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Abstract 

Software architecture is high-level software design, dealing with the structure and 
organization of large software systems.  The architecture of a software system is defined in terms 
of computational components and interactions among those components.  Architecture 
Description Languages (ADLs) are languages designed to represent software designs at the 
architecture level.  Different ADLs often have different design intents; for example, the ADL 
Rapide supports architecture simulation and the ADL Acme is intended to be both a language 
and an interchange format. 

ADLs are not widely used in the development of simulation systems.  This research 
investigates the utility and effectiveness of ADLs for architecture-level design and analysis of 
simulation systems.  Experimental applications of two ADLs to specification and analysis of 
simulation architectures were conducted.  Rapide was used to model the EnviroFed federation 
architecture and analyze data volume with and without interest management.  Acme was used to 
model the ModSAF federate architecture and to analyze execution time at the component and 
federate levels in ModSAF.  The experiments showed that ADLs could be used to discover 
important features of simulation system architectures. 

1. Introduction 
Software architecture is high-level software design, dealing with the structure and 

organization of large software systems.  Architecture Description Languages (ADLs) are 
languages that represent software designs at the architecture level, typically in terms of 
computational components and interactions among them.  Formal tools and techniques for 
software architecture design, including ADLs, have so far been underutilized in the modeling 
and simulation development community.  A motivating question of this research was whether 
there was a reason for the underutilization, i.e., whether there was some characteristic of 
simulation systems that made conventional ADLs unsuitable for them.  To examine the utility 
and effectiveness of using ADLs for architecture-level design of simulation systems, two 
different ADLs were experimentally applied to the task of representing two existing military 
simulation software systems, one at the federation level and one at the federate level.  These 
experiments are among the first applications of general-purpose ADLs to simulation systems. 



This paper has three main sections.  First, an introductory description of software architecture 
and software architecture description languages is provided.  Second, the project goals and 
methodology are explained.  Finally, the architecture model and the results of the run-time 
performance analysis based on the model are presented for each experiment. 

2. Software Architecture 
This section introduces software architecture and software architecture description languages, 

and discusses their application to simulation systems. 

2.1 Introduction to software architecture 
What is software architecture?  Perhaps because the discipline of software architecture is 

relatively new, no two definitions of software architecture are quite identical, but most are 
substantially in agreement. 
 

Software architecture involves the description of elements from which systems are built, 
interactions among those elements, patterns that guide their composition, and constraints 
on these patterns.  …  The architecture of a software system defines that system in terms 
of computational components and interactions among those components [1]. 

 
The essential idea of software architecture is that software at a high level of abstraction 
can be described as a number of distinct elements or subsystems together with their 
interconnection and interactions [2]. 

 
A software architecture describes a software system as a configuration of components 
and connectors [3]. 

 
Software architecture can be understood as the subset of software design that is concerned 

with the software’s structural aspects.  Those structural aspects are centered on the components 
of the system and the connections between them.  Software architecture can also be understood 
as the highest (least detailed) level of software design.  At the highest level of software design 
most details are eliminated from consideration, leaving or revealing the structure.  Detailed 
software design issues such as specific algorithms and data structures, while important, are not 
generally the concern of software architecture, unless they affect the overall organizational 
structure of the software system. 

Software design in general, and software architecture in particular, includes the notion of 
design patterns.  Design patterns are design and organizational structures that have proven to be 
useful, flexible, or efficient, and reappear in multiple systems [29].  An architecture design 
pattern is “an abstraction over a family of software architectures” [3].  It is possible to “identify a 
set of architecture patterns, or styles, that currently form the basic repertoire of a software 
architect” [1].  Many architecture patterns have been developed and promulgated as software 
architects and system designers have recognized architecture patterns that are consistently useful. 

A basic principle of architecture design is that system or component architectures at one 
design level may be composed into larger systems at a higher level and/or decomposed into sub-
systems at lower levels.  Indeed, software architectures are often developed in practice by 
composition.  Software architecture patterns are in many ways patterns of composition.  An 
architecture pattern describes a way to compose components, connectors, and other architecture 



objects.  As stated in [1], “composing a system from subsystems is unlike programming the 
algorithms and data structures that lie within the primitive subsystems”; the composition activity 
takes place at the architecture level. 

2.2 Specifying software architectures 
Descriptions of large software systems often include a representation of the system 

architecture, which is valuable, but those representations typically use an informal graphical 
notation known as a “box-and-line” diagram.  In box-and-line diagrams, boxes usually represent 
system components or layers, and lines usually represent some dataflow or control connection 
between the components.  Such diagrams are ubiquitous, widely understood at a general level, 
and are certainly better than nothing.  Unfortunately, because box-and-line diagrams are informal 
the semantic meanings of the boxes and lines vary from one box-and-line diagram to the next 
[4]; indeed, they often vary within a single diagram. 

Textual description is also used informally in software architecture practice.  The text may 
mention a particular architecture pattern, e.g. “client-server”, it is rare see a detailed explanation 
of how the architecture being described is consistent with, and differs from, the named pattern.  
While such descriptive text is again certainly better than nothing, like informal box-and-line 
diagrams it is generally ambiguous and not amenable to analysis. 

Less informal than box-and-line diagrams, the Unified Modeling Language (UML) is a 
graphical language in which various aspects of a system are represented by different types of 
diagrams [30].  UML can represent significant structural aspects of a system that have been 
defined to be software architecture; e.g., the UML class diagrams show the packages and 
component classes of a system and UML interaction and state chart diagrams show the behavior 
of the components.  While it is powerful and widely used, UML may yet still be too broad and 
not deep enough for use specifically at the architecture and architecture design levels. 

Formal specification languages (FSLs) are characterized by their mathematical formality, 
including precisely defined syntax and unambiguous semantics.  FSLs are intended to be 
sufficiently formal to be the subject of logical analysis, proofs of correctness, and automated 
reasoning.  For example, the FSL Z (pronounced “zed”), developed primarily at the University of 
Oxford and perhaps the most widely used FSL, is based on first-order logic and set theory [31].  
The reasoning potential provided by the formality of FSLs is appealing.  However, the actual 
structure of the architecture pattern can be difficult to discern in an FSL specification and the 
non-intuitive and unfamiliar syntax of FSLs can be an obstacle to their use by many practicing 
software architects.  FSLs are generally more often used to specify the details of systems at the 
computation or interface design levels rather than the architectural levels. 

Architecture description languages (ADLs) have been developed to avoid the shortcomings 
of informal architecture specification methods and general-purpose design notations.  An ADL is 
“a notation that allows for a precise description of the externally visible properties of a software 
architecture” [3].  In particular, ADLs “provide constructs for specifying architectural 
abstractions in a descriptive notation.  They provide mechanisms for decomposing a system into 
components and connectors, specifying how these elements are combined to form a 
configuration and defining families of architectures or styles” [5].  They generally contain 
language elements for components and connections that define those types of objects rigorously 
enough to perform architectural reasoning about them without delving too deeply into the lower-
level details of computation and interfaces.  ADLs are “… aimed at giving practitioners better 
ways of writing down architectures so that they can be communicated to others and in many 



cases analyzed with tools” [1].  ADL examples include Darwin [9] [10], Aesop [1] [11], Unicon 
[1], Wright [1] [12], Rapide [13] [15], and Acme [17] [18]. 

It has been claimed that six types of ADL language elements form a sufficient vocabulary for 
expressing any software architecture [1].  They are listed below and illustrated in Figure 1. 
1. Component.  Components perform computation and retain state; they are “independent units 

of computation” [5] and “loci of computation and state” [6].  Components correspond to the 
boxes in informal box-and-line diagrams.  They are “black box entities that encapsulates 
services behind well-defined interfaces” and “static abstractions with plugs” [3].  
Components may have a type, such as “filter” or “manager”; these types are analogous to a 
type definition in a conventional programming language or a class definition in an object-
oriented language.  Components may be primitive, not further decomposable at the 
architecture level and generally implemented as compilation units in a programming 
language, or composite, formed by composing other architecture objects.  Components have 
interfaces, through which they interact with other parts of the system. 

2. Connector.  Connectors are relations between components; they “represent interactions 
among components” and “model interactions among components and rules that govern those 
interactions” [5].  They are not objects to be connected in an architecture, they do the 
connecting.  They embody the expected patterns of communication and interactions between 
components.  Connectors represent any type of interaction, such as dataflow and control, 
between components.  Connector descriptions may specify which types of interactions they 
represent and which protocols are associated with those interactions.  Unlike components, 
connectors do not generally correspond to compilation units.  Like components, connectors 
may be primitive or composite, and connectors may be typed, with the types definable in the 
ADL; “pipeline” and “event” are examples of connector types. 

3. Port.  A port is a component’s point of interaction with the rest of the architecture.  Ports 
may have interface and protocol details associated with them.  Ports on components connect 
to roles on connectors (roles are defined next). 

4. Role.  A role is a connector’s point of interaction with the rest of the architecture.  Roles may 
have interface and protocol details associated with them.  Roles on connectors connect to 
ports on components. 

5. Representation.  For a composite object (component or connector), a representation is a 
description of the subordinate objects that have been composed to form the composite object. 

6. Binding.  For a composite object, a binding specifies the mapping or correspondence between 
the interfaces (ports or roles) of the objects that have been composed and the external 
interfaces of the composite object. 
Using an ADL is similar to using a general purpose programming language or specialized 

modeling language in both mechanics and difficulty.  Different ADLs are defined in textual or 
graphical forms (or both in some cases).  Creating an architecture specification in an ADL 
requires entering the text or arranging the graphical elements as one would do for a program in a 
general-purpose language.  The elements of the ADL are generally those architectural elements 
just listed, so ADL statements (or symbols) define the attributes and characteristics of 
components, connectors, and so on, in the architecture, and especially how the elements are 
linked.  Many of the features of an ADL as a language would seem familiar to most 
programmers; for example, some ADLs allow the definition of types (and type hierarchies) of 
components and connectors, with specialized attributes and characteristics, for later use.  ADLs 
also have features specialized for architectural specification, and in this way are similar to 



specialized modeling languages.  Once an architecture specification has been entered in an ADL, 
it can be processed in various ways, including simulating the architecture (as for Rapide, 
described below) or statically analyzed (as for Acme, also described below). 

ADLs provide greater formality of representation than informal box-and-line diagrams 
during the design process.  This forces the architect to consider and specify his/her design for the 
system with more precision, thereby uncovering architectural problems earlier.  ADLs increase 
the likelihood of correctly designed connections (i.e., interfaces, protocols, and dataflows) 
between the components (i.e., modules, algorithms, and data structures) in an architecture [1]. 

ADLs also allow more powerful analysis of designs.  ADLs that are sufficiently formal and 
rigorous so as to express architectural properties in unambiguous ways provide a basis for 
reliable reasoning, manual and automated, about the properties of software systems.  Indeed, 
some ADLs support the simulation of an architecture represented in the ADL.  The goal is that 
such ADL-enabled reasoning and simulation will reveal architectural properties earlier in the 
development cycle, when changes are easier and less costly, than would occur otherwise [1]. 

2.3 Software architecture of simulation systems 
The architecture of a software system can depend on both the computational requirements of 

the system and the application domain of the system.  Simulation systems are generally software 
systems, at least in part, so our discussion of software architecture and ADLs in general apply to 
simulation systems as a special case.  Beyond this general applicability, software design patterns 
specific to particular application domains, sometimes called “reference architectures”, have been 
receiving increasing research attention [1].  M&S is such an application domain.  It is clear that 
architecture patterns have emerged for simulation software.  One example of an architecture 
pattern in the M&S domain is distributed simulation; distributed simulation systems are 
assembled from sets of communicating simulations that cooperate to simulate a common 
simulated scenario.  In the military domain distributed simulations are enable by interoperability 
protocols such as Simulator Networking (SIMNET) [32][33][34], Distributed Interactive 
Simulation (DIS) [35][36][37][38][39], and High Level Architecture (HLA) 
[40][41][42][43][44], which combine both communications standards and system architecture 
requirements.  An example of a different sort of architecture pattern in the M&S domain is 
discrete event simulation (DES).  DES is a venerable and widely applied simulation paradigm [7] 
[8].  In a discrete event simulation, simulated objects change state at discrete instants in time, 
called events, typically doing so while flowing through a series of discrete process steps.  The 
DES paradigm combines both modeling methods and a software architecture pattern.  An 
example of the latter is the event queue, a data structure where pending events are maintained 
and organized, which is nearly universal in DES implementations.  The point of these examples 
is that architecture patterns exist in the simulation domain.  Note also that patterns exist at 
different levels; distributed simulation is primarily a system level architecture pattern, as 
distinguished from a individual simulation level architecture pattern such as DES. 

The relationship between software architecture, composition, ADLs, and simulation 
composability is important.  Because software architectures are often developed by composition, 
an ADL should have a composition operator or notation or capability; ideally, the semantics of 
composition in the ADL should be equivalent to the actual effect of composing software.  
Simulation composability is more than just architecture or software composition.  It is the ability 
to assemble sets of simulation components into simulation systems specific to particular 
applications [45].  To achieve simulation composability it is not enough that the components can 
be combined as software modules; the composition must also produce a valid model of the 



system being simulated.  Hence architectural composition as defined here is necessary but not 
sufficient to support simulation composability. 

3. Research Overview 
Experimental applications of two ADLs were conducted to determine the utility and 

effectiveness of using ADLs to specify and analyze simulation architectures.  Two different 
existing simulation architectures, EnviroFed and ModSAF, at two different levels of 
organization, federation and federate respectively, were modeled so as to provide a range of 
architectural aspects to model.  Existing simulations, instead of new ones, were modeled to 
provide realistic tests of the languages, access to documentation upon which to base the 
architecture models, and bases for comparison with the results of the architecture models. 

Because different simulations were used, a single aspect of the architectures, run-time 
performance, was chosen for analysis to provide some basis for comparison.  Run-time 
performance is often a crucial issue in simulation applications, so ADL support for automated 
analysis of expected performance at the architecture level could be quite valuable. 

  Six specific ADLs were considered for the experiments:  Darwin [9] [10], Aesop [1] [11], 
Unicon [1], Wright [1] [12], Rapide [13] [15], and Acme [17] [18].  Two of the ADLs, Rapide 
and Acme, were selected.  Two ADLs were chosen, rather than one, so as to gain experience 
with more than one language.  Rapide was selected because its architecture simulation 
capabilities were well suited to run-time performance analysis.  Though both Wright and Acme 
support static architecture analysis, Acme appeared to be a better choice for the second ADL 
because of its design intent as an architecture interchange language, a characteristic that could 
also be valuable in the simulation development community, and the fact that Acme could be 
automatically analyzed without recourse to an embedded formal language (unlike Wright, which 
requires another language called CSP). 

4. EnviroFed Experiment 
In the first experiment, Rapide was used to simulate a federation architecture.  The 

experiment was intended to determine if an ADL could be effectively and usefully applied at the 
federation level and if ADL-based architecture simulation could be used to analyze a federation’s 
performance.  Rapide was used to model the EnviroFed federation architecture and to analyze its 
run-time performance.  The EnviroFed experiment had two specific objectives; first, to 
determine if an ADL could be effectively and usefully applied at the federation level, and 
second, to determine if ADL-based architecture simulation could be used to analyze a 
federation’s performance.  The experiment simulated dataflow in the EnviroFed federation in 
two modes:  HLA’s interest management services Data Distribution Management (DDM) in use, 
and not in use.  The Rapide architecture model was used to identify federates within the 
federation that might be unable to process the incoming data quickly enough. 

4.1 Rapide capabilities 
Rapide is a language for defining and executing software architectures.  Rapide is an ADL 

oriented towards architecture simulation [13].  It simulates patterns of events that occur in an 
architecture as it executes [16].  The development of Rapide was initially funded by the Defense 
Advance Research Projects Agency (DARPA) and subsequently by the Air Force Office of 
Scientific Research (AFOSR). 



The output of Rapide after a simulation run is an event list that provides causal and timing 
relationships among the events.  Sets of causal events are termed partially ordered event sets or 
posets [25] [16].  These posets are powerful in that they may be searched and analyzed for 
patterns that could impose constraints on systems of interest.  This is a particularly powerful 
capability for simulations in that the notion of events and causality are central to the core of 
simulation architectures and may easily be applied to distributed and concurrent systems.  For 
example, one may develop a constraint (pattern) for a family of simulation systems or a 
particular federation and test the architecture model for compliance with the constraint. 

Rapide uses a method of encapsulating the outgoing procedure calls in addition to the typical 
public interface to a component into a structure called an interface [26].  Interfaces are then 
connected together instead of the components themselves.  This interface connection architecture 
(as opposed to an object connection architecture) may be used in two ways.  One way is to 
specify the expected behavior of underlying components in the interfaces themselves that allows 
the execution of an architecture model without actually creating models for the components.  The 
second way is to create models for the components and allow the outgoing calls of a particular 
component to access its own interface instead of the public interface of the target component.  
This second method is a powerful feature for both static and dynamic composability.  For static 
composability, this feature can be used to ensure that composable components conform not only 
to a public interface but also to an internal behavioral expectation.  For dynamic composability, 
there is an added benefit that components that conform to a given interface can be mapped and 
executed at runtime. 

Using Rapide’s interface connection architecture, one can determine if a system’s design 
conforms to a particular architecture “family” or class of architectures, such as HLA federations.  
Conformance may imply the following [13]: 
1. The components in the system design comply with the reference architecture interfaces. 
2. The components comply with the reference behavior identified by their interfaces. 
3. The components are connected in a manner identified by the reference architecture. 
4. All constraints within the reference architecture are satisfied. 

The last point is important because constraints can define what an architecture cannot do as 
well as what it must do.  Such constraints are expressed as an event pattern that may or may not 
appear in a poset.  When comparing a test architecture and a reference architecture, Rapide uses 
only points 1 and 4 above. 

In addition to conformance testing, Rapide claims an “architecture-driven system 
development” capability [25].  The idea is to first model the system architecture from the system 
requirements using Rapide.  This is done with only interfaces and connections without 
implementing the components.  Then, Rapide’s analysis methods are used to verify and validate 
the architecture in simulation.  Finally, components are added incrementally until the system’s 
modules are developed to the satisfaction of the architecture. 

In the actual simulation execution of architectures, Rapide uses three analysis methods:  
constraint checking, poset browsing, and animation.  Constraint checking is automatically done 
during the execution of the architecture.  Poset browsing is performed after the execution 
completes.  The posets may be searched and queried to find interesting sequences of events that 
occurred during the simulation of the architecture.  Animation occurs during the execution and is 
a human friendly visual check of the system simulation. 

Rapide’s architectural simulation capabilities allow consistency checking and performance 
analysis for race conditions and other execution sequence issues [5].  Rapide can produce 



executable code in C, C++, or Ada, in order to execute a model, making its analysis capabilities 
more powerful and accessible. 

In Rapide, graphical models can be exported to a Rapide file with corresponding interface, 
module, and architecture components.  The Rapide file may then be edited directly to add further 
complexity.   

4.2 EnviroFed architecture model in Rapide 
Given Rapide’s close ties to distributed simulation architectures and defense, it is no surprise 

that Rapide has already been used to study HLA [27] [14].  These studies concentrated primarily 
on HLA interface specification robustness and compliance; for example, the mechanism and 
sequence of attribute ownership transfer was examined.  However, Rapide was deemed useful 
for other applications as well, including the analysis of simulation behavior models and their 
conformance to standard architectures. 

Rapide was used to specify and simulate the architecture of EnviroFed, a distributed 
simulation system based on HLA.  EnviroFed was developed under the sponsorship of the 
Defense Modeling Simulation Office (DMSO) to “demonstrate the state-of-the-art with regard to 
the representation of the natural environment in DoD simulations” [19] [28].  It is an HLA 
federation composed of a variety of models that either produce or make use of high fidelity 
environmental features or capabilities.  In EnviroFed, environmental impacts are manifested as 
dynamic terrain and weather, such as muddy soil and high winds, that affect simulation events, 
such as vehicle mobility or chemical weapon plume dispersion.  The HLA-compliant federates in 
EnviroFed include: 
1. JSAF.  Constructive simulation; generates and controls battlefield entities, such as vehicles, 

troops, sonar systems, and other sensors. 
2. WALTS (Weapons Analysis and Lethality Tool Set).  Calculates combat damage and provides 

realistic weapon effects modeling. 
3. CUSP (Combined Urban Dispersion Model).  Models the dispersion of chemical and 

biological contaminants. 
4. OASES (Ocean Atmospheric Space Environment Server).  Models current weather 

conditions. 
5. DTSim.  Models dynamic terrain and provides polygons for dynamic terrain features, such as 

craters.  Works closely with HydroSim to model terrain effects. 
6. HydroSim.  Models effects of wet conditions on terrain trafficability. 
7. ModStealth.  Synthetic environment viewer. 
8. WARCON.  Aircraft carrier simulation; models the logistics of launching aircraft from a 

carrier, including below deck operations. 
9. hlaControl.  Controls federation execution. 
10. hlaResults.  Logs and analyzes federation execution. 

Figure 2 shows the Rapide model of the EnviroFed federation.  The architecture components 
that represent the federates are connected by another component that represents the HLA RTI 
and the network.  Note that this view is a logical view of the federation; some the logical 
federates, may actually be composed of more than one federate joined to the federation 
execution.  However, for the purposes of the experiment, this logical view was sufficient.  Figure 
2 also shows the simulation with animation of the EnviroFed model executing in Rapide.  The 
visualization capability in Rapide is called Rapide Animator (Raptor).  The shaded boxes 
indicate control and data flow events involving a variety of federates occurring, in this case, 



concurrently.  The white alert box is a behavior implementation of an “overload” constraint, 
discussed later. 

This Rapide model of the EnviroFed federation was designed for studying data flow between 
the federates.  Table 1 shows the data exchanged among the federates; columns in the table 
identify the data published and subscribed to by each federate.  Unless otherwise noted, data 
exchanges are a one-time occurrence of 48 bytes occurring after an indicated sequence of 
activity.  For example, consider the JSAF entry in the table.  It indicates that JSAF publishes 
entity updates, crater requests, dynamic road requests, contamination reports, and weapon target 
impact data.  The frequency that the data is provided varies depending upon the type of 
information.  JSAF entity updates are modeled to occur every ten seconds for each entity and the 
size of the data is arbitrarily chosen at 48 bytes per entity.  (The 48 byte message size 
corresponds to the size of one of the most common messages on the network, a HydroSim 
feature.  That size was used as the default size for other messages whose sizes were not known.)  
As for data subscribed to, JSAF does not subscribe to all of the published data from the federates 
identified in the table, and every JSAF federate (in federations with more than one) does not 
subscribe to the same data; different JSAF federates subscribe to different data depending on 
their role in the simulation.  However, JSAF federates subscribe to the majority of all data 
published and the data not subscribed to by a typical JSAF federate is relatively insignificant. 

In the EnviroFed Rapide architecture model, DTSim and HydroSim were treated as a single 
federate because of the close relationship of their processing and dataflow characteristics. 

The experiment compared the performance of the federation architecture with and without 
employing DDM.  The final column in Table 1 indicates the significance of DDM to a particular 
federate.  The difference between DDM and no DDM is seen in amount of data on the network 
and the amount of data passed on to the federate from the network interface, which in the model 
is also part of the network component.  Based on an assumption that DDM is implemented using 
multicast and the federation is implemented on a local area network (LAN), in the model the 
amount of data on the network will increase when going from no DDM to DDM.  In a wide area 
network configuration where different subnets are separated by routers, multicast addressed data 
have the opportunity to be screened and, therefore, the data on a particular subnet may be 
reduced.  However, the only opportunity for the data to be screened on a purely LAN 
configuration (all federates on the same network) is at the network interface for each federate.  
Therefore, in the model’s assumed LAN configuration, data on the network increases as packets 
are repeated for each multicast address required for the data. 

Nevertheless, because DDM filters data before it gets to the federate, not all network data has 
to be processed by the federate itself, resulting in a decrease in data processed by the federate 
when DDM is used.  In the model not using DDM means less data on the network but more for 
the federate, while using DDM means more data on the network but less for the federate. 

A Rapide constraint was defined to detect when a federate was overloaded with incoming 
data, which was the condition of interest in the experiment.  When a given incoming data limit 
was exceeded, the federate was deemed to be overloaded; if that occurred, the overload alert 
message was displayed for that federate, as shown in Figure 2. 

Figure 3 illustrates Rapide interface descriptions, using the JSAF federate as an example.  
The grayed dialog box allows one to choose the interface to edit where upon the rightmost dialog 
box may then be used to input actions and behaviors into the interface.  Actions indicate the 
public functionality of a module as well as the internal function calls of the module.  Behaviors 
define rules for executing the actions and provide the basis for executing the architecture.  Figure 



3 also shows an example of a constraint.  The constraint is commented out in the figure as this 
architecture is to be simulated.  If the architecture were to be used as a reference architecture, the 
constraint would be applicable while the behavior portion would be commented.  In this 
particular example the constraint requires that JSAF never receive more than 1024 Kbytes of 
data in one time interval. 

The excerpt below is an example specifying component behavior in Rapide, again for the 
JSAF federate.  In essence, the behavior specified is for JSAF to send out a contamination report 
when a contamination detection event is received from CUSP.  The first line in the example 
identifies three relevant variables for the behavior, ?t, ?ObjID, and ?DATA.  The second line 
in the example obtains values for two of the variables via a network event.  The 
Packets_Receive and Packets_Send behavior generate events that are stored and 
sequenced.  Finally, the where statement test that the event is of type ContamDetect and 
initiates the sending of a ContamReport upon a successful test.  Note that the DDM_flag 
static variable provides information as to whether or not the data was sent using DDM. 

  In this particular case, the J_NTS interface component indicates to the DT_NTS interface 
component in the network module whether DDM is to be used.  The DT_NTS component 
resolves the routing of the data depending upon Table 1 and the usage of DDM. 
 
(?t: time; ?ObjID : Integer; ?DATA : Integer) 
  J_NTS.Packets_Receive(?ObjID, ?DATA, DDM_flag) 
  where(?ObjID = CUSP_ContamDetect) 
  => J_NTS.Packets_Send(JSAF_ContamReport, 48, DDM_flag);; 
 

The next excerpt is from the Rapide definition for the overall EnviroFed federation.  The 
excerpt shows the connections of the module interfaces to the RTI or network module interface.  
Global constraints that cover many or disparate modules may be added here and just as the 
behaviors in interface components the connections in this architectural component would be 
commented.  As shown in the excerpt, modules the represent federates must communicate via the 
NETWORK module, which represents the HLA federate rule stating that all federates must 
communicate through the RTI [42]. 
 
ARCHITECTURE NTFED () is 
-- EnviroFed architecture: Top level module, containing  
-- a network module and eight federation modules. 
 
NETWORKmod : NETWORK; 
JSAFmod : JSAF; 
WALTSmod : WALTS; 
CUSPmod : CUSP; 
WARCONmod : WARCON; 
OASESmod : OASES; 
DTSIMmod : DTSIM; 
MODSTEALTHmod : MODSTEALTH; 
HLACRmod : HLACR; 
 
-- Architecture constraint rules can be added here, if any 



 
-- Below is a set of connection rules that define  
-- communication between the modules 
connect 
  JSAFmod.J_NTS => NETWORKmod.DJ_NTS; 
  WALTSmod.W_NTS => NETWORKmod.DW_NTS; 
  CUSPmod.C_NTS => NETWORKmod.DC_NTS; 
  WARCONmod.WC_NTS => NETWORKmod.DWC_NTS; 
  OASESmod.O_NTS => NETWORKmod.DO_NTS; 
  DTSIMmod.D_NTS => NETWORKmod.DD_NTS; 
  MODSTEALTHmod.M_NTS => NETWORKmod.DM_NTS; 
  HLACRmod.H_NTS => NETWORKmod.DH_NTS; 
END; 
 

In this simple model, further HLA details beyond those already mentioned are not 
implemented and are assumed to be within the federation modules.  For complex software like 
EnviroFed we may have many different views of its software architecture.  The Rapide language 
is flexible enough to simulate them at different levels of detail, from the abstract level 
implemented here to more detailed levels as desired. 

As mentioned, a Rapide architecture simulation produces as output a poset whose event 
causality and timing may be examined.  Figure 4 shows an example portion of the poset 
generated from an execution of the EnviroFed model.  The full EnviroFed poset is quite 
extensive, approximately 50 times as large as that shown in the example.  Rapide provides a 
browser capability that allows queries on a poset.  These queries may be used to search for 
anomalies or to verify that a certain sequence of events always or never occurs.  Further, it is 
possible to specify operations and relationships among events and test for their existence in a 
poset.  As seen Figure 4, the ContamSensor event in JSAF (highlighted in yellow) is sent to 
CUSP and eventually triggers a ContamDetect which is sent back from CUSP to JSAF.  The 
yellow ContamSensor is triggered by a CURRENT_TIME event.  The rest of the events in the 
figure represent a causal audit trail of behavior from the model execution which includes sets of 
dual network events that indicate communication from federates to the network and 
communication from the network back to federates. 

The objective of this experiment was not to produce a high-fidelity model of a particular 
distributed simulation federation (specifically, EnviroFed), but rather to assess the effectiveness 
of Rapide at modeling and analyzing such architectures.  As much information as possible about 
the EnviroFed federation and its federates was gleaned from the available documentation, such 
as [28], but some detail (e.g., data send frequencies) was not available.  Therefore the EnviroFed 
architecture model contains assumptions with respect to the actual EnviroFed architecture, 
primarily in the size and frequency of inter-federate data transfers.  For that reason, the model 
architecture might more accurately be called “EnviroFed-like”, rather than EnviroFed, but we 
use the latter term for expository convenience.  The changes and assumptions may affect the 
numerical analysis results with respect to EnviroFed, but they do not affect the experimental 
findings with respect to using Rapide for architectural analysis of a federation like EnviroFed. 

4.3 EnviroFed experiment findings 
The Rapide model enabled the analysis of dataflow in the EnviroFed architecture.  

Predictions of federates that could become overloaded by dataflow in the federation were found 



using the Rapide architecture model.  In the model, using DDM produced more outgoing 
dataflow per federate but reduced the incoming dataflow per federate compared to not using 
DDM, as would be expected.  Outgoing dataflow per federate is thought to be less important, as 
it was believed to be a burden on the network interface card and not the federate itself.  
Therefore, if adequate network bandwidth is available, using DDM reduces a federate’s burden 
in processing extraneous messages, as evidenced by the architecture simulation results. 

As far as the general utility of Rapide and the Rapide development environment, Rapide 
provides some added user-friendly capabilities that make the utilization of an ADL attractive: 
1. Graphical editor.  The graphical editor provided a quick startup capability in creating the 

architecture and entering the interface and architecture components. 
2. Animation capability.  The animation capability provided the ability to convey architecture 

simulations and issues in a user-friendly way. 
3. Behavior rules.  The behavior rules allowed the simulation execution of the architecture 

without defining the component modules. 
4. Constraints.  The constraints allow the definition of a reference architecture that can be 

compared to other architecture designs and tested for conformance. 
5. Poset browser.  The poset browser allowed the close examination of event causality and 

timing. 
Additionally, the utility of a reference architecture may be increased when using a reference 

FOM.  Using a Rapide model, a federation architect could be able to test both whether the 
federation architecture complies with the reference FOM and also whether the federates in the 
federation follow necessary sequences of events during the federation execution. 

5. ModSAF Experiment 
For the second experiment, the focus of the experiment was narrowed from a federation to a 

federate.  ModSAF was selected as the subject of the experiment because of its widespread use, 
its importance as the basis for other federates, and its familiarity.  Acme was used to model the 
ModSAF federate architecture and to analyze its run-time performance.  The experiment 
analyzed execution time within the ModSAF architecture and its components while simulating 
differing numbers of internal and external entities.  The analysis was used to determine how 
many internal and external entities the architecture could simulate before becoming overloaded. 

5.1 Acme capabilities 
 Acme is a simple, generic ADL that can be used to specify software architectures and 

families of architectures (styles) [17].  Acme was developed at Carnegie Mellon University.  
Acme is intended not only be an ADL in its own right but to serve as a common interchange 
format for ADLs and ADL tools [11].  The process of modeling an architecture with Acme has 
three basic steps [20]: 
1. Identify types.  Identify the architectural objects in the architecture that correspond to the 

Acme language elements. 
2. Define family.  Define a family or set of families for the model.  A family is a set of 

architectural object types specialized for a particular architecture or set of architectures.  
Define a component, connector, port, or role type to represent each of the architectural 
concepts in the family. 

3. Specify architecture.  Using the architecture object types in the family, specify the 
architecture to be modeled. 



Acme is supported by a development environment called AcmeStudio [21].  AcmeStudio is a 
Windows application for graphically editing architectural descriptions written in Acme, which is 
a textual language.  In AcmeStudio, Acme descriptions can be opened, edited graphically, and 
saved in text form.  AcmeStudio provides simple general support for externally developed 
architecture tools, which allow third-party tools to be added into the environment. 

One such tool integrated into the AcmeStudio environment (in fact, the only one in the 
AcmeStudio version used for this work) is a performance analysis tool [22].  The performance 
analysis tool can be used to perform static analyses of the system performance of architectures 
modeled in Acme.  The basis of the tool’s analysis is queuing theory [23].  In a general queuing 
network the basic units are requests, service centers, and queues, connected in network or 
flowchart.  Requests arrive and move through the network, wait at queues for their turn to 
receive service at a service center, and receive service.  When their service is complete they 
again move through the network.  To analyze an architecture’s performance using the tool, 
requests are associated with components, representing processing.  Requests may be initiated 
locally in the component or triggered by a request arriving from another component.  A request 
can trigger one or more requests in other components, with the probability of doing so a 
parameter.  A request transfers from one component to another along connectors.  The user 
specifies the arrival rate of initiated requests.  Requests triggered in a component are serviced by 
that component.  The user also specifies the service time of each component.  Only one service 
time can be specified for a component.  Initiating a request requires no service time.  The 
utilization of a component is arrival rate multiplied by service time. 

5.2 ModSAF architecture model in Acme 

An Acme architecture family, ModSAF_Family, was created for the ModSAF architecture 
model.  The ModSAF software architecture in Acme is shown graphically in Figure 5.  (Figure 5 
is a screen capture from the AcmeStudio graphical development environment for Acme.  The 
Acme textual code equivalent to the graphical version can be found in [24].) 

The ModSAF architecture model consists of thirteen interacting components.  They are of 
two component types, which are not pre-defined types but were user-defined in 
ModSAF_Family: 
1. Internal component.  A component within, i.e., part of, the ModSAF federate. 
2. External component.  A component outside the ModSAF federate. 

The only external component in the model is federation, which is not part of ModSAF 
itself but is included in the model for analysis purposes; it represents all of the other federates 
that ModSAF may interact with in a federation and is the source and sink of network 
communication requests.  It is connected to the ModSAF internal component 
network_interface by the network connector, which represents the physical network as 
well as the network communications infrastructure, including the HLA RTI.  The other 
components in the model are all internal ModSAF components. 

The connectors also fall into two connector types defined in ModSAF_Family: 
1. Control connector.  A connector that mediates control invocation between components. 
2. Dataflow connector.  A connector that passes data between components. 

Control connectors connect the scheduler component and the components below it 
(entity_model, task, task_manager, terr_u, sim_u) and between the 
task_manager and task components.  The remaining connectors are dataflow connectors, 
representing data passing between components.  Most of the connectors in the model represent 



bi-directional dataflow.  Acme models normally use one connector between two components, 
instead of two, to represent bi-directional dataflow.  However, at several places in the model two 
or more connectors were required between two components for performance analysis (the reason 
is described later).  One port type and one role type were defined in ModSAF_Family. 

Table 2 lists the components, gives their service times, and summarizes their ModSAF 
function.  Of course, the components don’t actually perform those functions in the Acme 
architecture model, rather they generate and/or service Acme requests with the given service 
times; a model component servicing a request represents the processing of the actual ModSAF 
components the component corresponds to.  The set of components in the ModSAF model is a 
simplification of the actual ModSAF architecture, but it is sufficient to test the utility of Acme 
for modeling a ModSAF-like architecture. 

In the ModSAF architectural model, Acme requests are used to model flow of control and 
processing by the architecture components.  Different types of requests represent different 
processing tasks by the components.  Components pass requests to represent one component 
invoking or initiating another.  Table 3 lists all of the request types in the ModSAF architecture 
model.  As can be seen from the table, requests may have successors, meaning that when such a 
request is services, the servicing may produce another request, which itself may have a successor 
as well, and so on.  The successor requests are generated in the component servicing the request 
according to the probabilities for each type of successor request shown in the table.  The requests 
flow from component to component on the connectors in the architecture model. 

Two of the components (federation and scheduler) have service times of 0.0 in 
Table 2 because they don’t service requests; they generate initial requests (requests without 
predecessors).  These initial requests have special roles in the model.  Initial requests generated 
in the federation component represent the arrival of network messages from the federation 
that must be processed by the ModSAF architecture.  The request that models the arriving 
network message net_msg_in triggers another request that models the receipt of the network 
message by the network_interface component.  There another request, which may be of 
one of three different types, is generated probabilistically; the three types correspond to three 
different types of network messages, each requiring different actions within the architecture.  
They are sent to different components and are serviced at the destination components.  This 
probabilistic flow of requests is intended to model the processing that may result from the arrival 
of a network message.  The requests in this flow move along dataflow connectors.  The 
scheduler component generates five different types of initial requests.  These requests move 
along control connectors and are serviced at the destination components.  These requests model 
the execution “ticks” for entity_model and service manager (task, task_manager, 
terr_u, and sim_u) components in the architecture. 

The independent variables in the ModSAF architecture model are the number of external 
entities being simulated by the rest of the federation and the number of internal entities being 
simulated by the ModSAF federate.  These independent variables are modeled by the rate of 
generation of initial requests in federation and scheduler respectively; additional 
external entities are modeled by additional network message requests, and additional internal 
entities are modeled by additional execution tick requests of various types.  Both external and 
internal entities impose processing requirements on the ModSAF architecture, modeled by the 
service times of the components processing the corresponding requests.  Service times of 0.2 
msec per request for the network interface and database components and 0.5 msec per request for 
the other components are assumed. 



The model simulates a single ModSAF processing cycle of 200 milliseconds (msec).  During 
a processing cycle each arriving network message should be processed and each internal entity 
model should be given a chance to execute, i.e., “ticked”.  In a cycle, request net_msg_in is 
generated once per external entity and request tick_em is generated once per internal entity.  
Requests tick_tm, tick_tu, and tick_su are generated once per cycle.  One tick_t 
request is generated per cycle for every 5 internal entities.  In Acme, requests are generated 
according to user supplied arrival rates, so to achieve the frequencies desired for the initial 
requests, those frequencies were converted to equivalent arrival rates.  For example, if the 
internal entity count is 50, the arrival rate of tick_em requests is 50 * 0.005 msec = 0.25 msec 
and the arrival rate of tick_t requests is 10 * 0.005 msec = 0.05 msec.  (The arrival rate 
multiplier of 0.005 msec corresponds to 1 arrival per 200 msec.) 

As with the first experiment, the objective of the ModSAF experiment was not to produce a 
high-fidelity model of a particular federate (ModSAF), but rather to understand the effectiveness 
of Acme at modeling and analyzing such architectures.  The parameters of the ModSAF 
architecture model, including processing cycle duration, entities per task, and component request 
service times are based on experience profiling ModSAF implementations and are reasonable 
values, but should be considered approximations for experimental purposes.  The approximations 
may affect the numerical analysis results with respect to ModSAF, but they do not affect the 
experimental findings with respect to using Acme for architectural analysis of a federate like 
ModSAF. 

5.3 ModSAF experiment findings 
Tables 4 and 5 show the results of the static performance analysis of the ModSAF 

architecture model using the parameters mentioned with different independent variables, i.e., 
internal and external entity counts.  The tables’ entries are component utilization values.  The last 
row in the table is the processing utilization of the overall ModSAF system.  It is the sum of 
individual utilization of components.  If the overall utilization value reaches or exceeds 1.0, then 
the architecture is overloaded and cannot complete all the required processing within the 
processing cycle, typically resulting in the internal entity models are not being ticked often 
enough. 

Table 4 shows the results of multiple analyses when the internal entity number was held 
constant at 50 and the external entity count was increased from 100.  According to the analysis, 
the architecture becomes overloaded when the external entity number reaches 147. 

Table 5 shows the results when the external entity count was held constant at 100 and the 
internal entity count was increased from 50.  According to the analysis, the architecture becomes 
overloaded when the internal entity number reaches 60.  In the tables we observe processing 
concentrated in entity_model and po_db; this was expected because these modules are 
involved in the processing associated with internal entities in the ModSAF architecture.  Because 
these modules are the busiest, and adding internal entities directly increases the processing of 
these modules, it makes sense that more external entities can be added than internal entities 
before an overload is detected. 

Note that the federation and network_interface components are not included in 
Tables 3 and 4 because they have service times of 0.0, and so their utilization is always also 0. 

At the conceptual level the process of using Acme to construct an architectural model of 
ModSAF was straightforward.  The Acme language elements were easy to understand and 
Acme’s typing capabilities were sufficient to create specialized types for the type family 



ModSAF_Family.  As an ADL, Acme was easy to use and powerful, for the most part well 
able to express the structure of the ModSAF architecture.  The question here is not whether 147 
is the actual number of external entities or 60 is the actual number of internal entities at which a 
real ModSAF federate becomes overloaded; it is whether Acme can usefully support such 
analyses.  These results, with numerical values that are generally consistent with practical 
ModSAF experience, indicate that it can. 

Turning from the Acme language to the AcmeStudio development environment, its utility in 
this experiment was mixed.  The graphical work environment was certainly more convenient and 
accessible than writing Acme code directly.  The features of AcmeStudio, if they all worked 
properly, would have made a software architect using it to create Acme architecture designs and 
families quite productive.  Unfortunately, the available version of the AcmeStudio tool was both 
unstable crashing repeatedly with loss of data during use, and incomplete, in that some of its 
features did not work properly.  It is possible that these problems have been corrected in newer 
versions of AcmeStudio. 

The performance analysis tool in AcmeStudio had a number of shortcomings when applied to 
a complex architecture such as ModSAF.  The architecture was simplified significantly to fit the 
limitations of the tool, yet even with those simplifications many details of the architecture are 
hidden or implied in the parameters of the model.  The most important of those issues are: 
1. Entity counts.  Entity counts could not be explicitly given as parameters in the system.  The 

number of entities, external and internal, is represented implicitly in the request arrival rates 
at the federation and scheduler components respectively. 

2. Utilization analysis.  The overall utilization values had to be summed manually from the 
utilization values for the individual components.  This would have been impractical for large 
or multi-level architecture models. 

3. Connectors and requests.  Because of the way requests and connectors are associated, it was 
necessary to have two or more connectors between two components if one request in a 
component triggered two or more requests in another component. 

4. Single service times.  One component in the system can only have only one service time for 
all types of requests serviced in the component.  This is clearly a serious problem in the type 
of analysis attempted in this experiment, where different request types represent different 
types of processing in the component. 

5. Static analysis.  Dynamic analysis with request arrival rates, service times, and flows that 
change over time are not possible.  The analysis is static. 
However, even with these shortcomings, the performance analysis tool could be very helpful 

at the architecture design stage when the designers do not yet have many details but would like 
to identify possible bottlenecks or inefficiencies in the architecture.  It was encouraging to be 
able to use the ModSAF architecture model, simplified as it was, to determine entity count 
overload levels that were in the same range as those found for some real ModSAF federates. 

6. Conclusions 
The ADL experiments were successful.  In the first experiment, a Rapide simulation allowed 

a prediction of which federates in a federation might be overloaded when faced with expected 
federation data volume, and what effect HLA DDM might have on that flow.  In the second 
experiment, an Acme analysis produced an estimate of how many internal and external simulated 
entities a federate architecture could support before encountering performance problems.  In each 
experiment a relatively simple architecture model, developed with a modest level of effort, 



produced a finding about the architecture that would have been quite valuable in a non-
experimental context.  In a full-scale development effort such findings early in the development 
process could be very valuable. 

Informal software architecture design methods are widely used in the modeling and 
simulation development community.  Would that community benefit from a more formal 
approach to software architecture that includes using ADLs?  From this study, the answer seems 
to be yes.  Contrary to expectations, no fundamental problems were found with applying general-
purpose ADLs to simulation systems.  The conclusion from this finding is that there are no 
architectural-level characteristics of simulation systems that make them different enough from 
software systems in general to explain the observed underutilization of ADLs in the simulation 
development community.  We found that ADLs could be applied to simulation systems and that 
application could benefit the simulation development process.  The possible benefits include: 
1. Robustness.  Simulation architectures that are more reliable, stable and expandable than 

previous and current architectures will result from the employment of software architecture 
discipline, with or without the explicit use of ADLs. 

2. Composability.  The use of ADLs will support the community goal of composability, at least 
at the conceptual level, by making explicit the notions of simulation components, connectors, 
and their interfaces, at a level of detail more accessible than an API, and helping architects to 
see their simulation systems as compositions. 

3. Knowledge transfer.  Simulation architectures specified using ADLs can be studied as 
examples of good (or bad) design, and ADL descriptions for production simulations will 
serve as a good starting point for developers who need to become familiar with a system. 

4. Risk reduction.  Analysis of architectures using ADL-based reasoning can, as demonstrated 
in this study, reveal key aspects of simulation architectures, such as performance.  This 
should lead to identification of potential problems earlier in the development cycle. 
Though some benefits will accrue even from the use of any or multiple ADLs, we believe 

that the simulation community will derive maximum benefit from adoption of a standard 
community-wide ADL, due to the usual benefits of standardization.  More study and research are 
needed to identify or develop an appropriate ADL for the simulation community. 
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Figure 1.  Generic architecture description elements (adapted from [1]). 



 

 
 
Figure 2.  Simulation of EnviroFed model in Rapide. 



 

 
 
Figure 3.  Rapide interface definitions for EnviroFed model. 



 

 
 
Figure 4.  Rapide poset example. 
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Figure 5.  ModSAF software architecture in Acme. 



 
Federate Data Published Data Subscribed DDM? 

JSAF Entity updates (vehicles, troops, sonar, sensors) for ~100 
entities:  48 bytes/entity/10 secs 
Requests (crater requests, dynamic road requests): 
 48 bytes/3 mins 
ContamSensor:  48 bytes/3 mins 
ContamReport:  48 bytes/3 mins 
WeaponTargetImpact:  48 bytes/3 mins 

OASES 
DTSIM (HYDROSIM) 
WARCON (PC-SWAT) 
CUSP 

Yes 

WALTS AgentRelease:  48 bytes/3 mins JSAF:  WeaponTargetImpact No 

CUSP Entity dosage updates: 
 1 Kbytes/entity/10 secs 
ContamDetect:  48 bytes/3 mins 

OASES 
WALTS:  AgentRelease 
JSAF:  ContamSensor, ContamReport 

No 

OASES Sea state object updates (wind, wave, precipitation, clouds, 
and haze on rectangular grid; salinity, temp, current, 
and tides on curvilinear grid): 
 1 Kbytes/3 mins 

None No 

DTSim & HydroSim Repolygonalization service and terrain modification report: 
 1 Kbytes/request/3 mins 
Feature updates for ~1000 features: 48 bytes/feature/3 mins 

JSAF 
OASES 

Yes 

ModStealth None All No 

WARCON Aircraft launch:  48 bytes/3 mins 
Mine detection probability:  48 bytes/3 mins 

OASES 
JSAF:  sonar, mine 

No 

hlaControl None All No 

hlaResults None All No 

 
Table 1.  Dataflow among federates in Rapide model of  EnviroFed. 
 



 
Component Service 

Time Represented Functionality 

federation 0.0 Represent entire federation outside ModSAF; 
source of incoming network messages 

scheduler 0.0 Control execution flow within ModSAF; 
initiate execution of other internal components 

entity_model 0.5 Simulate physical dynamics of individual entities 
task 0.5 Simulate tactical behaviors of groups of entities 
task_manager 0.5 Initiate and control execution of tactical behaviors 
terr_u 0.5 Provide terrain services to other components 
sim_u 0.5 Provide initialization and parameter services 
ter_db 0.2 Maintain and access terrain database 
cfg_db 0.2 Maintain and access parameter database 
po_db 0.2 Maintain and access simulated entity database 
ev_db 0.2 Maintain and access event database 
c2_db 0.2 Maintain and access command and control database 
network_interface 0.2 Receive incoming network messages 

 
Table 2.  ModSAF architecture model components. 



 
Request Servicing 

Component 
Predecessor 

Request 
Successor 
Request(s) 

Successor
Probability

net_msg_in federation None get_net_msg_in 1.00 
net_msg_out federation get_net_msg_out None n.a. 
get_net_msg_in network_interface net_msg_in po_update_ext 0.95 
   ev_update_ext 0.04 
   c2_update_ext 0.01 
get_net_msg_out network_interface po_update_out net_msg_out 1.00 
po_query entity_model tick_em po_data 1.00 
po_update_int entity_model tick_em rec_po_update_int 0.90 
   po_update_out 0.10 
po_data_return entity_model po_data None n.a. 
ev_query entity_model tick_em ev_data 1.00 
ev_update_int entity_model tick_em rec_ev_update_int 1.00 
ev_data_return entity_model ev_data None n.a. 
c2_query task tick_t c2_data 1.00 
c2_data_return task c2_data None n.a. 
task_control task_manager tick_tm None n.a. 
cfg_query sim_u tick_su cfg_data 1.00 
cfg_data_return sim_u c2_data None n.a. 
tdb_query terr_u tick_tu tdb_data 1.00 
tdb_data_return terr_u tdb_data None n.a. 
po_data po_db po_query po_data_return 1.00 
po_update_ext po_db get_net_msg_in None n.a. 
rec_po_update_int po_db po_update_int None n.a. 
po_update_out po_db get_net_msg_out net_msg_out 1.00 
ev_data ev_db ev_query ev_data_return 1.00 
rec_ev_update_int ev_db ev_update_int None n.a. 
ev_update_ext ev_db get_net_msg_in None n.a. 
c2_data c2_db c2_query c2_data_return 1.00 
c2_update_ext c2_db get_net_msg_in None n.a. 
tdb_data ter_db tdb_query tdb_data_return 1.00 
cfg_data cfg_db cfg_query cfg_data_return 1.00 
tick_em scheduler None po_update_int 1.00 
   po_query 0.50 
   ev_update_int 0.01 
   ev_query 1.00 
tick_t scheduler None c2_query 1.00 
tick_tm scheduler None task_control 1.00 
tick_su scheduler None cfg_query 1.00 
tick_tu scheduler None tdb_query 1.00 

 
Table 3.  Flow of requests in the ModSAF architecture model. 



 
External Entities 

Component 100 120 140 146 147 148 
entity_model 0.501 0.501 0.501 0.501 0.501 0.501 
task 0.050 0.050 0.050 0.050 0.050 0.050 
task_manager 0.003 0.003 0.003 0.003 0.003 0.003 
terr_u 0.005 0.005 0.005 0.005 0.005 0.005 
sim_u 0.005 0.005 0.005 0.005 0.005 0.005 
ter_db 0.001 0.001 0.001 0.001 0.001 0.001 
cfg_db 0.001 0.001 0.001 0.001 0.001 0.001 
po_db 0.170 0.189 0.208 0.214 0.215 0.216 
ev_db 0.055 0.055 0.056 0.056 0.056 0.056 
c2_db 0.011 0.011 0.011 0.011 0.011 0.011 
network_interface 0.105 0.125 0.145 0.151 0.152 0.153 

Overall Utilization 0.907 0.946 0.986 0.998 1.0 1.002 

 
Table 4.  ModSAF architecture utilization analysis results with 50 internal entities. 



 
External Entities/Tasks 

Component 50/10 55/11 60/12 
entity_model 0.501 0.551 0.601 
task 0.050 0.055 0.060 
task_manager 0.003 0.003 0.003 
terr_u 0.005 0.005 0.005 
sim_u 0.005 0.005 0.005 
ter_db 0.001 0.001 0.001 
config_db 0.001 0.001 0.001 
po_db 0.170 0.178 0.185 
ev_db 0.055 0.060 0.065 
c2_db 0.011 0.012 0.013 
network_interface 0.105 0.106 0.106 

Overall Utilization 0.907 0.977 1.045 

 
Table 5.  ModSAF architecture utilization analysis results with 100 external entities. 


