
Mogadishu Terrain Generation and Correlation for Crowd Modeling

Frederic D. McKenzie PhD
Hector M. Garcia

Quynh-Ahn H. Nguyen
Jen Seevinck

Mikel D. Petty
Virginia Modeling, Analysis and Simulation Center

Old Dominion University
Norfolk, VA. 23529

757.683.5590, 757.683.6367
fmckenzi@ece.odu.edu, hgarcia@odu.edu

Keywords:
Synthetic environment, visualization, game technology, terrain generation, correlation.

ABSTRACT: A requisite component of crowd models is an environment in which to test, validate, and, in
general, execute those models. The environment should necessarily provide a visualization of the behaviors
produced by those models. We are developing a crowd federate capable of generating a wide variety of
civilian individual and group behaviors at differing levels of fidelity. One question of interest is what effects
do behaviors of differing fidelity have upon the outcomes of military missions in which civilian crowds are
a factor. To answer this question, we have recreated to some extent a portion of the Blackhawk Down
incident in Mogadishu, Somalia using JSAF and a prototype of our crowd federate. In the prototype of the
crowd federate used, game technology was utilized to represent the urban terrain and accompanying
moving models. As one might imagine, terrain generation and correlation of needed geographical regions
was not a simple task. The objective of this paper is to discuss the process involved with the development
and correlation of terrain databases used in military simulation with those employed in game simulations.
In addition, the correlation of the moving models involved will also be discussed. This paper will also
describe and illustrate the developed Mogadishu scenario. As a final point of discussion, the
appropriateness and lessons learned in using these simulation models in the recreation of a historic event
will be addressed.

1. INTRODUCTION

Crowds of non-combatants play a large and increasingly
recognized role in modern military operations, and often
create substantial difficulties for the combatant forces
involved. U. S. military actions in Mogadishu, Bosnia,
Afghanistan, and Iraq exemplify the significant effects
crowds may have on military operations. However, in
spite of their potential significance, realistic models of
crowds are essentially absent from current military
simulations. For the scenarios considered likely in future
conflicts the absence of crowds and of non-combatants in
general would be a serious departure from realism.

VMASC is engaged in a two-phase research project
aimed at developing a crowd modeling capability for
military simulation. The first phase, now complete,
consisted of three parts: a requirements analysis to
identify military simulation crowd modeling
requirements, a literature survey to examine

psychological research relevant to crowd modeling, and a
design study to explore design issues in the
implementation of a crowd simulation [1]. The findings
of the first phase included two that served to focus
development efforts in the second phase. First, we found
that the greatest requirements for a crowd simulation
capability were in real-time tactical training applications.
Second, we realized that there is an important distinction
between crowds (hundreds to thousands of people) and
populations (tens of thousand to millions of people) in
terms of size, behaviors, duration, extent, and effects on
military operations.

In the second phase, now well underway, we are
developing a crowd simulation, implemented as a
distributed simulation federate, that will be interoperable
with existing military simulations and will have a credible
psychological basis for the crowd behavior it generates.
The second phase of the project has seven interrelated
tasks. They are:

1. Crowd federate implementation; design and
development of a simulation that generates and
controls crowd members, is interoperable with
existing military simulations via HLA, and has a
reconfigurable architecture to allow later replacement
of its component models.

2. Cognitive model development; acquisition of
psychological information describing the behavior of
crowds via both literature review and direct
psychological research, the development of a
computational model of crowd member behavior
based on the psychological information, and the
integration of that model into the crowd federate.

3. Requirements analysis continuation; continuation of
the process of identifying requirements for crowd
modeling in military simulation.

4. Historical survey; study and analysis of historical
incidents where crowds had a significant effect on the
course or outcome of military engagements.

5. Reference scenarios; development of documented,
historically accurate scenarios in a military
simulation of historical events involving crowds, for
testing and validation of the crowd federate.

6. Experiments; conduct of two experiments planned to
test the crowd federate, the first to examine the level
of crowd behavior fidelity needed, and the second to
test the architectural reconfigurability of the crowd
federate.

7. PMFserv evaluation; independent evaluation of a
psychological model based on performance
moderator functions.

2. BACKGROUND

A requisite component of crowd models is an
environment in which to test, validate, and, in general,
execute those models. In order to accomplish this, a
decision was made to use 3D studio Max, a common 3D
modeling package for the gaming industry, as the primary
tool for generating the synthetic environment database
due to it’s flexibility and powerful 3D modeling engine as
well as to meet the requirements of producing multiple
correlated data formats that were used in the Crowd
Modeling project. These two formats were a CTDB file
for JSAF and a Maya format file for the 3D stealth view,
which was powered by a PC game engine called
Renderware. After the environment was generated, we
proceeded to convert the database into the several formats
required. The tools used for such conversions are:
Terravista with the DART plug-in tool, which allowed us
to use the database with JSAF, and Multigen-Paradigm
Creator, for generating the model files required by
Terravista.. The process employed to generate this
environment is described in further detail below.

3. GENERATING THE ENVIRONMENT

3.1 Generating the Mogadishu Terrain.

The first step we took in generating the environment was
to locate an appropriate satellite picture of the area
(Figure 1).

Figure 1: Mogadishu Satellite Photo (Credit: Space Imaging)

We then proceeded to import the image map into 3D
studio MAX using the provided scale information on the
image. A terrain block was created to scale, which
covered the area shown in the picture, and textured with
the satellite picture.

These steps provided a background for generating the 3D
buildings used in the simulation. In parallel we used
another satellite picture with a broader overview to
correlate with a CTDB database which included the area
of interest (Figure 2). The original CTDB database was
used to geo reference all of the work that was done in 3D
studio MAX. Terravista with the DART option was used
to convert the CTDB into an Open Flight file, which then
was imported into 3D studio MAX.

Once the terrains where imported into 3D studio MAX,
the next step was to construct the buildings around the
areas of interest.

3.2 Constructing the Buildings in Mogadishu

For the construction of the buildings in Mogadishu, we
did not have a lot of source data, so we decided to take the
data available from the satellite pictures, as a guide for

tracing the footprints of the buildings, and then creating
an ‘extrusion’ of such footprint to create the buildings.
We also used Nova logic’s Black Hawk Down game as
reference material from which to create the buildings
from.

Since each of the buildings was created from the satellite
picture, they were already referenced to the coordinate
system of the dataset. All of the buildings were given a
‘generic’ texture, and the ‘target’ building was given a
more detailed look than the rest of the buildings (figure
3).

Once the buildings were created, then the task of
preparing them to be translated into a CTDB file for use
into JSAF began. We were able to use 3D studio MAX to
quickly identify faces, which would provide the attributes
‘footprint’ and ‘roofline’ for the CTDB file. After the
faces where identified and duplicated as part of each
model, then a conversion was made within 3D Studio
MAX to translate the files from the MAX file format to
Maya format, for use in the stealth 3D viewer, and to the
FLT file format for further work on attribute values
necessary to reuse the dataset in a CTDB format.

Figure 2: Correlated terrain with map and satellite picture

Figure 3:

3D view of ‘extruded’ target building

3.3 Preparing the MAX environment for CTDB
compatibility.

After the translation of the Mogadishu 3D Studio MAX
file into the Open Fight format, we continued to define
attribute parameters of the database inside Multigen-
Paradigm’s Creator.

Creator was used to give the proper flag attributes to each
of the faces previously identified in 3D Studio MAX as a
‘roofline’ and a ‘footprint’. One of the reasons why the
extra step was needed to define these attributes in Creator,
is because 3D Studio MAX was not originally intended to
model 3D environments for real-time simulations,
although for the past 3 years this tool has been evolving to
be the tool of choice for real-time game design.

Once these attributes were defined, and then the database
was saved in the Open Flight format it was then taken into
Terravista to prepare it for final conversion to a CTDB
file.

3.4 Using Terravista and DART for generation of
CTDB

We used a plug-in module in Terravista called DART
(Database Automatic Re-Use Technology) to be able to
reuse the original CTDB file and then add the new
environment information created with 3D Studio MAX.

This procedure involved importing the Open Flight files
of all the buildings into Terravista and adding them as
culture data.

In order to do this, we imported an Open Flight vector
file, originally created in 3D Studio MAX, by using the
DART Terrain Converter importer. Once the file was
imported we used the editor tool in Terravista to assign
the buildings we previously imported to the vector file
(Figure 4).

It is of importance to mention that within the scope of this
project and the strict time schedule we only developed
building structures that were not accessible on the inside,
therefore we made no use of the MES (multi elevation
structure) capabilities, but this is not to say that we could
not easily expand on our existing model to add such
features.

Figure 4:

Culture vector file with building footprints assigned

Finally the ‘gaming area’ was defined from the terrain
tiles making sure that the gaming area followed CTDB
rules for area selection, which in this case was to make
sure an 8x8 tile area was used.

We then proceeded to build the ‘gaming area’ with the
SAF_USA option enabled, which produces a CTDB file
of the built project from Terravista.

The resulting CTDB file was used in JSAF as the terrain
database on which to run the crowd federate.

4. CHARACTER MODELING, RIGGING,
AND ANIMATION

The creation of the civilian and soldier models is
constrained by the real time performance requirements of

the end application. Since many figures are being
rendered at any one time (a crowd), these must be
optimized for maximum realism and performance.

Reducing the resolution of textures and minimizing the
number of polygons in a figure reduces the computational
load on both the rendering engine and the crowd
behavioral model.

A lower polygon count is synonymous to a lower
resolution and the end application (e.g. the distance of the
virtual eye to the crowd) must be considered when
determining thresholds, else the realism of the end
product may be compromised. A range of 500 - 800
polygons per figure was determined as optimum for our
application.

Each figure model is rigged with an inverse kinematic
skeleton. Once this hierarchical system of bones is built
to fit the mesh, it is then bound (attached) to the mesh
model of the figure and finally configured to enable
animation:

1. Skeleton joints are appropriately constrained for
animation purposes (eg knees don’t bend
backwards.)

2. The relative weighting of bones and their
deformative effect on the bound mesh is adjusted
for smooth deformations rather than folds in the
mesh.

3. Pole vectors and animation handles are defined.

The project required animations of two types: cycling and
blending (for between cycles). Cycles such as walking
were keyframed in maya then rendered to clips that the
AI-Implant behavioral engine can call. When a change in
behavior was required, a blend animation clip would be
called (eg walk to stand) followed by the new animation
clip (stand cycle).

Keyframing is, however, a fairly laborious and time
consuming process (10 seconds of animation typically
takes an animator 40 hours to create). Therefore motion
capture data is now being utilized where this is affordable
and the movements are available (e.g. for
standard/common motions, from the Kaydara library).
Kaydara produces a tool called MotionBuilder that
automates many aspects of character rigging and
animation.

The motions are edited into cycles in Kaydara. In order to
utilize the character rigging feature and since the export
of animation cycles from Kaydara to Maya (.fbx file
format) creates keyframes at every frame, all animation
must now be done in Kaydara, whether motion capture or
keyframed.

Previously all the animation was done in Maya.
Modeling and the generation of animation clips that our
crowd behaviors can call are still done within Maya.
Texturing uses reference images from the web and is done
in Adobe Photoshop image manipulation software.

5. INTEGRATING JSAF, RenderWare, &
AI.implant

AI.implant, developed by BioGraphic Technologies, is
a game AI solution from the entertainment industry that
offers a “real-time interactive artificial intelligence
animation solution…to create incredibly rich character
interactions.” The AI.implant world is made up of
stationary objects such as barriers, surfaces, terrains, and
paths, as well as two types of dynamic objects, the
autonomous and non-autonomous characters, which
interact with this world. In the simplest terms, the
behaviors of an autonomous character is controlled by
AI.implant, while a non-autonomous character is a
character that is not controlled by AI.implant but may
interact within the world. The behaviors provide the rules
that determine how that character will interact with other
objects within the world and generates the steering forces
that change the character’s position, orientation, and/or
speed.

In our prototype, we were able to demonstrate two-way
communication between our crowd federate and JSAF.
We were able to create crowd members in our federate,
publish it to the RTI, and have those characters be
recognized and shown in the JSAF Panel View Display
(PVD). Likewise JSAF entities were generated within the
crowd federate.

AI.implant world is made up of stationary objects such
as barriers, surfaces, terrains, and paths, as well as two
types of dynamic objects, the autonomous and non-
autonomous characters. The non-autonomous character
could be used to model objects such as player-controlled
characters, falling rocks, or any other dynamic object that
does not have its behavior controlled by AI.implant.

One of our first goals was to come up with an architecture
that would allow us to integrate the HLA entities into our
simulation world. Normally, we could have used
AI.implant’s non-autonomous player-controlled character
to model our JSAF entities in our simulated world.
However, our desire to also incorporate a 3D viewer made
this choice impractical. Although we didn’t want
AI.implant to control any of the movement and behavior
associated with the JSAF entities, we did need it to
control the animation of the characters for the viewer. In
order to accommodate this requirement, we had to modify

the implementation of the player-controlled character.
Instead of using the non-autonomous character, we had to
use an autonomous character that had no behavior
associated with it. We developed a decision tree that was
devoid of all behaviors, and had only commands that
activated the appropriate animation clips for our 3D
viewer.

As mentioned earlier, a 3D viewer was also incorporated
into our crowd federate to allow us to visualize the
entities in both federates. The 3D HLA viewer was
developed using the RenderWare game engine by
Criterion Software.

When we integrated the 3D viewer with HLA, we noticed
some peculiar behavior exhibited by JSAF entities. We
found that when we gave some JSAF entities the order to
move in a direction opposite to the way they were facing,
they would not change their orientation before moving in
that direction. In fact, the soldiers that were used for our
scenario were marching backwards! This is not so
obvious when you view those same entities in the JSAF
PVD, since it is a 2D display, but it became obvious in the
3D viewer.

6. SAF SCENARIO DEVELOPMENT

Developing the Black Hawk scenario in JSAF proved to
be a more complicated enterprise than expected. The first
step, was to examine the movie Black Hawk Down and
the History Channel documentary on the Mogadishu
incident along with various other sources. The goal was
to determine the timeline and to develop the execution
matrix needed for the military component of the scenario.

We were using the DVTE 1.0 version of JSAF, which was
based off of the JNTC branch of the JSAF development
tree. The types of entities that we needed were not
V&V’d by the DVTE group, and were not part of the
DVTE operation list. Therefore, we found that many of
the behaviors that we needed from those entities did not
function correctly. Working within these limitations, we
had to make comprises and use workarounds to model the
scenario.

An example of a workaround was in the modeling of the
convoy of humvees and trucks staged behind the Olympia
Hotel, waiting to pick up the prisoners and soldiers. Since
there were no pre-defined aggregate convoy of humvees
and trucks, we had to use individual humvee and truck
entities, placing each one behind the other. We wanted
these individual entities to act as a single convoy, so we
wanted to utilize the “Follow leader” task order to have
each vehicle follow the vehicle in front of it. However,
we ran into some difficulties trying to get this to occur

consistently. For one, the convoy had to make a left-hand
turn to get onto Hawl Wadaag Rd, which is the road that
the target building was located. The vehicles sometimes
had problems navigating this turn, and would occasionally
run into the buildings and get stuck. This would cause the
vehicles behind them to become immobile, waiting for
their lead vehicle to move. To overcome this problem, we
had to stage the convoy as if they were already on Hawl
Wadaag Rd., each with its own specified straight path
route to follow. This workaround was needed to keep the
vehicles from having to navigate through the narrow
streets of Mogadishu and possibly becoming obstructed
by any buildings.

We also had to make sure that we authorized each vehicle
entity in the correct order, with delays between 5-7
seconds to allow them enough time to accept and execute
their orders. During a demonstration, this requirement for
the manual human-in-the-loop task order authorization
makes JSAF difficult to use. In addition, the
workarounds and the need for human intervention make it
difficult to recreate a historic event. Nevertheless, we
believe that there exists a level of fidelity of crowd
behavior that will most closely match the outcome of the
historic event and that level of behavior fidelity is not the
level in which the crowd is excluded from the scenario.

7. CONCLUSIONS

Using 3D Studio MAX as a common platform from
which to produce correlated source data that was valid
across multiple applications proved to be very helpful for
the production pipeline of the Crowd Modeling project,
by allowing us to make quick modifications that could
then be then propagated to the other tools.

As part of this pipeline, visuals were generated that we
required for the 3D stealth viewer using the Renderware
rendering engine while at the same time providing
correlated information to JSAF.

This project explored he convergence of military
simulation technology with gaming simulation technology
as a front end. By doing this we are able to produce not
only a highly realistic simulation, but also a capability of
displaying the simulation in a highly detailed manner, by
taking advantage of gaming technology rendering
engines, which are optimized for visual quality and speed
performance.

8. REFERENCES

[1] M. D. Petty, F. D. McKenzie, and R. C. Gaskins,

“Requirements, Psychological Models, and Design
Issues in Crowd Modeling for Military Simulation”,
Proceedings of the Huntsville Simulation Conference
2003, Huntsville AL, October 29-31 2003.

.

9. ACKNOWLEDGEMENT

This research described in this paper is sponsored by the
Defense Modeling and Simulation Office and managed by
the Air Force Research Laboratory. That support is
gratefully acknowledged.

10. AUTHOR’S BIOGRAPHIES

Frederic (Rick) D. McKenzie is an Assistant Professor
of Electrical and Computer Engineering at Old Dominion
University. He received a Ph.D. in Computer
Engineering from the University of Central Florida in
1994. Dr. McKenzie previously held a senior scientist
position at Science Applications International
Corporation. He has had several years of research and
development experience in the software and artificial
intelligence fields. Both his M.S. and Ph.D. work were in
artificial intelligence.

Hector Garcia is responsible for the management of the
VMASC’s Virtual Environments research area. He also
develops richly interactive and visually compelling
immersive simulations. Mr. Garcia received an M.Arch
from University of Houston in 1997, and a B.Arch from
Universidad Regiomontana in Monterrey, N.L. Mexico.
Mr. Garcia has worked in Immersive Visualization
Environments since 1995. He previously worked for the
Virtual Environments Technology Laboratory at the
University of Houston.

Quynh-Ahn (Mimi) H. Nguyen is a Ph.D. student in the
Modeling and Simulation (M&S) program at Old
Dominion University and a Research Assistant at the
Virginia Modeling, Analysis and Simulation Center
(VMASC). She received a M.S. degree in M&S from Old
Dominion University in 2003 and a B.S. degree in
Electrical Engineering from George Mason University.

Jen Seevinck is a Research Scientist at VMASC East's
virtual reality facility. Here she has worked on medical
and engineering visualizations as well as the virtual
environments for training. Her work at ODU includes
object modeling/texturing/animation and project
managing. Prior to joining VMASC in 2001, Ms Seevinck

established and lectured in computer animation and
multimedia at Australia's Deakin University. She has
held similar faculty positions at the Australian National
University and worked as a freelance designer on
interactive museum exhibits, web, architecture, theatre
and film. Ms Seevinck has an undergraduate degree in
architectural design and a master in electronic arts with a
thesis in VR interface design from the Australian National
University.

Mikel D. Petty is Chief Scientist of the Virginia
Modeling, Analysis and Simulation Center at Old
Dominion University. He received a Ph.D. in Computer
Science from the University of Central Florida in 1997.
Dr. Petty has worked in modeling and simulation research
and development since 1990 in areas that include
simulation interoperability, computer generated forces,
multi-resolution simulation, and applications of theory to
simulation. He has published over 90 research papers and
has been awarded over 30 research contracts. He has
served on a National Research Council committee on
modeling and simulation and is currently an editor of the
journals SIMULATION: Transactions of the Society for
Modeling and Simulation International and Journal of
Defense Modeling and Simulation.

