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Abstract

In this paper we present a method for simulating bleeding in a virtual reality hys-
teroscopic simulator for surgical training. The simulated bleeding is required to
be visually appealing while at the same time instantaneously responsive to any
feedback that the surgeon may be conducing to the virtual environment. In order
to meet these real-time requirements, we have based the simulation on graphical
fluid solvers. These solvers primarily work best over a 2D domain. For correct vi-
sualization in the hysteroscopic simulator, it is, however, necessary to perform the
simulation fully in 3D. Therefore in this paper we also present the design modifica-
tions for 3D graphical fluid solving and show how to use parallelization to maintain
real-time behavior. We also discuss how the incorporation of massless particles into
the simulation can improve the visual quality of the results by limiting numerical
dissipation effects.
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1 Introduction

Hysteroscopy is the standard visualization of the inner surface of the uterus
performed by using one hull containing both the endoscope and the surgical
instrument introduced through the cervix into the uterus. To aid visualiza-
tion and surgical intervention, a hydrometra is established by applying fluid
under pressure to distend the uterine cavity. It is the second most often per-
formed endoscopic procedure after laparoscopy in gynecology [1]. Diagnostic
hysteroscopy is used for clarification of pathologic alterations in case of symp-
toms or findings by imaging modalities like irregular bleeding, endometrial
thickening, suspected tumors and problems of infertility or sterility. If neces-
sary, it may be subsequently continued with therapeutic hysteroscopy, e.g. for
removal of polyps and myomas, endometrial ablation, resection of adherences
or uterine septa, cateterism of the fallopian tube or removal of intrauterine
devices [2].

The side effects and iatrogenic injuries depend on the procedure that is per-
formed: while the pure diagnostic hysteroscopy presents almost no major prob-
lems, therapeutic hysteroscopy is associated with a small number of well-
known serious complications. They primarily result from either the inade-
quate technique of the surgeon, or the fluid overload of the patient. The only
way to acquire sufficient experience is with the repetitive training of specific
skills, procedures and complication management. However, patient involve-
ment should be avoided during early phase of the surgeon’s learning curve.

Currently the basic visio-spatial and manipulative skills are taught by in vitro
methods using inanimate objects such as sheep bladders or bell peppers [3].
These units allow the surgeon to learn how to navigate under monoscopic
visual feedback, as well as perform basic manipulative components of an in-
tervention. In this way the surgeon develops competence in completing a par-
ticular task, but because the real-life effect is lost, one obtains only limited
training in dexterity and surgical problem solving. Primarily, there is a lack
of realistic tissue reactivity and one cannot experience the complexities of
abnormal anatomy or pathologic situations.

It is believed that a reasonably realistic virtual-reality-based endoscopic simu-
lator training for therapeutic hysteroscopies could contribute to a reduced rate
of complications. The ultimate advantage of such a simulator is the potential
to provide a realistic and configurable training environment that bridges the
gap between basic training and performing the actual intervention on patients,
without any restriction on repetitive training. However, the simulator systems
proposed to date do not achieve the necessary level of realism that is required
for this technology to be widely accepted in the medical community [3,4].
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In the simulator, the anatomy and some well defined pathologies must be
represented. Realistic real-time simulation of the changes in the operational
site due to surgical actions and photo-realistic rendering must be achieved,
including the control of the hydrometra by manipulating the liquid inflow
and outflow. Finally, the manipulator should allow realistic tactile sensations
(realized by force-feedback). In contrast to other virtual reality applications,
creating the appropriate virtual environment is straightforward. The simulator
with its monitor and manipulator corresponds directly to the setup in the true
surgical situation.

In a hysteroscopic simulator, special attention must be paid to the simulation
of diffuse intra-uterine bleeding, obscuring the surgeon’s view, until the correct
actions (adjusting the inflow and outflow of liquid) are performed. It has to be
emphasized that the mechanism of fluid management requires specific skills
from the surgeon. On one side, proper fluid management is crucial to the
patient’s safety, on the other side, it is the only way to keep the operation
site visible. Consequently, we face the task of synthesizing bleeding, which
can only be made realistic if we are also able to model its specific dynamic
environment, in which an almost continuous current of the distension liquid
is kept alive.

2 Methodology

2.1 Simulation of bleeding

The realistic synthesis of bleeding is an important problem without a defined
solution. Temporal texture synthesis [5–10] is one possible approach to solving
this problem. However, these techniques are limited in their ability to mimic
certain temporal phenomena, and do not have the full capability of synthe-
sizing a spatially stochastic, temporally heterogeneous texture like bleeding.
Therefore we have chosen a more promising fluid dynamics approach [11]. This
choice is motivated by the fact that in the case of hysteroscopy, the bleeding
takes place in the cavum uteri distended by liquid.

The precise mathematical equations describing the behavior of fluid flows are
the so-called Navier-Stokes equations [12]. They are non-linear partial differ-
ential equations and an analytical solution to them is feasible only for the
very simple cases. With the rapid evolution of computers, numerical solu-
tions to these equations have come to the front, establishing the domain of
computational fluid dynamics (CFD). This branch of fluid dynamics gives
a cost-effective way for accurate, real flow simulations specific for engineer-
ing purposes. Alternatively, fluid solvers from the computer graphics domain
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provide the possibility to achieve fluid-like effects in real-time, where precise
physical accuracy is not as important as just plain visual fidelity.

Foster and Metaxas [13–15] used a coarse grid on which they invoked a dis-
cretized version of the incompressible Navier-Stokes equations. The non-linear
partial differential equations are solved using an explicit finite difference algo-
rithm. However, an implicit time-step restriction is introduced by the Courant-
Friedrichs-Levy (CFL) condition in order to avoid instabilities. Basically a
time-step must be chosen such that no particle of the fluid may travel more
than the distance of one grid cell per time-step. They were able to achieve a
frame rate of about 4 frames/sec by using a coarse grid, and a locally modifi-
able viscosity. This is, unfortunately, too slow for interactive real-time anima-
tion.

Stam [16] proposed an unconditionally stable fluid solver that allowed for
arbitrary time-steps and therefore the possibility for real-time visualization.
Instead of the explicit Eulerian integration scheme, both semi-Lagrangian [17]
and implicit methods were used to solve the incompressible Navier-Stokes
equations. To maintain conservation of mass, Stam [16] used the Helmholtz-
Hodge Decomposition to remove the divergent field within the velocity. This
divergent field equated to the pressure field in the Navier-Stokes time deriva-
tive equation of velocity [18]. Stam’s method of projection to calculate the
divergent field decoupled the pressure component from the velocity compo-
nent of the Navier-Stokes equations.

The Stam method of solution has been further refined for specific applications.
Fedkiw et al. [18] incorporated vorticity confinement [19] to alleviate the effect
of artificial numerical dissipation. Others [20–23] have used passive particles
instead of a density field for modelling liquid surfaces and explosions, where the
liquid surfaces were further enhanced by a dynamic level set. However, in our
application we do not need to model a liquid to air interface. We merely have
the interaction of two liquids that can be modelled with the same parameters,
as the non-Newtonian properties of the blood can probably be neglected if
only a visually pleasing appearance of the solution has to be achieved.

An alternative approach to fluid animation is with Smoothed Particle Hydro-
dynamics (SPH) [24–26]. Unfortunately, as reported in [23], the standard SPH
approach can be computationally rather expensive when using a large number
of particles, since one has to keep track of the nearest neighbors and solve
fluid equations for velocity and pressure.

In our approach, we have chosen to use an adaptation of Stam’s [16] method
of solution, as it seems to reasonably resemble the dynamics of our physical
model, while giving us the ability to render the fluid animation in real-time.
The velocity field describes the motion of the distension liquid, and the ad-
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vection of the density in this field describes the motion of the blood. Thereby
rendering just requires assigning a constant red color to each cell, with its
alpha value defined by the density.

2.2 Basic flow model

The state of a volume of fluid is determined by its density, temperature and
velocity. In the following model both the density and the temperature of the
fluid are considered constant. The behavior of the velocity field is then ex-
pressed by the following incompressible Navier-Stokes equations:

∇ · u = 0 , (1)

∂u

∂t
= −(u · ∇)u−

1

ρ
∇p + ν∇2u + F , (2)

where u is the velocity vector, p is the pressure, ρ is the density of the fluid, ν
represents the kinematic viscosity coefficient and F corresponds to the vector
of external body forces.

The quantities u and F are varying both in space and time. The spatial coor-
dinates can represent either 2D (x, y) or 3D (x, y, z) positions. Equation (1)
represents the physical principle that the mass in the fluid is conserved, while
(2) is the momentum equation of the fluid flow. For the derivation of the
equations we refer the reader to [27] [12].

The velocity and pressure fields in the Navier-Stokes equations are originally
coupled. A single equation can be obtained for the velocity if (1) and (2) are
combined, and the mathematical theorem known as Helmholtz-Hodge decom-
position is used [12]. The Helmholtz-Hodge decomposition theorem plays a
fundamental role in the numerical approximation of physical models like the
Navier-Stokes equations [28] [12]. It states that any vector field decomposes
into the sum of a gradient vector field and a divergence-free one. More for-
mally:

w = u + ∇q , (3)

where u is divergent free, i.e. u satisfies (1), and ∇q is the gradient field of
the scalar field q. Let us apply the gradient operator ∇ to both sides of (3):

∇ · w = ∇2q . (4)
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This is a so-called Poisson equation which can be solved for the scalar field
q with given boundary conditions. Once it is obtained, its gradient field can
easily be subtracted from the velocity field w in order to get the divergent
free u velocity field.

Introducing the projection operator P from [12], which maps w onto its
divergence-free part u, we have

u = Pw = w −∇q . (5)

Applying this operator P to both sides of the incompressible Navier-Stokes
equations (2), we get

∂u

∂t
= P

(

−(u · ∇)u + ν∇2u + F
)

, (6)

using the identities Pu = u and P∇q = 0.

This form (6) of the Navier-Stokes equations de-couples the pressure and ex-
presses the momentum equation in terms of u alone. Specifically, the gradient
part of the right-hand side in (6) represents the pressure gradient.

The velocity field is going to be used to move around a substance within the
fluid, whereby the evolution of the substance is governed by the following
transport equation:

∂ρ

∂t
= −(u · ∇)ρ + κ∇2ρ + S , (7)

where ρ is the scalar field of the density of the substance, κ is the diffusion
constant and S is the scalar field of the amount of substance injected. With this
model both the motion of the fluid and the related propagation of substances
(like blood) can be handled.

3 Numerical Implementation

There are various ways of implementing the above model [18,29–31]. The dif-
ferences are mainly in regard to possible improvements in either the visual
appearance or computational efficiency. In our implementation we optimize
the methodology for real-time visualization of bleeding in the uterine cavity.
The general method is to iteratively solve all the terms in (6) and (7) sequen-
tially. The corresponding loop is illustrated schematically in Fig. 1.
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Add Forces Diffuse Self Advect Conserve Mass

Add SubstanceDiffuseAdvect

Start

Fig. 1. Flowchart of the solution. Top line contains the evolution of the velocity
field, Eqns. (1) and (6). Bottom line contains the evolution of the substance field,
Eqn. (7).

In practice, each quantity is defined on a spatially discretized domain. In the
first stage we implemented the model in 2D, hence our domain is a squared
grid aligned with a Cartesian coordinate system. Instead of the uniform grid
configuration considered in [16,30] we used the so-called staggered grid ar-
rangement as in [15,18]. This means – as shown in Fig. 2 – that the density of
the substance (ρ) and the external forces (F) are defined at the center of each
cell, while the velocity field is orthogonally separated into its scalar compo-
nents (u,v) and defined on the faces of the grid cells. In the following, these
velocity components are referenced locally, i.e. the neighboring velocities for
cell (i, j) are indexed as (i + 1

2
, j), (i− 1

2
, j) and (i, j + 1

2
), (i, j − 1

2
). In accor-

dance with the results in [18], our experiments also showed the visual benefits
of less numerical dissipation by applying this staggered arrangement.

Fig. 2. Spatially discretized 2D staggered grid configuration

The simulation is advanced by updating the grid from a previous status over
a predefined time-step ∆t. First, the velocity components of the fluid are
updated in four major steps. Step one is the addition of the external force field
to the velocity field. The corresponding forces can describe e.g. pre-configured
actions or more specifically, in our case, the influence caused by manipulating
the liquid inflow and outflow during the surgical intervention. The forces are
multiplied by the time-step, then averaged to the grid faces on which the
velocities are defined and the corresponding scalar components are added to
the velocities:

ui+ 1

2
,j + =

(F x
i,j + F x

i+1,j)

2
· ∆t , vi,j+ 1

2

+ =
(F y

i,j + F y
i,j+1)

2
· ∆t , (8)

where F x, F y represent the x and y components of the external force.

7



The second step is the diffusion of the velocity field. It is solved in the same way
as for the diffusion of the substance in step two of the density solver. However,
instead of a diffusion rate κ, a viscosity ν is used, and each component of the
velocity field is solved separately. For easier conceivability, the details of this
approach are explored later as part of the density solver.

The third step is the self-advection. It can be interpreted as the velocity
field moving itself. It is a non-linear problem, but Stam [16] showed how
a stable solution, viable for computer graphics, can be obtained using the
semi-Lagrangian integration scheme [17]. The motivation behind the semi-
Lagrangian scheme is to alloy the regular arrangement of Eulerian schemes
and the better stability of Lagrangian ones. This is done by moving the data
relative to a spatially fixed grid and considering a different set of particles at
each time-step. The actual set is chosen such that the particles arrive at the
points of the regular Cartesian grid at the end of a time-step. In a less rigorous
way, it basically means that each velocity component is traced back in time
through the velocity field to find where it came from. This can be done using
either a linear particle tracer or a second order Runge-Kutta method [32].
From our experiments the more elaborate Runge-Kutta approach did not pro-
vide sufficient improvements to justify the increase in computation time. At
the earlier points, interpolation is needed to obtain the earlier velocities. This
may be achieved via simple linear, or the so-called monotonic cubic interpola-
tion method as proposed in [18]. Although the monotonic cubic interpolation
scheme reduces the simulation speed considerably, the realism of the appear-
ance of the fluid improved adequately (especially when used during the density
solution step). Finally the calculated velocities are transported back to the ori-
gin of the back-tracing operation.

The fourth step is mass conservation according to (1). It is a physical con-
straint that every fluid has to conserve mass, meaning that the flow into a
cell should be equal to the flow coming out of the cell. After the preceding
steps (adding external forces, viscous diffusion, self-advection), this condition
is not fulfilled. Mass conservation is important also from the computer graph-
ics point of view, as it forces the flow to swirl and have appealing vortices
enhancing its realism.

The application of the Helmholtz-Hodge decomposition (4) results in the fol-
lowing equation in the discretized domain:

(ui+ 1

2
,j − ui− 1

2
,j) + (vi,j+ 1

2

− vi,j− 1

2

)

h
=

pi+1,j + pi−1,j + pi,j+1 + pi,j−1 − 4pi,j

h2
,(9)

which incorporates the task of solving a sparse linear equation system for the
unknown p values on the right-hand side.
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There are diverse methods for computing a solution [16], but we found that
the simple iterative Gauss-Seidel relaxation solver [30] was the fastest while
still giving visually satisfactory results. After the p values are obtained the
velocities can be updated according to (3):

ui+ 1

2
,j − =

pi+1,j − pi,j

h
, vi,j+ 1

2

− =
pi,j+1 − pi,j

h
. (10)

To minimize numerical dissipation and maintain the realism of the flow, we
also added vorticity confinement [18] which enhanced these vortices through
an additional force component.

When solving for the velocity field, proper boundary conditions have to be
set. Primarily we are concerned with boundary conditions corresponding to
a stationary wall, with inflow and outflow occurring along portions of the
boundary. Foster and Metaxas [13] discuss how to achieve these conditions on
a staggered grid.

Let us now move ahead to the second major part of the model. The density
equation (7) governs the evolution of the substance injected into the fluid.
The method of solution is similar to the one introduced previously. We start
with an initial density field and solve the terms in (7) sequentially. The first
step is the addition of the density values of an external source (S), which
are multiplied by the time-step and added to the density field. In our case,
external source is e.g. the spurting blood from vessel on the wall of the uterus.

ρi,j + = Si,j · ∆t . (11)

The second step is to solve for the diffusion of the density. Due to the dis-
cretized domain, the second spatial derivative is approximated by finite dif-
ferences. Taking the second difference in both direction (2D model) we get:

∂ρ

∂t
= κ∇2ρ ≈ κ

ρi−1,j + ρi+1,j + ρi,j−1 + ρi,j+1 − 4ρi,j

h2
. (12)

The straightforward implementation of a diffusion task like (12) can cause
stability problems during the simulation if the diffusion rate or the time-step
is set too large or the grid spacing is too small. To overcome this problem
Stam [16] proposed an implicit, thus stable solution method for the diffusion
term: find the density field which would diffuse backward in time to give the
densities we started with. Formally, we instead solve the following equation
for the cell i, j:

ρt
i,j = ρt+∆t

i,j −
κ∆t

h2

(

ρt+∆t
i−1,j + ρt+∆t

i+1,j + ρt+∆t
i,j−1 + ρt+∆t

i,j+1 − 4ρt+∆t
i,j

)

. (13)
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In this way we again face the problem of solving a system of linear equations,
since the terms ρt+∆t on the right hand side are unknown. Due to the reasons
mentioned above, the Gauss-Seidel relaxation [30] was used as well, but here
4-5 iterations are enough for a realistic impression. Coming back to the previ-
ously mentioned viscous diffusion of the velocity, exactly the same idea can be
applied there but for each velocity component the diffusion rate κ is replaced
by the viscosity ν.

There is one more term in (7) which has to be solved. It states that the
density of the substance should follow and be advected by the – previously
updated – velocity field. In order to preserve the stability of the solver, here
again the semi-Lagrangian integration scheme is used [16]. We trace back the
midpoints of each cell through the velocity field. Then the new density values
are interpolated at these points and their values are transferred to the grid
centers where we started at. For our purposes we used the monotonic cubic
interpolation scheme [18] due to its advantageous properties in providing a
more realistic appearance of the substance.

3.1 2D implementation of the model

The 2D version of bleeding was implemented for the hysteroscopy simula-
tor. Figure 3 gives a visual comparison between real bleeding recorded during
hysteroscopic surgery, when fluid inflow and outflow were stopped, and our
simulated version. The 2D plane displaying the bleeding was placed between
the scene (uterine cavity) and the camera (hysteroscope). In this case the
boundary conditions on all the four edges of the 2D plane were set as a wall,
which results in a closed domain. This corresponds to a clinical setup when the
inflow and outflow valves are closed. The visualization was done in OpenGL
and the best rendering performance was achieved if the blood flow was consid-
ered as a dynamic texture, blended with the background scene. The synthesis
gave high visual fidelity, but what is more important, real-time frame rate was
achieved with up to 60 frames/sec on a 64 × 64 grid or 15 frames/sec on a
128 × 128 grid on a Sun Ultra Sparc III processor.

3.2 3D extension of the model

The approach to merge a 3D surgical scene with a semi-transparent 2D tex-
ture plane, describing the visual appearance of the fluid environment, provides
acceptable results if the endoscopic camera is kept statically in a correspond-
ing predefined position. During interventions, however, the endoscope position
is constantly adjusted, which completely ruins the visual realism of this sim-
plified solution. Moreover we need to accommodate for the realistic in- and
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(a) Intra-operative 1 (b) Intra-operative 2 (c) Intra-operative 3 (d) Intra-operative 4

(e) Simulated 1 (f) Simulated 2 (g) Simulated 3 (h) Simulated 4

Fig. 3. Top row: original images recorded during hysteroscopic surgery in the case
of bleeding when fluid inflow and outflow were stopped. Bottom row: frames from
the real-time 2D synthesis. See Movie 1 and 2.

outflow of the distension liquid as well, which cannot be fulfilled with a 2D
simulation either. In order to resolve these issues, the fluid simulation has to
be performed in a 3D environment.

The model itself (introduced in Section 2.2) generalizes well to this case and
even the extension of the implementation to 3D can be considered as rather
straightforward. First of all, the staggered grid changes to cubic cells as illus-
trated in Fig. 4 and therefore each location in the grid has six neighbors. This

Fig. 4. Spatially discretized 3D staggered grid cell.

leads to additional terms in the numerical approximations of the differential
operators used by the solver. The external forces also have three components
(F x, F y, F z) resulting in the additional z coordinate term to be added to the
corresponding velocities:

wi,j,k+ 1

2

+ =
(F z

i,j,k + F z
i,j,k+1)

2
· ∆t . (14)

The central equation in the mass-conservation step (9) has to be expanded
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with the terms responsible for the additional spatial dimension:

(ui+ 1

2
,j,k − ui− 1

2
,j,k) + (vi,j+ 1

2
,k − vi,j− 1

2
,k) + (wi,j,k+ 1

2

− wi,j,k− 1

2

)

h
=

pi+1,j,k + pi−1,j,k + pi,j+1,k + pi,j−1,k + pi,j,k+1 + pi,j,k−1 − 6pi,j,k

h2
. (15)

Analogously, the subsequent update step shown in (10), has to incorporate
the third velocity component:

wi,j,k+ 1

2

− =
pi,j,k+1 − pi,j,k

h
. (16)

Similar changes apply to (13). Obviously, the calculation domain for the nu-
merical solver grows by the third power of the resolution leading to very large
problems. The real-time requirement forces us to choose a moderate resolution
for the grid, while on the other hand a higher resolution would lead to a more
satisfactory visual appearance of the blood flow.

In Fig. 5 the results of the 3D bleeding simulation are shown with chang-
ing camera position. In the results shown, the grid size was set to 32x32x32
and only linear interpolation was used. The mass field representing the blood
was rendered as a dynamic 3D texture with OpenGL. The three-dimensional
texture approach is a straightforward way to visualize volumetric data. The
images clearly show that the result has an overly smoky appearance which
is clearly visually different from the expected behavior of blood dispersed in
liquid. This clearly undesirable effect is caused by using the semi-Lagrangian
method which results in significant numerical dissipation.

(a) Frame1 (b) Frame2 (c) Frame3 (d) Frame4

Fig. 5. 3D simulation of bleeding with pure semi-Lagrangian method. Notice the
change of the camera position during the simulation. See Movie 3.

3.3 Marker particles

This deficiency suggests the reconsideration of the work of Foster and Metaxas
[13] and Foster and Fedkiw [20], where they simulated the liquid flow using
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passive particles. Their approach makes it possible to keep the favorable uncon-
ditionally stable semi-Lagrangian method for solving the velocity field, while
efficiently correcting the inherent numerical dissipation with marker particles.
This also allows the velocity field to be calculated on a fairly coarse grid,
while at the same time the marker particles can delineate the fluid position
on a completely independent finer grid.

In [13] and [20] the key motivation is to precisely track the (free) fluid surface
at the fluid-air interface. That is why in these works additional, computation-
ally more demanding methods are involved in tracking the fluid position: free
surface particles and height field in [13] and level sets in [20]. In our particular
case, namely bleeding in the distension liquid, we need to consider a fluid-fluid
interface instead of a fluid-air one. This distinction makes it possible to use
massless particles without tracking a precise interface, which would be compu-
tationally too expensive for real-time simulation. According to our results, the
slight false diffusion (noise) occurring at the blood-liquid interface is visually
acceptable.

The marker particles are introduced at the bleeding points, and convected with
the local velocity. The position of a particle is updated according to post+∆t =
post + v · ∆t, where the velocity v is determined by linear interpolation over
the nearest cell velocities.

Although the semi-Lagrangian approach applied in the velocity advection step
allows for larger time steps, this is only at the cost of increased dissipation.
In order to preserve the liquid-like visual effect, the time-step used in the
explicit time-marching update of the particles needs to be limited according
to the CFL condition [13]. This means that a given marker particle cannot
move more than one-cell distance within a time-step, i.e ∆tparticle < ∆x/|v|. In
accordance with the remarks in [13], we have chosen the velocity field time-step
four times bigger than the one given by the CFL criterion for ∆tparticle. Hence
the marker particles are advected by means of four consecutive steps before
they are visualized. In regard to the velocity field, we use the same model
as introduced previously, except that the viscous term is solved using central
differencing as described by Foster and Metaxas [13]. This gives more accurate
results as opposed to the ones given by the implicit diffusion technique.

3.4 Parallelization

The implementation of the model outlined above in three-dimensions, though
visually already appealing, did not fully satisfy the real-time condition for our
application (see Section 4. for the results). One reasonable way to speed up
the simulation is to consider parallelization of the implementation.
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There exists a wide body of work on the parallelization of CFD solvers. They
study strategies starting from grid generation and domain decomposition to
as far as linear algebra algorithms [33]. Due to the fact that the model in
our bleeding simulation is a rather specialized and simplified version of CFD
(being motivated by computer graphics applications rather than physically
accurate simulations) it cannot simply be inserted into an existing package or
library. Nevertheless, the general ideas used in the parallelization strategies
are worth considering.

Regarding the velocity solver, the local nature of the involved operators,
strongly motivates the tessellation of the spatial domain into partitions, which
can be processed in a parallel way. In our case the straightforward partitioning
is to cut the domain into horizontal layers as shown in Fig. 6. Each parti-
tion contains a predefined number of layers from the data array. To reach a
reasonable load balance among the available processors, the data is equally
distributed among them.

The multi-threaded environment we used was developed in-house based on
the Posix library [34]. This environment enables the threads to have conve-
nient access to a shared memory area. Concurrent reading from this memory
area does not require special action, thus prevents us from time consuming
synchronization among the reading threads. More importantly it also relieves
us from the challenge of precise domain decomposition which would be neces-
sary for the Lagrangian technique we use. What we have to guarantee is that
the threads do not write to the same memory area at the same time. This is
easily ensured since the general configuration during the velocity field calcu-
lation is such that the threads read from data arrays belonging to time-step t,
and write to a memory area corresponding to time-step t + ∆t and moreover
only to the partitions which exclusively belong to them (see the upper part
of Fig. 6). When a consistent state of a shared memory array is required (e.g.
before calculation of the viscous terms, between the consecutive iterative steps
in the mass conservation procedure, or before the particles are advected) the
threads have to be synchronized.

An additional possibility for parallelization of the solver beyond the domain
decomposition is to let the calculations of the three velocity components be
performed simultaneously. In our model, such a case occurs at the advection
step for the u, v and w component of the velocity, and similarly for the cal-
culation of the three components of the viscous term. Although occasionally
these methods read from the same arrays, they write their results to separate
memory blocks. The general method of parallelization of the velocity solver is
depicted in Fig. 6.

The processing step of the marker particles offers the possibility for paralleliza-
tion as well. One feasible way is to split up the list containing the particles
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Solver thread 1.
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Fig. 6. The setup of parallelization.

among the threads. Since the particles are completely independent from each
other, these fragments of the list can be processed asynchronously. Further-
more, similarly to the velocity solver, the update of the x, y and z components
of the particle positions can be also performed asynchronously.

4 Results

In Fig. 7 the results of the 3D bleeding simulation are shown, when the cam-
era changes its position. In this case, the solver grid size was 22 × 22 × 22,
and the maximum number of marker particles was 200 000. The calculation
time for the velocity field took 18ms, while the update of the 200 000 parti-
cles was approximately 250ms. These values correspond to a single threaded
computation.

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4

Fig. 7. Simulated bleeding for virtual hysteroscopy in 3D with the marker particle
approach. See Movie 4.

The synthesis is also responding to changes in the virtual environment. One
essential aspect in hysteroscopy simulation is the accounting for the effect of
inflow and outflow fluid management. The surgeon can clear up the view by
opening the in- and outflow valves on the tool. In Fig. 8. we show what happens
to the scene when both flows were switched on in frame 2. As in the realistic
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case, the clear liquid is injected at the tip of the hull close to the camera, while
the suction is induced through the holes on the hull behind the camera. We
account for these with properly set boundary conditions. In the case of inflow,
constant velocity is applied to the grid cells belonging to a circular patch
around the center of the front wall. The direction of this velocity is towards
the rear wall. For outflow, we allow the velocities of the grid cells within a
ring around the inflow section of the front wall to exit without constraint. If
a marker particle has left the domain it is simply deleted.

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Fig. 8. Interacting with the environment. Inflow and outflow were switched on in
Frame 2. See Movie 4.

We used the 3D texturing feature of OpenGL in order to visualize the flock of
marker particles. For every frame a three-dimensional histogram is established
from the actual standings of the particles and this histogram is treated as
volume data. The bin size of the histogram determines the voxel size of the
3D texture and hence the resolution of the blood flow. The weight of a given
bin in the histogram represents the alpha value for that voxel. Obviously,
opacity increases with the number of particles that are present in a voxel. The
3D texture size used for the simulations was 643.

In Table 1 and 2 the results of the parallel implementation of the 3D solver
and marker update are listed. In order to show the performance of the par-
allelization the speedup (S) and efficiency (ǫ) are also indicated as measures.
The speedup is the ratio of the execution time on a single processor (τ1) to
the time on n processors (τn). The time τn incorporates the execution time of

16



Table 1
Average calculation time in ms (τn), speedup (S) and efficiency (ǫ) in percentage
for the 3D numerical solver

Grid size: 22 x 22 x 22 Grid size: 40 x 40 x 40

# threads τn S ǫ τn S ǫ

1 15.4 – – 89 – –
2 10.5 1.47 73.3 50.4 1.77 88.3
3 9.1 1.69 56.4 38 2.34 78.1

Table 2
Average calculation time in ms (τn), speedup (S) and efficiency (ǫ) in percentage
for the marker update

# of markers: 100 000 # of markers: 200 000 # of markers: 400 000

# threads τn S ǫ τn S ǫ τn S ǫ

1 123.5 – – 247 – – 477 – –
2 65 1.9 95 126 1.96 98 243 1.96 98.1
3 47 2.63 87.6 90 2.7 91.5 170 2.81 93.5
4 38.5 3.21 80.2 70 3.5 88.2 134 3.56 89
5 35 3.53 70.6 64 3.9 77.2 121 3.94 78.8

the parallel and serial parts of the calculations including the parallelization
overhead. This overhead is due to running the algorithm on parallel proces-
sors and can result from the hardware, operating system or the algorithm
itself. The efficiency is the ratio of the real speedup to the ideal one, when
the execution time is not affected by parallelization overhead. In Fig. 9 the
average calculation times are plotted. The measurements were taken on a Sun
Fire 6800 HPC server, with 12 Ultra Sparc III processors. The values listed
for the marker update correspond to the four-step advection and include the
time needed for establishing the three-dimensional histogram. If an alternative
rendering method is used, where such a construction of a volumetric data is
unnecessary, about 10% of the computation time can be spared.

As one can observe from the data, the calculation time decreases with the
number of threads, however the speedup does not scale in a linear fashion in
conjunction with the number of threads. In any case the efficiency increases
with the problem size. Our investigations suggest that the suboptimal scaling
stems from the memory-intensive nature of the algorithm. As such, generic
cache coherency contention and false sharing can occur very easily and results
in poor scaling. These phenomena can arise in all cache-based, shared memory
multiprocessor systems. The correction for cache coherency contention can
only be done by thoroughly considering the architecture of the underlying
hardware and applying appropriate tuning techniques using appropriate data
array representation and algorithmic modifications.

Unfortunately, dynamically changing and swapping the content of the 3D tex-
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Fig. 9. Average calculation times in ms.

ture buffer in OpenGL substantially degrades its performance irrespective of
the resolution of the texture. This strains the real-time rendering capability
of our simulated blood flow and explicitly outweighs the performance increase
gained by the parallelized calculations. The visualization system we used was
a Sun Fire V880 with a XVR-4000 graphics accelerator, where the dynamic
update of the texture limited the frame rate to 6-7 fps, causing a bottleneck
in the performance of the simulation.

5 Conclusion

We have designed a state-of-the-art graphic flow simulation offering realistic
visualization of blood flow for virtual surgery. The work was focused on the
special requirements of a bleeding simulation for virtual hysteroscopy, where
the blood is present in the uterine cavity distended by liquid. We modelled this
phenomenon as an interaction between two inert fluids, for which no chemical
processes were involved. Furthermore, no fluid to air interface was considered,
only basic fluid to object interaction (i.e. at the walls).

The quantitative validation of the development techniques is by far not straight-
forward. It would be very difficult, if not impossible to collect experimental
data about 3D flow conditions and blood dispersion in a reasonably realis-
tic clinical environment. Comparisons with results of commercial numerical
solvers, which allow us to perform the calculations under less restrictive as-
sumptions while abandoning real-time requirements would be possible, but
it is still uncertain how closely even such simulations can approximate real
life conditions. Most importantly it is not clear, how to convert the certainly
existing numerical deviations in the flow field and blood concentration to a
reliable measure allowing us to evaluate the visual quality of the simulation.

We therefore propose and plan to build up a validation environment directly
addressing the clinical target of the simulation by measuring the effects of using
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the system on the actual working performance of the surgeon. In other words,
we are interested in a performance measure which shows how the learning-
curve of a surgeon is influenced by using the simulator. We are currently
setting up targeted clinical studies, which will allow to quantitatively assess
selected surgical skills and to observe their dependence on repetitive training
using the simulator unit under development.

For the time being we can evaluate the success of our research effort only in a
subjective manner based on three principal factors. One of these is the ability
to achieve real-time simulation along with the possibility of interaction with
the virtual environment. Secondly, the appearance of the synthesized bleeding
should be visually convincing and appear to be reasonably realistic for the
surgeon being trained. Finally, the simulated bleeding has to pose the same
challenges in the virtual environment as the clinician faces during real surgery.

The results presented in this paper show that the method, originating from
the Navier-Stokes fluid equations, can be solved in real-time with satisfactory
frame rate in 2D, while currently available computational resources allow only
moderate frame rate in the desired 3D case. Parallelization offers an appeal-
ing way to speed up these calculations. Graphical fluid simulation allows the
bleeding to be interactive and responsive to any changes made to the virtual
environment in real-time. The visual fidelity originally had an overly smoky
appearance due to the applied semi-Lagrangian technique, but this was signif-
icantly improved with marker particles leading to a more liquid-like quality.
Rendering the blood flow with dynamic 3D texture offers convincing visual
realism but currently at the expense of rendering performance.

The method discussed in the paper can be directly applied to simulating bleed-
ing in connection with any clinical procedure where the distension of the op-
eration area is accomplished by means of fluid, such as in urology during
transurethral resection of the prostate (TURP simulator). The proposed pro-
cedure can also be used under more general surgical conditions for predicting
the appearance of bleeding after appropriate adjustments allowing the proper
handling of the liquid-air interface as described in [13] [20].
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