int 0.01
 ev_query 1.00
tick_t scheduler None c2_query 1.00
tick_tm scheduler None task_control 1.00
tick_su scheduler None cfg_query 1.00
tick_tu scheduler None tdb_query 1.00

Table 3. Flow of requests in the ModSAF architecture model.

External Entities

Component 100 120 140 146 147 148
entity_model 0.501 0.501 0.501 0.501 0.501 0.501
task 0.050 0.050 0.050 0.050 0.050 0.050
task_manager 0.003 0.003 0.003 0.003 0.003 0.003
terr_u 0.005 0.005 0.005 0.005 0.005 0.005
sim_u 0.005 0.005 0.005 0.005 0.005 0.005
ter_db 0.001 0.001 0.001 0.001 0.001 0.001
cfg_db 0.001 0.001 0.001 0.001 0.001 0.001
po_db 0.170 0.189 0.208 0.214 0.215 0.216
ev_db 0.055 0.055 0.056 0.056 0.056 0.056
c2_db 0.011 0.011 0.011 0.011 0.011 0.011
network_interface 0.105 0.125 0.145 0.151 0.152 0.153

Overall Utilization 0.907 0.946 0.986 0.998 1.0 1.002

Table 4. ModSAF architecture utilization analysis results with 50 internal entities.

External Entities/Tasks

Component 50/10 55/11 60/12
entity_model 0.501 0.551 0.601
task 0.050 0.055 0.060
task_manager 0.003 0.003 0.003
terr_u 0.005 0.005 0.005
sim_u 0.005 0.005 0.005
ter_db 0.001 0.001 0.001
config_db 0.001 0.001 0.001
po_db 0.170 0.178 0.185
ev_db 0.055 0.060 0.065
c2_db 0.011 0.012 0.013
network_interface 0.105 0.106 0.106

Overall Utilization 0.907 0.977 1.045

Table 5. ModSAF architecture utilization analysis results with 100 external entities.

