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Abstract:  Personality is a significant influence on human behavior.  In the context of military 
decision-making, different military commanders may behave differently when faced with the 
similar circumstances, depending on their personalities.  Moreover, personality may cause the 
same commander to react differently to similar situations encountered at different times.  The 
effect of personality on decision-making behavior is intrinsically complex and is further 
mediated by such factors as stress and situational context.  This research investigates the 
inclusion of personality in models of military command decision-making.  A simulation was 
implemented wherein a simulated commander must make critical decisions under multiple 
pressures.  The commander's human behavior model allows the specification of personality using 
a set of personality traits.  In general, personality traits determine a person’s predisposition to 
exhibit a particular behavior under varying situational conditions.  In this research, the 
commander’s personality traits and the situational conditions were combined to produce effects 
such as reaction time delay and decision accuracy and effectiveness modifications.  The research 
showed that incorporating trait-based personality models of human behavior into simulations is 
feasible and can produce realistic effects on the decision-making of a simulated commander.  It 
also revealed opportunities for further development of the approach. 



1. Introduction 
 
Due to the uncertainties inherent in military operations and the variations in human personalities, 
military command and control behavior rarely conforms strictly to doctrine.  (Of course, the 
degree of conformity to doctrine may vary.)  In a military simulation with automated 
commanders, models of command behavior and decision-making that follow doctrine precisely 
and exhibit no variations are therefore unrealistic.  Automated commanders that exhibit doctrinal 
behavior are essential for training, especially at the introductory levels, but are not sufficient for 
the full range of purposes the simulation may be applied to, such as advanced training and 
mission rehearsal.  Simulation users may seek an automated commander that realistically models 
the effects of the fog of war and the difficulty of making doctrinal decisions under stressful 
conditions. Such realism in simulation could better prepare trainees for expected encounters on 
the battlefield. 
 
To achieve this end, the realistic modeling of human behavior has become a pervasive topic in 
the modeling and simulation community.  How does one go about representing realistic human 
behavior?  Some psychologists have looked to personality traits to characterize behavior. 
Different humans behave differently in the same situation, depending on their personalities.  
Commander personality has a significant effect on command decision-making, so modeling 
personality and its effects on command could improve simulation realism.  For some 
applications, realistic command simulation may require a representation of personality. 
 
We have implemented and tested a simulation that incorporates a trait-based model of human 
personality into the decision-making of a simulated commander.  The model was implemented 
and used in an experiment intended to test its utility in producing more realistic human decision-
making in a way that could be validated by personality and performance measurements of real 
human commanders.  The simulation models a decision-making scenario where a commander 
must dispatch and route trucks, assumed to be loaded with food and medicine, to a refugee camp 
with urgent requirements for the supplies.  Land mines have been placed, in numbers that vary 
by road segment, in the road network between the supply depot and the refugee camp.  The 
mines will disable a portion of the trucks that attempt to traverse each segment, based on mine 
density.  The simulated commander knows the roads are mined but does not know the number of 
mines on the various road segments in the network and so must make dispatch and routing 
decisions in the absence of complete information and with the expectation of having trucks 
disabled.  In this scenario, time does not permit the mines to searched for or removed; the only 
method the commander has to learn of the relative danger of different road segments is to route 
trucks along them.  The simulation forces the commander to make decisions under the stress of 
conflicting goals; the trucks must reach the refugees quickly, but the road network must be 
explored carefully to determine the least dangerous routes. 
 
The following sections of this paper cover these topics.  The personality traits that are the 
psychological basis of the model of human personality used in the automated commander are 
briefly reviewed.  The experimental scenario and simulation of it is described.  Details of the 
design of the automated commander, including the integration of the trait-based personality 
model, are given.  The results of experimental testing of the model are reported.  Finally, an 
alternative set of traits for the human personality model, suggested by the results, is provided. 



 
2. Personality traits and decision-making 
 
In the context of military command it is critical to assign the right person to the right job and 
adequately train that person to competence. As military trainers have found, training and 
repetition can train out certain undesirable characteristics of a person’s performance. For 
example, a person with sufficient training in the situation he/she faces may exhibit reduced fear 
and panic response, have better reaction time, and make fewer careless mistakes. Unfortunately, 
when in a stressful or unexpected situation, especially one which a commander’s training has not 
prepared him/her for, the commander’s behavior and decision-making performance may revert to 
his/her innate psychological characteristics.  In such circumstances a commander’s individual 
personality is most visible in his/her behavior.  For simulations purposes a commander model 
that accounts for personality would be useful for producing realistic decision-making behavior 
from psychological profiles of human decision-makers. 
 
Models of personality have been considered in the past, but progress has been dependent on the 
existence of appropriate tools for evaluating personality traits in the context of military decision-
making.  The trait-based personality model used in this research is based on an extensive 
investigation of the battlefield behavior of 20th-century infantry [1] and has been previously 
suggested for applying a trait-based model in simulation [2].  The model asserts eight distinct 
personality traits that impact decision-making.  Those personality traits are listed and defined as 
follows: 
1. Stability.  This is a generic trait that expresses a person’s overall emotional stability, rather 

than a particular emotion.  It serves as the “governor” of emotional expression, particularly 
extreme emotions such as panic. 

2. Anxiety.  This trait expresses a person’s inherent fearfulness. 
3. Anger.  Broadly expressing the emotion of anger, this trait also accounts for a person’s 

inherent aggressiveness and resentment. 
4. Humor.  Representing more than a simple sense of humor, this trait also expresses a person’s 

capacity for emotional “bounce-back” and the ability to recover from sudden shocks, losses, 
and other negative impacts on morale. 

5. Acquiescence.  This trait represents a person’s willingness to follow commands, orders, and 
other leaders. 

6. Independence.  This trait expresses the ability of a person to make decisions independently, 
without leadership. 

7. Charisma.  A composite trait that collectively expresses aspects of personality that others 
tend to find attractive. 

8. Knowledge.  This trait replaces the ambiguous term “intelligence” which has a particular 
meaning in military terms.  It refers to military knowledge, ranging from weapons and 
equipment to tactics. 

 
Whereas personality traits are relatively stable characteristics of a person, his/her decision 
making can also be affected by the more transient condition of psychological state.  In contrast 
to traits, states are dependent on the situation and relatively temporary.  For example, a person 
may have a consistent predisposition towards anger (a trait), but may have that angry disposition 
overlaid or temporarily displaced by tranquility (a state) resulting from an event such as a 



mission success.   In other words, a person’s trait-based tendencies can be temporarily 
counteracted by event-driven states. 
 
The personality model synthesizes the basic psychological notions of personality traits and states 
into composite factors that influence military command decision-making; these factors include 
situational stress (e.g., the friend-to-foe ratio) and morale (based on a combination of personality 
traits, stress, and support). 
 
3. Experimental scenario and simulation 
 
An experimental scenario was designed to exercise command decision-making.  A simulation 
was implemented to specifically support that scenario. 
 
3.1. Experimental scenario 
 
A hypothetical United Nations (UN) peacekeeping and humanitarian assistance force has 
received an extremely urgent request to deliver medical supplies and food to a refugee camp in 
the Balkans.  The supplies are needed within the next 12 hours to avoid many refugee deaths.  
Extremely bad weather prevents air transport of the supplies.  The UN force has assembled a 
group of trucks at the closest supply depot and loaded them with the needed supplies.  The trucks 
must travel to the refugee camp as quickly as possible. 
 
Unfortunately, what would otherwise be a simple route-planning problem is complicated by the 
fact that hostile militia forces have placed land mines throughout the road network between the 
supply depot and the refugee camp.  The terrain is rugged enough to restrict truck travel to the 
roads.  The exact locations and density of the mines are unknown to the UN commander, and 
there is not sufficient time to perform mine search and removal.  The mines used by the militia 
are of a type that if hit by a truck will disable the truck but will not kill the UN drivers.  The 
trucks are all equipped with radios and global positioning system receivers.  The UN commander 
decides to dispatch and route the trucks individually to the refugee camp, controlling their 
movements centrally by radio from the command post, and to adjust later truck’s routes based on 
knowledge of the mine locations learned from the preceding trucks. 
 
3.2. Experimental simulation 
 
In the simulation of this scenario, the terrain is represented as an undirected graph, with vertices 
corresponding to road intersections and edges to the roads connecting the intersections. Trucks 
are located at vertices.  Trucks move from vertex to vertex along edges.  The supply depot and 
refugee camp are both vertices.  Figure 1 is an example of a terrain graph. 
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Figure 1.  Example terrain graph. 
 
Each edge e in the terrain graph has these attributes: 
1. e.time Time required by a truck to traverse edge e.  These values are determined by the 

geographical distance between the connected vertices, the average speed of truck movement, 
and a random increase to reflect specific road conditions. 

2. e.pmine Probability of a truck being disabled by a mine when traversing edge e. 
3. e.capacity Maximum number of trucks that may simultaneously be traversing edge e.  This 

capacity limit includes trucks that may become disabled on e. 
 
Each vertex v has these attributes: 
1. v.pmine Probability of a truck being disabled when moving to vertex v. 
2. v.capacity Maximum number of trucks that may be located at vertex v.  This capacity limit 

includes trucks that may become disabled at v. 
 
The simulation implementation employs the discrete-event simulation paradigm.  The movement 
of a truck from one vertex to another is a simulation event, as is the disabling of a truck on an 
edge or a vertex.  When a truck located at vertex vi at current time t moves from vertex vi to vj, 
along edge ek, it arrives at vj at time t + ek.time.  At time t + (ek.time / 2), ek.pmine is used to 
determine if the truck is disabled while moving along the edge.  If it is disabled, the UN 
commander is notified that the truck was disabled.  Otherwise, the truck arrives at vertex vj at 
time t + ek.time.  At that time a determination is made using vj.pmine if the truck is disabled at 
the vertex and the UN commander is notified of the truck’s status, either arrived safely or 
disabled at the vertex.  Because the effects of a large number of mines are being modeled 
probabilistically, mines are not removed when a truck is disable, i.e., the e.pmine and v.pmine 



values are not changed at such events.  No more trucks may be simultaneously located at a 
vertex vi than its capacity vi.capacity; similarity, no more trucks may be traversing an edge ek 
than its capacity ek.capacity. 
 
The automated UN commander decides when to dispatch each truck from the supply depot.  It 
also decides, when each truck reaches a vertex, which connected vertex the truck will next move 
to.  At the start of a trial, the UN commander has no knowledge of the mine distribution (i.e., of 
the v.pmine and e.pmine values).  Over time, the UN commander accumulates an estimate of the 
pmine values based on the experiences of the trucks as they move through the graph.  The 
dispatch and routing decisions are made using a decision model, described in the next section, 
that may consider the estimated pmine values. 
 
In addition to the simulation time taken by the trucks’ movements, the automated UN 
commander’s decisions require time.  The amount of time per decision is a parameter of the 
commander model.  A trial ends when all trucks have either reached the refugee camp vertex or 
been disabled. 
 
4. Design of the automated commander 
 
The implementation of automated commander’s decision model essentially consists of two parts.  
The first part of the decision model is a set of graph search algorithms that find routes in the 
terrain graph; they generate alternatives for the commander’s basic routing decisions.  The 
routing algorithms differ in terms of whether they seek to minimize time, minimize risk of 
disablement, or minimize some combination of those.  The second part of the decision model is 
the trait-based personality model.  It influences the routing decisions in that it is used to select 
among the alternatives generated by the routing algorithms and may also cause a delayed or 
degraded decision. 
 
4.1. Search Algorithms 
 
The cost of a route in the terrain graph is a function of the time to traverse it and the probability 
of being disabled on the route.  The set of graph search routing algorithms used in the automated 
commanders consider one, or the other, or both of those aspects of cost.  The routing algorithms 
are: 
1. Minimum Time Cost (MTC) 
2. Least Damage (LD) 
3. Least Percent Damage (LPD) 
4. Minimum Time Cost and Least Damage (MTCLD) 
5. Minimum Time Cost and Least Percent Damage (MTCLPD) 
 
An A* heuristic search algorithm [3] [4] is used to find the minimum time route through the road 
network.  The minimum time route may vary over simulation time because edges in the network 
may become unusable when trucks are disabled and block further truck traversal on particular 
edges. The algorithm is executed repeatedly to update the minimum time route.  This route is 
used as a standard to measure the performance of the search procedures used.  The true risk of a 
route may be calculated using the true probabilities of disablement (the e.pmine and v.pmine 



values), rather than the estimates of those values derived from experience as a percentage of 
trucks disabled on the edge or vertex.  The true risk of a route may also serve as a performance 
standard. 
 
The other four routing algorithms consider not only minimum time but also heuristics dealing 
with the estimated probability of disablement on a route, based on the quantity or percentage of 
trucks that have been disabled at each edge or vertex on the route.  These values will change as 
the scenario is executed and more trucks are disabled. 
 
Some details of the routing algorithms are now given.  They use these parameters: 
 
#D, %D, pD = number, percentage, and probability of trucks disabled, in total 
#De, %De, pDe = number, percentage, and probability of trucks disabled, on edge e 
#Dv, %Dv, pDv = number, percentage, and probability of trucks disabled, at vertex v 
 
Minimum Time Cost (MTC).  As mentioned earlier, the MTC algorithm uses an A* graph search 
procedure to find the path of least cost (time), which is approximated by an evaluation function 
e(v) that is calculated for each vertex v along the path. The evaluation function sums the actual 
time c(v) required to reach v and the estimated cost h(v) of getting from v to the goal vertex.  The 
MTC algorithm uses the time required to traverse each edge e.time throughout the network to 
calculate these costs.  The evaluation and cost functions for MTC are defined as follows: 
 
e(v)MTC = c(v)MTC + h(v)MTC 
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h(v)MTC = d(v) / K 
 
where R is the route the truck has taken so far to vertex v, K is the average truck speed, and d(v) 
= Euclidean distance 22 ba +  assuming a and b are the horizontal and vertical distances from v 
to the goal vertex. 
 
Least Damage (LD).  The LD algorithm is focused on reducing risk, not time, on its routes; the 
LD cost function considers only the number of trucks previously disabled along a possible route 
segment (edge and terminating vertex).  Movement is directed toward the segment with the least 
number of previously disabled trucks. 
 
c(v)LD = #DE + #DN 
 
Least Percent Damage (LPD).  Similar to the LD algorithm in is focus on risk, the LPD 
algorithm’s cost function considers the percentage, rather than the number of trucks that have 
previously been disabled when attempting to traverse a route segment. 
 
c(v)LPD = %DE + %DN 



 
Minimum Time Cost and Least Damage (MTCLD).  In its cost function, the MTCLD algorithm 
considers both the time and number of trucks disabled for a particular route segment. 
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where AP denotes all paths. 
 
Minimum Time Cost and Least Percentage Damage (MTCLPD).  In its cost function, the 
MTCLPD algorithm considers both the time and percentage of trucks disabled for a particular 
route segment. 
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4.2. Trait-based personality model 
 
Within the framework of the five routing algorithms the challenge is to define what constitutes 
normal and sub-optimal decision behavior and establish a link between a commander’s 
personality and the decisions he/she makes.  The automated commander’s decision model is 
based on the assumption that a human commander would make routing decisions that closely 
approximate (perhaps in sub-optimal form) one of the routing algorithms previously described.  
Which algorithm is the commander would use, and whether or not the decision made would be 
sub-optimal, depends on the commander’s personality traits and the current state of the 
simulation. 
 
As previously described, the commander’s personality is specified with a set of eight personality 
traits.  In general, personality traits determine the predisposition of people to exhibit a particular 
behavior under varying situational conditions.  Such trait and state effects on decisions are 
modeled in this research as decision delay and decision optimality.  For example, stress is a 
situational condition that may affect the decision-making performance of a military commander.  
The personality model causes commanders with certain personality traits to make sub-optimal 



decisions under high stress conditions.  Sub-optimal decisions are obtained from evaluating and 
ranking the five search algorithms against a particular scenario. Ranking may also be chosen 
based on qualitative criteria.  Delayed decisions are obtained by randomly increasing the 
decision time according to parameters that are part of the commander’s personality profile (the 
term personality profile refers to the collection of the eight trait values for a particular 
commander). 
 
The decision model design uses the commander’s personality traits and current simulation state 
to calculate the commander’s stress and morale and ultimately his/her accuracy and 
effectiveness.  Based on those results, one of the available decision actions calculated by the five 
decision algorithms is selected.  The decision selection also includes the possibility of a delayed 
decision (long decision time). 
 
A user interface in the simulation, shown in Figure 2, is used to enter the parameters that connect 
the commander’s personality to the process of selecting the decision of one of the routing 
algorithms.  Via this interface the user enters the effectiveness ordering of the routing 
algorithms, the commander’s reaction time, the commander’s obedience and panic parameters, 
and the accuracy and effectiveness levels associated with the routing algorithms.  The 
commander’s personality traits are used to compute his/her accuracy and effectiveness in a given 
situation; then that value is used, based on the parameters entered in the last portion of this 
interface, to select one of the routing algorithms’ decisions.  Leaders with personalities that make 
them more effective in the current situation will select the decisions of the better algorithms. 
 

 
Figure 2.  User interface for connecting commander personality to decision algorithms. 
 



5. Simulation experiments 
 
A series of simulation experiments were conducted to test the integration of the trait-based 
personality model into the automated commander and its effectiveness at producing realistic 
decision-making behavior. 
 
5.1. Simulation environment and scenario generation 
 
The simulation’s user interface allows the user to create and edit terrain graphs.  Based on user 
inputs, vertices and edges in a terrain graph may be randomly generated and/or manually edited.  
Similarly, edge and vertex attributes, such as e.time and v.pmine, can be generated by the 
simulation and/or manually edited.  Other scenario information, such as number of trucks, is also 
input via the user interface.  Once generated, terrain graphs and scenario data can be saved. 
 

 
 
Figure 3.  Example road network and scenario. 
 
Figure 3 shows an example scenario; the example in the figure is smaller than the road networks 
used for the actual experiments. In the figure the circles represent the road intersections 
(vertices) interconnected with lines that represent the roads (edges). The color green denotes a 
road or intersection that has been traversed without incident, red indicates that at least one truck 
has been disabled on that road or intersection, and blue means that the road or intersection has 
not yet been traversed by any trucks.  In the figure the leftmost intersection (a white node) is the 
supply depot and the rightmost intersection (a green circle) is the refugee camp.  The numbers 
labeling each edge and vertex indicate the number of trucks traversed and disabled. 
 



In addition to the automated commander, the simulation has interactive capability whereby a 
human operator can make the trucks’ routing decisions.  This capability provides a mechanism to 
compare the automated commander’s performance with that of human commanders. 
 
5.2. Performance evaluation metric 
 
The long-term goal of this research is to contribute to generating realistic decision-making 
behavior by automated commanders in simulations.  To assess progress towards that goal the 
effectiveness and realism of the decisions made by the automated commander must be 
quantitatively measured.  The objective is not to obtain some mathematically optimum 
performance level for an automated commander, but rather to generate similar decision-making 
outcomes as would be found in human commanders. 
 
Under the performance metric defined for the scenario, the commander seeks to maximize 
number of trucks arriving at the refugee camp within a given time limit and minimization of both 
the number and the lateness of trucks arriving after the time limit.  The performance metric is 
defined as follows: 
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where:   
N = The number of trucks. 
s = A constant; the time limit given for trucks to arrive at the refugee camp. 
di = 1 if truck i arrives within the critical time limit, 0 if it is late. 
ci = 1 if truck i arrives at the refugee camp vertex, 0 if it is disabled. 
ai = The arrival time of truck i at the refugee camp vertex. 
 
Note that for each truck the quantity cidi will be 0 or 1, the quantity ci(1 - di)(s / ai) will be in the 
range 0 to 1, and only one will be non-zero.  The performance of a commander will be the sum 
of N such quantities, divided by N, which will therefore be in the range 0 to 1 (inclusive).  This 
normalized measure of performance allows the commanders’ performance to be compared for 
different numbers of trucks and different terrains. 
  
5.3. Experimental results 
 
A series of experiment trials were performed using typical road network topology generated over 
a given terrain.  In preparation for the experiments the five search algorithms were executed on 
the experimental networks in order to determine their effectiveness ranking on those networks. 
 
Figures 4, 5, and 6 compare the performance of the five routing algorithms without personality 
influence.  In the figures, the horizontal axis shows time limit and the vertical axis shows 
performance metric values.  All three figures illustrate that the more time a commander has the 
better he/she will perform.  Figure 4 shows the performance of the five algorithms over seven 
trials with a common road network and increasing time limits.  For these trials the road network 



had an equal probability of being disabled by mines at every intersection (vertex) and road 
(edge) in the graph.  In such a road network, where no route segment is lower risk than any 
other, the MTC algorithm will outperform the other algorithms; Figure 4 confirms that result.  
On the other hand, if the probabilities of being disabled vary across the intersections and roads, 
the relative rankings of the five algorithms may be different.  Figure 5 shows a series of ten 
trials, again with a common road network and increasing time limits.  In the road network used 
for these trials the MTC had the worst performance and the LD algorithm was the best in terms 
of the performance metric.  Figure 5 illustrates that the time delay associated with taking 
alternate routes can be justified if a sufficient reduction in the number of disabled trucks results 
from the detours. 
 
Figure 6 illustrates that when the shortest path is only slightly riskier than a longer path there is a 
balance between taking the shortest path (minimizing time) and a longer patch (minimizing risk). 
If the time limit is large (toward the right side of the figure) detouring off the shortest path will 
yield better results, but when the time limit is small (toward the left side of figure) the MTC 
algorithm performs best. 
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Figure 4.  Results for a road network with equal probabilities of disablement. 
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Figure 5.  Results for a road network with widely varying probabilities of disablement. 
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Figure 6.  Results for a road network with slight varying probabilities of disablement. 
 
After verifying the performance of the five algorithms against various road networks, a set of 
several widely varying personalities were encoded into the automated commander.  These 
personality profiles did not correspond to specific persons; there were produced by the 
experimenters to evaluate the model’s ability to increase realism and were intended to be 
representative of typical commander profiles.  The performance results of the representative 
personality commanders were then analyzed for system sensitivity and realism. 
 
Figure 7 illustrates the personality profiles used for two of the representative commanders (as 
well as the user interface in the simulation for entering commander personalities).  Figure 7(a) 
shows a generally “good” commander, with personality traits typical of low anxiety and high 
knowledge.  In contrast, figure 7(b) shows a generally “bad” commander, with high anxiety and 
low knowledge. 
 



 
Figure 7.  Personality profiles for representative good and bad commanders. 
 
Over multiple trials the “good” commander’s average performance value was 0.15 and the “bad” 
commander’s average performance value was 0.08.  Even though the “good” commander was 
simply choosing among decisions made by the five routing algorithms, that commander’s 
average performance was better than any one of the five algorithms because his/her personality 
allowed him/her to choose the best decision for a situation.  For the opposite reason the “bad” 
commander’s average performance was worse than any one of the five algorithms.  Figure 8 
compares the good and bad commanders’ performance values of 0.15 and 0.08 to the 
performance of the five routing algorithms without any personality influence.  The “good” 
commander performs significantly better than any of the five algorithms, whereas the “bad” 
commander performs worse than any of the five algorithms for time limits ≥ 3000. 
 

(a) “Good” commander (b) “Bad” commander(a) “Good” commander (b) “Bad” commander
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Figure 8.  Average “good” and “bad” commander performance. 
 
5.4. Comments on the results 
 
Though the representative “good” and “bad” commanders showed good and bad performance as 
expected, some of the results obtained using the other representative personality profiles were 
more mixed.  For example, it was possible to define a “panicky” commander that would 
outperform a “good” commander in some situations, an unexpected result.  This could be due 
simply to randomness in the simulation, but it is also possible that the representative personality 
profiles were flawed or the method used to connect personality traits to decision-making 
behavior needs improvement. 
 
The next step is to encode personality traits of human commanders obtained via personality tests 
and use those traits in the automated commander.  Eventually, it is hoped that the performance of 
the automated commander and the real commander will be statistically equivalent.  In order to 
achieve these results, two issues must be addressed.  First, a more objective means of providing 
personality profiles is needed.  Unfortunately, there are no personality tests that will provide 
values for the model’s eight traits directly.  A reliable means of determining the values of a 
commander’s personality traits is needed.  Second, the additive linear relationships used to 
describe a commander’s reaction based on personality are imperfect at best.  A learning 
algorithm using non-linear methods to determine likely patterns of behavior may be needed. 



6. Conclusions 
 
The experiments showed that a trait-based personality model could be integrated into an 
automated command and used to influence the decision-making of that commander.  Different 
personality profiles were seen to produce different performance in the experimental scenario. 
 
The experiments suggest that using a trait-based personality model of a commander could 
improve the decision-making realism of the commander.  It also seems that, if reliable 
personality assessment tools can be developed, the personalities of human commanders can be 
used within an automated commander.  The performance of an automated commander could then 
be compared to the human counterpart as a means of validation.  Looking farther ahead, a 
personality model may also be applied to the task of predicting how a particular military 
commander might react in a situation and how to improve that commander’s performance.  
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