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The Use of Morphological Characteristics
and Texture Analysis in the Identification of
Tissue Composition in Prostatic Neoplasia

JAMES DIAMOND, PHD, NEIL H. ANDERSON, MD,
PETER H. BARTELS, PHD, FIAC, MD,
RODOLFO MONTIRONI, MD, FRCPATH, AND
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Quantitative examination of prostate histology offers clues in
he diagnostic classification of lesions and in the prediction of re-
ponse to treatment and prognosis. To facilitate the collection of
uantitative data, the development of machine vision systems is nec-
ssary. This study explored the use of imaging for identifying tissue
bnormalities in prostate histology. Medium-power histological
cenes were recorded from whole-mount radical prostatectomy sec-
ions at � 40 objective magnification and assessed by a pathologist as
xhibiting stroma, normal tissue (nonneoplastic epithelial compo-
ent), or prostatic carcinoma (PCa). A machine vision system was
eveloped that divided the scenes into subregions of 100 � 100
ixels and subjected each to image-processing techniques. Analysis of
orphological characteristics allowed the identification of normal

issue. Analysis of image texture demonstrated that Haralick feature
was the most suitable for discriminating stroma from PCa. Using

hese morphological and texture measurements, it was possible to

efine a classification scheme for each subregion. The machine vision
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ystem is designed to integrate these classification rules and generate
igital maps of tissue composition from the classification of subre-
ions; 79.3% of subregions were correctly classified. Established
lassification rates have demonstrated the validity of the methodol-
gy on small scenes; a logical extension was to apply the methodology
o whole slide images via scanning technology. The machine vision
ystem is capable of classifying these images. The machine vision
ystem developed in this project facilitates the exploration of mor-
hological and texture characteristics in quantifying tissue composi-

ion. It also illustrates the potential of quantitative methods to
rovide highly discriminatory information in the automated identifi-
ation of prostatic lesions using computer vision. HUM PATHOL 35:
121-1131. © 2004 Elsevier Inc. All rights reserved.

Key words: histopathology, imaging, prostate, texture analysis.
Abbreviations: H4, Haralick feature 4; PCa, prostatic carcinoma;

IN, prostatic intraepithelial neoplasia.
Prostate cancer is set to become the most common
ancer in men within the next 3 years.1 New figures
how that the incidence has been rising steadily since
971, and if trends continue, it will overtake lung can-
er before 2006. Around 22,000 cases of prostate cancer
re diagnosed in the UK each year. New statistics show
hat deaths from prostate cancer have gradually de-
lined since the early 1990s, but mortality is still high;
500 men die from the disease each year in the UK.1 A
ontinuing challenge to the medical community is to
evelop successful strategies for treatment and early
iagnosis of prostate cancer. It has been suggested that
utomated machine vision systems would form an ele-
ent of this overall diagnostic strategy by providing

mproved accuracy and reproducibility of diagnosis.
This attractive concept has been around for many

ears now, but it has been limited to cytopathology,
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here progress has been made in developing cervical
creening devices.2,3 In histopathology, the develop-
ent of automated systems has been lagging, essentially

ue to the complexity of imagery. Today, however, with
evelopments in machine vision and intelligent image
rocessing systems combined with advancements in
omputer hardware, the analysis of histopathologic im-
ges for the purpose of objective disease classification is
ow possible.4-9

The adoption of state-of-the-art quantitative meth-
dologies by pathologists requires constant and active
otivation. Baak10 has suggested that the absence of

his motivation by pathologists is a dominant factor
indering modernization of pathology. The objective
f the present study was to investigate emerging meth-
dologies in quantifying diagnostic pathology with the
im of increasing reproducibility and predictive accu-
acy in diagnosis. Baak10 also suggested that these
hemes should not be “merely academically interest-
ng,” but should be required if the concept of objective
iagnosis is to be embraced.

Central to this study is the generation of a repre-
entative image set conveying the varying tissue compo-
itions observed in prostate histology. Images were pre-
elected by a pathologist (N.A. and R.M.) as reflecting
ariation in stroma, normal tissue (nonneoplastic epi-
helial component), or prostatic carcinoma (PCa). The
tudy assessed the use of quantitative methods in defin-
ng the criteria required for implementing an auto-
ated system capable of the unsupervised interpreta-
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ion of histological scenes into the aforementioned
roups on an objective basis.

Contextually, texture plays an important role in
he perception of scenes and is used mainly to achieve
mage segmentation.11 It has been used widely in the
nterpretation of prostatic ultrasound images12,13 and
n nuclear classification.14-16 Previously it has been
hown that texture analysis also provides an effective
ool in tissue classification.17-19 It has been suggested
hat texture analysis combined with image morphology
an provide an effective tool for identifying tissue ab-
ormalities in prostate histology.

ATERIALS AND METHODS
issue

Twelve cases (4 training and 8 test) from whole- mount
adical prostatectomy sections that had been fixed in forma-
in embedded in paraffin, were retrieved from files at The
nstitute of Pathological Anatomy and Histopathology, Uni-
ersity of Ancona, Italy. A set of 5-�m-thick sections were cut
nd stained with hematoxylin and eosin and assessed by pa-
hologists (N.A. and R.M.) as showing regions of the follow-
ng:

1. Stroma: Fibroelastic tissue containing randomly ori-
entated smooth muscle bundles that act as a frame-

FIGURE 1. Histolog
work to support the prostatic architecture, morpho- f

1122
logically forming a homogeneous texture within
defined subregions

2. Normal tissue: Prostatic tissue with increased amounts
of smooth muscle, glandular, and/or stromal compo-
nents

3. PCa: Prostatic adenocarcinomas, histologically diverse
and having more than one characteristic composition.

mplementation

Image analysis was implemented using the Zeiss KS400
maging system (Carl Zeiss, Oberkochen, Germany). A meth-
dology was designed to integrate image processing, texture
nalysis (after Haralick20), and classification rules for the
eneration of digital tissue composition maps.

istological Scene Establishment

Twelve histological scenes were constructed by creating a
eamless mosaic of component images (Fig 1). These images
ere captured at � 40 objective magnification using an Olym-
us BH2 microscope (Olympus, Lake Success, NY) and a
ony DX930P CCD camera (512 � 512 pixel, 8-bit, grayscale)
Sony, Ridge Park, NJ) and overlapped by 10% to allow for
egistration. The system was calibrated by adjusting the light
ource for an empty field until the mean field pixel value was
55 (white). Images often exhibit shading variation due to
ighting irregularities, vignetting by the optical system, and
eterogeneous sensitivity in the camera system or lens arti-

scene description.
ical
act. These effects were minimized by applying a shading
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TISSUE COMPOSITION IN PROSTATIC NEOPLASIA (Diamond et al)
orrection. Glandular preprocessing was implemented to re-
ove intraluminal material (Fig 2). In subsequent tissue iden-

ification, the histological scenes were divided into subregions
or processing. These subregions were sized to reflect the size
nd spatial relationships between and within pertinent ob-
ects (Fig 1).

ubregion Size Optimization

Processing the scene dictates that a subimage size be
efined. Previous studies17,21 have used a dimension of 256 �
56 pixels. However, texture analysis is based on the interre-
ationship between pixel intensities and is not related to the
ize of the subimage. For this reason, a subimage size was
hosen to introduce a high degree of detail in defining the
verall classification map; 100 � 100 pixels was chosen as
ptimal.

lassification Rules

Both texture and morphological characteristics of the
cene were used in the classification of subimages. Texture is
ore appropriate for the identification of regions exhibiting

reater homogeneity in structure. Consequently, in the
resent study, texture was used to distinguish between stroma
nd PCa. A morphological approach was applied to the clas-
ification of normal tissue, where the glandular tissue is het-
rogeneous in nature.

ystem Classification of Histological Scenes

In validating automated machine vision protocols, one

IGURE 2. Gland processing and identification of regions exh
ebris removal. (D) Processed gland. (E) Epithelial layer. (F) No
ust define a “gold standard” for classification. Conse- f

1123
uently, 2 pathologists (N.A. and R.M.) independently as-
essed all histological scenes. From these assessments, contin-
ous diagnostic maps were created reflecting the areas of
troma, normal tissue, and PCa. Subsequently, it was possible
o define color-coded discrete maps based on the subregion
ize (100 � 100 pixels). The assigned color of the subregion
n the discrete map was based on the predominant color in
he corresponding subregion in the continuous map. To
nsure that no glandular tissue was assigned as stroma, any
ubregion that had a glandular component of area �10% was
ssigned as normal tissue. Once the automated assessment of
he histological scene was complete, a system discrete map
as generated based on the classification of each subimage.
ccuracy of the system was determined based on a subimage
omparison between the pathologist and system discrete
aps. Results from the classification were presented to the

athologist as numeric values and as a system continuous map
reated through image processing applied to the discrete
ap and superimposed on the scene (Fig 3).

ESULTS
lassification of Normal Tissue

The classification of normal tissue was achieved
ased on tissue morphological characteristics. The clas-
ification assumed that areas of normal tissue exhibit
arger areas of associated lumen. Lumen were identi-
ed as in the preprocessing operation (Fig 2C). Inter-
ctive measurement of glandular structures (n � 50)

g normal tissue. (A) Original gland. (B) Segmented lumen. (C)
l tissue assignment.
ibitin
rom histological scenes (training set) established a



FIGURE 3. The identification and classification of tissue composition.
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TISSUE COMPOSITION IN PROSTATIC NEOPLASIA (Diamond et al)
ean epithelial region width of 50 pixels. The lumen
bjects identified were dilated by 50 pixels. Subsequent
ubtraction of the original lumen object defines the
pithelial layer (Fig 2E). All subimages that contain
ome part of this object (and lumen) are classified as
ormal tissue and are highlighted in Figure 2F.

lassification of Stroma and PCa

Investigation of Haralick features suggested that
aralick 4 (H4) was the most suitable for discriminat-

ng between stroma and PCa. Figure 4 shows the spec-
rum of change of H4 observed for areas of stroma and
Ca over the histological scenes (training set). A dis-
inct change in image tissue composition between
troma (H4 � 8.0) and PCa (H4 � 8.0) can be seen.
igure 4 also highlights the variation in H4 values for all

FIGURE 4. Threshold boundary for
xample subimages in the training set (nstroma � 1000 p

1125
nd nPCa � 1000). A discrimination threshold was es-
ablished at H4 � 8.0 from examination of subimages
rom both stroma and PCa regions (training set). This
hreshold was set closer to the mean value of H4 for
troma, to minimize the potential for misclassifying
reas showing PCa as stroma and to reflect the visual
hange observed in Figure 4.

nalysis of Histological Scenes

In testing the system, tissue composition from 8
istological scenes (test set) was automatically identi-
ed based on the aforementioned criteria. Overall clas-
ification rates for the system in discriminating stroma,
ormal tissue, or PCa are given in Table 1. Selective
etailed classifications are detailed in the following

discrimination of stroma and PCa.
the
aragraphs and shown in Figures 5, 6, and 7.
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HUMAN PATHOLOGY Volume 35, No. 9 (September 2004)
cene 1 (Fig 5A and B)

The region of stroma (region A) was clearly iden-
ified by the system. The glandular regions (regions B
nd D) were well identified; small differences are visi-
le, but the essence of region identification has been
aintained. Some small regions were misclassified as

Ca. It must be remembered that the process described
ere only suggests areas of abnormality. This false-
ositive result should be further investigated for con-
rmation or nonconfirmation at a higher power. The
egion of stroma (region C) was well defined, except
or misclassification of the urethra area as normal pros-
atic acinar tissue. The correct classification rate for this
cene was 82.5% (Table 2).

cene 2 (Fig 5C and D)

The main region of PCa (region A) was clearly
dentified by the system, with the exception of 2 small
egions of normal tissue. The region of stroma (region
) was clearly identified with its associated regions of
Ca. The small region of normal tissue (region C) was
enerally defined but interpreted in a more frag-
ented nature by the system. The correct classification

ate for this scene was 88.9% (Table 2).

cene 3 (Fig 6A and B)

The main regions of PCa (region A) were clearly
dentified by the system; however, there is an overclas-
ification of PCa. Stroma areas (region B) were well
efined by the system. The correct classification rate for
his scene was 72.6% (Table 2).

cene 4 (Fig 6C and D)

The main region of PCa (region A) was clearly
dentified by the system; however, more stroma was
dentified than is evident on the pathologist’s assess-

ent. The main area of stroma (region B) was identi-
ed, together with its associated islands of PCa and
ormal tissue. The area of PCa (region C) was identi-
ed but is highly fragmented. Two small glandular
reas (region D) exhibiting both PCa and normal tissue
ere identified. The correct classification rate for this

TABLE 1. Classification Details for a

Scene Dimension (pixels) Tissue

* 2295�4407 Stroma, n
* 2277�5280 Stroma, n
* 2345�4032 Stroma, P
* 2408�4712 Stroma, n

2466�4815 Stroma, n
2420�4780 Stroma, n
3864�3717 Stroma, n
2368�4160 Stroma, n

can 58877�42336 Stroma, n

*Highlighted scenes are shown in Figures 5 and 6.
NOTE: Mean correct classification � 79.3% (excluding scan); t
cene was 79.9% (Table 2). e
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cene 5 (Whole Slide Scanned Image)

Regions A and B represent the main areas of in-
erest on this image. Both exhibited areas of PCa. Gen-
rally the PCa in region B was misclassified as normal
issue. The system misclassified regions C and D as Pca,
ssentially due to the existence of lymphocyte aggre-
ates in these regions. The correct classification rate for
his scene was not evaluated.

ISCUSSION

Accuracy and reproducibility in diagnosis is abso-
utely central. Automated imaging provides a potential
latform for removing feature assessment subjectivity
nd identifying the appropriate diagnostic areas of the
lide. In addition, automation possibly could provide a
apid method to screen histopathology for the study of
orphological, histochemical, immunohistochemical,

nd hybridization biomarkers.
Previous work by our group highlighted the poten-

ial of image texture for mapping tissue abnormali-
ies.17 The present study has confirmed the role of
exture algorithms in medium-power scanning of large-
cale histological scenes for identifying normal/abnor-
al prostatic tissue components. It is clear from this
ork that tissue texture can accurately distinguish
mong stromal, normal, and PCa tissues and provides a
eans of locating important regions in medium-power

cans, essential in the development of any automated
ystem. The present study excludes histological grading
r the identification of premalignant conditions, such
s prostatic intraepithelial neoplasia (PIN).

The diagnosis of PCa is complex and based on
any histological observations. The major criteria are

nfiltrative growth pattern, absence of a basal cell layer,
nd presence of macronucleoli. Texture analysis of
edium-power scans has been shown to be capable of

istinguishing between the first 2 criteria. Previous
tudies have demonstrated that the presence of nucle-
li and other morphological features is an important

ndicator of malignancy (occurring in 94% of malig-
ant cases).22 Consequently, it is envisaged that an

stological Scenes (Excluding Scan)

nt Subimages Classification (%)

l 968 82.5
l, PCa 1144 88.9

920 72.6
l, PCa 1128 79.9
l, PCa 1152 74.3
l, PCa 1128 88.4
l, PCa 1406 67.4
l 943 80.3
l, PCa 248,724 N/A

ubimages classified � 8789 (excluding scan).
ll Hi

conte

orma
orma
Ca
orma
orma
orma
orma
orma
orma
xtension to the system mimicking that of a pathologist
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IGURE 5. Histological assessment (scenes 1
nd 2). White lines enclose normal tissue;
lack lines enclose PCa. (A) Conventional
athologist assessment for scene 1. (B) Auto-
ated system assessment for scene 1. (C)
onventional pathologist assessment for

cene 2. (D) Automated system assessment
or scene 2.
1127
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FIGURE 6. Histological assessment
(scenes 3 and 4). White lines enclose
normal tissue; black lines enclose PCa.
(A) Conventional pathologist assess-
ment for scene 3. (B) Automated sys-
tem assessment for scene 3. (C) Con-
ventional pathologist assessment for
scene 4. (D) Automated system assess-
ment for scene 4.



FIGURE 7. Whole slide processing. (A) Whole slide scan. (B) Whole slide abnormality map.
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HUMAN PATHOLOGY Volume 35, No. 9 (September 2004)
ould be beneficial, whereby confirmation of all areas
f PCa would be examined at higher power.

Clearly, the classification of PIN should be consid-
red in an extension to this investigation. The classifi-
ation PIN is complicated by its segregation into low-
rade/high-grade forms with its varying composition
escribed as tufting, micropapillary, cribriform, or flat.
exture analysis will be unable to classify these compo-

itions well, and a combined technique with glandular
orphology will be needed. Texture analysis may also

rovide an approach for histological grading. This is
uggested in Figure 4, which shows a spectrum of dif-
erentiation with respect to H4.

Many established methods exist for the classifica-
ion of textured images. Unfortunately, most tech-
iques assume that the textures are uniformly pre-
ented and captured in the same orientation. This is an
nrealistic assumption for pathological sections. For
pplications such as the current system, texture analysis
eeds to be invariant to orientation. Genuine orienta-

ion invariance is extremely difficult to obtain. In
chieving pseudoinvariance, texture features within
his system are averaged over the four principal direc-
ions (0, 45, 90, and 135 degrees), thus minimizing
irection effects. In all texture-based applications, in-
ariance in the staining of sections and in the illumina-
ion when acquiring imagery is also important. It is
mpossible to ensure total consistency in the staining of
ections, and knowledge of whether the slides used
ere batch-processed is not available. However, given

hese limitations, functionality was built into the image
reprocessing technique to minimize these effects.
onsideration of the classification results has shown

hat the variations in classification rate are essentially
ue to image complexity.

Image analysis technology is a powerful resource
hat can be exploited to provide objective decision
upport for diagnostic pathology. Research and devel-
pment of automated systems in pathology has been

TABLE 2. Classification M

Actual group Subimages

cene 1 Stroma 408
Normal 560
PCa 0

cene 2 Stroma 516
Normal 24
PCa 604

cene 3 Stroma 516
Normal 24
PCa 604

cene 4 Stroma 627
Normal 0
PCa 293
aining momentum, not only for the rapid processing t

1130
nd staining of tissue samples, but also for the auto-
ated analysis of images extracted from tissue microar-

ays and histological scenes. A prerequisite for histolog-
cal diagnosis is that a representative region of tissue

ust be assessed. Because histological structures fre-
uently extend over areas greater than that of a single
amera field, it is necessary to mosaic an array of images
o produce a histological scene (Figs 5 and 6). Many
uthors have considered using automated slide digiti-
ation in this manner for assessing histological
cenes.23,24 However, this is a time-consuming process;
igitization of a 10 � 10 mm region of tissue takes 70
inutes (� 20 objective magnification). It also is sub-

ect to misalignment of neighboring images. New tech-
ologies for slide scanning have recently become avail-
ble, such as the ScanScope slide scanning system
Aperio Technologies, Vista, CA). The Aperio system
as the capability to scan microscope slides at � 20/�
0, reducing scanning times to minutes for an average
lide. In this study, ScanScope was used to scan an
ntire piece of tissue for analysis. Processing this image
resents certain challenges, including the following:

1. Most processing packages to date (including
KS400) do not offer JPEG 2000 functionality.
The image can be converted to other uncom-
pressed formats; however, the resulting image
will be many gigabytes in size (Table 3).

2. Process time for the study was around 5.5 hours,
which is clearly impractical for a routine auto-
mated system. If such images are to be analyzed
in this manner then the move to hardware-based
systems is required. Making use of modern
FPGA (field-programmable gate array) technol-
ogy, for example, would result in a substantial
speed increase with the move to real time image
processing.

Texture is the visual cue perceived from the repe-
ition of image patterns. Color visual cue is the result of

ix for Histological Scenes

Predicted group membership

Stroma Normal PCa

318 (77.9%) 80 (19.6%) 10 (2.4%)
49 (8.9%) 481 (85.7%) 30 (5.4%)
0 (0.0%) 0 (0.0%) 0 (0.0%)

Total correct classification � 82.5%
433 (83.9%) 20 (3.9%) 63 (12.2%)

0 (0.0%) 21 (87.5%) 3 (12.5%)
28 (4.6%) 12 (19.7%) 564 (93.4%)

Total correct classification � 88.9%
433 (83.9%) 20 (3.9%) 63 (12.2%)

0 (0.0%) 21 (87.5%) 3 (12.5%)
28 (4.6%) 12 (19.7%) 564 (93.4%)

Total correct classification � 72.6%
479 (76.4%) 2 (0.3%) 146 (23.3%)

0 (0.0%) 0.0 (0.0%) 0 (0.0%)
104 (35.5%) 0 (0.0%) 189 (64.5%)

Total correct classification � 79.9%
atr
he observation of a specific illuminant on a given
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TISSUE COMPOSITION IN PROSTATIC NEOPLASIA (Diamond et al)
urface using 3 different types of sensors (red, green,
nd blue [RGB]). Because images are obtained in 24-
it format from the scanner, the possibility for extend-

ng texture analysis into the RGB domain is possible.
rocessing each color band separately or deriving tex-
ural information from the luminance plane along with
hrominance features has been shown to increase the
ccuracy of the classification process. Consequently,
olor information may play a role in improving the
iscriminative power of machine vision systems.

In conclusion, the diagnosis of PCa is complex and
s based on many histological observations. The major
riteria are infiltrative growth pattern, absence of a
asal cell layer, and presence of macronucleoli. Tex-
ure analysis of medium-power scans has been shown to
e capable of distinguishing between the first 2 criteria.
revious studies have shown that the presence of nu-
leoli and other morphological features is an important
ndicator of malignancy.22 Consequently, it is obvious
hat full automation will require the identification of
igh-power clues for diagnostic confirmation. However,

ow-power scans provide the means of identifying key
reas of the tissue section that require scrutiny at
igher power.

Advances in automated imaging in histopathology
ill continue, and tissue texture is likely to have an

mportant role. Future work will require close collabo-
ation between pathologists, software engineers, and
omputer scientists. This not only will enhance our
bility to rapidly analyze patient material in an objective
ay, but also will possibly identify new reliable markers
f diagnosis and prognosis.
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