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Abstract
An integral part of every augmented reality system is the

calibration between camera and camera-mounted tracking
markers. Accuracy and robustness of the AR overlay pro-
cess is greatly influenced by the quality of this step. In or-
der to meet the very high precision requirements of medical
skill training applications, we have set up a calibration en-
vironment based on direct sensing of LED markers. A sim-
ulation framework has been developed to predict and study
the achievable accuracy of the backprojection needed for
the scene augmentation process. We demonstrate, that the
simulation is in good agreement with experimental results.
Even if a slight improvement of the precision has been ob-
served compared to well-known hand-eye calibration meth-
ods, the subpixel accuracy required by our application can-
not be achieved even when using commercial tracking sys-
tems providing marker positions within very low error lim-
its.

1 Introduction
The driving force of the presented study is the develop-

ment of a medical training system using Augmented Reality
(AR) techniques. The expectations on accuracy and stabil-
ity in such a setting are high. Misalignment of overlaid vir-
tual objects would greatly compromise manipulative skill
training and the sense of presence, and thus reduce the train-
ing effect. Our AR system consists of a camera-mounted
marker to determine the user’s head pose and a tracking
device reporting the markers’ location. The quality of the
alignment between the virtual and the real world critically
depends on the accuracy of both the sensing device and the
transformation between the camera and the marker. In this
work, we search for the most efficient calibration method in
order to accurately estimate the camera-marker transforma-
tion and investigate the limits of the achievable precisionof
the backprojection in the presence of errors in the process-
ing chain based on simulated and real-life experiments.

2 Calibration Methods
We have set up a calibration environment which was

inspired by [2], using a calibration object incorporating

both visible and infrared(IR) LEDs, thus allowing to ob-
serve the same object both by the tracking system and the
head-mounted camera. In order to further reduce the er-
rors, we directly detected the IR LEDs by our camera, thus
eliminating the transformation between the visible and IR
LEDs from the calibration process. 30 IR LEDs have been
mounted on the 3D calibration object. By the simultane-
ous detection of the LEDs by the camera and the IR opti-
cal 6DOF tracker [4] the camera-marker transformation can
be directly estimated without determining the world-object
transformation. The images of the IR LEDs are captured
with a firewire Videre Design MEGA-DCS camera. The
focal length is 7.5mm and the image size is 640x480 and
the FOV is 60.8x47.5 degrees. Due to the noisy data pro-
vided by the tracking system, it is necessary to estimate the
camera-marker pose from several locations. From a set of
estimates, we compute the mean of the desired transforma-
tion by using the method [3].

We compared the precision of the backprojection re-
sulting from this calibration with those provided by hand-
eye calibration estimates widely used for visual servoing in
robotics applications. We have implemented three differ-
ent methods that differ in respect of the representation of
the transformation using rotation vectors [6], quaternion[1]
and Lie group [5].

3 Accuracy of backprojection
Both calibration methods are simulated by investigating

the influence of the two major sources of errors: the un-
certainity of the the feature detection in the acquired im-
ages (image error) and the deviation of the 3D position of
the markers from their true value (tracking error). The ge-
ometry of the marker is fully taken into account. We used
the method proposed by [7] for feature detection. We as-
sumed a zero-mean Gaussian distribution of the image er-
ror with a standard deviation of0.1 pixel as reported by the
paper. According to the manufacturer’s specification, the
optical tracker produces a maximal tracking error of0.1mm
under the conditions of our experiments. As no informa-
tion has been provided about the statistical properties of
the error, we assumed in the first step a uniform distribu-
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Figure 1. Influence of the tracking and image error on the
backprojection
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Figure 2. Influence of the model of noise
tion U(−au, au) within the maximal error limitsau (un-
biased estimate). Figure 1 shows the backprojection error
due to those two error sources separately in dependence on
the standard deviation of the image noise and the maximal
tracking errorau. The results demonstrate that the backpro-
jection error is zero if the marker and feature detection is
error-free (which is necessary if the simulation is correct)
and that the tracking error by far dominates the image error.
In the next step we investigated the influence of the number
of images used for the calibration on the backprojection er-
ror. The simulation results presented on Figure 2 did, how-
ever, by far overestimate the experimentally observed errors
shown on Figure 3. A closer investigation of the tracking er-
rors revealed, that our original assumption of the error dis-
tribution was wrong. The overall tracking error is rather a
combination of a (large) systematic, space-dependent bias
and a (small) random noise, which we experimentally ob-
served as showing a zero-mean Gaussian distribution with
a low standard deviationσ = 0.03mm. Accordingly, a
second series of simulated experiments were carried out by
modeling the deviation of the markers’ position from their
true value as a sum of a locally constant systematic bias as
a sample ofU(−0.1mm, 0.1mm) and a random Gaussian
noiseN(0, 0.03pixel) (biased estimate). As demonstrated
by Figures 2 and 3, the results of the modified simulation
process were in good agreement with the experimental ob-
servations. As all hand-eye methods give very similar re-
sults, only the output of Tsai’s method is representatively
shown. The simulated values are the average of 100 indi-
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Figure 3. Real results for both approaches

vidual random experiments. In order to get some estimate
about the distribution of the resulting backprojection errors,
we also registered the maximal and minimal deviations ob-
served, shown as vertical bars on Figure 3.

4 Conclusion
We have demonstrated, that under the assumption of lo-

cally constant bias in the tracking error the developed simu-
lation package reproduces the experimentally observed be-
haviour of the backprojection error very well. While the IR
LED-based calibration consistently showed slight improve-
ment in precision as compared to hand-eye calibration, the
remaining backprojection error (1.5-2 pixels) are still too
high for our application, even when using a very accurate
optical tracking unit. Accordingly, we are currently incor-
porating an image-based warping method for correction into
the AR-based surgical simulation framework.
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