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Fundamentally important to the future of pulmonary
medicine is a better description and understanding of
the human lung and its response to disease, injury, and
treatment, which is not based on global measures but
upon quantifiable regional features. There is rapidly
growing awareness for the need to volumetrically im-
age the lung and to provide objective, quantitative
measures characterizing regional lung pathology. This
editorial is written by our multidisciplinary team with
the goal of encouraging the imaging community to
continue its strong efforts toward addressing the open
issues related to lung imaging and image analysis. In
addition, we would like to thank Academic Radiology
for providing a cross-roads where clinical practice, im-
aging physics, physiology, biomedical engineering, and
image processing can interact as we seek to better un-
derstand pathologic processes and to establish sensitive
and specific endpoints for the rapid evaluation of thera-
peutic interventions to lung disease.

Over the past 2 years there has been a strong in-
crease in the appearance of basic and clinical science
papers in the field of lung imaging in the areas of both
computed tomography (CT) (1–15) and magnetic reso-
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nance (16 –21) in this journal. There has been a grow-
ing focus in the area of nodule detection (4 – 8), and
there is a new effort to map multiple lung volumes to-
gether (9,10) for purposes of evaluating regional lung
mechanics, tracking pathology over time, or comparing
an individual to an image-based normative atlas (1).
Methods to quantify regional lung disease are needed
because the use of global measures, which do not ade-
quately capture lung complexity and may be only mini-
mally altered by significant local disease, not only fo-
ments an incomplete understanding of lung pathophysi-
ology but also results in the need to study large
numbers of subjects over long time periods of time to
evaluate new treatments. Image-based measures, in-
cluding evaluation of static and dynamic structure and
function, are now recognized as very sensitive indica-
tors of localized subclinical disease and appear to de-
scribe these complex lung processes much better. Small
changes are easily detected and quantified, particularly
using computer-aided analysis, resulting in a more
rapid and more objective assessment of disease pro-
gression and hence therapeutic outcomes. This will ob-
viously have important consequences for the develop-
ment of therapeutic trials and shorten the road to mar-
ket of novel inhaled drugs.

Currently, x-ray CT remains the imaging modality
of choice for comprehensive evaluation of the lung,
due in large part to the significant advances made in
both temporal and spatial resolution. Multidetector-row
CT (MDCT) scanners are now capable of sub– half-
second data acquisition (330 msec per rotation and
faster), allowing for the imaging of not only anatomy
but also ventilation and perfusion, providing unprece-

dented structure-to-function correlations. With the rapid
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widening of the cone beam on these scanners and
through the addition of more detector rows, true volu-
metric imaging is imminent. Over the last 5 years,
many advances have been made in both image methods
as well as image analysis, including tools for CT image
segmentation, registration across changing lung vol-
umes and between subjects, 3-dimensional textural
analysis, and high-resolution ventilation, and perfusion
measurement; these techniques have already been ap-
plied in both animal models and human subjects. How-
ever, at the same time, the growing concern over pa-
tient safety and the increasing propensity of public pol-
icy to mandate limits on the use of ionizing radiation
threatens to limit full deployment of these newly
emerging quantitative CT tools for comprehensive as-
sessment of detailed lung structure-function relation-
ships in the early detection of pathology, the temporal
evaluation of disease progression, and in the evaluation
of successful therapeutic interventions. Fortunately,
new technological methods are emerging that allow for
significant dose reduction in CT imaging of the lung.
The refinement and evaluation of these low dose meth-
ods, therefore, constitute a need for enhanced efforts in
new approaches to dose reduction. As dose is reduced,
the accuracy of quantitative measures based on the re-
sultant images must not be diminished. Structural detail
as well as reconstructed attenuation coefficients must
remain true to underlying structure and function.

As CT has rapidly advanced, the past 4 –5 years
have also been marked by the emergence of a new set
of tools for magnetic resonance imaging (MRI) evalua-
tion of the lung (16 –21), an organ previously poorly
visualized by MRI because of its low proton density
and inherent air-soft tissue interface field inhomogene-
ity. Novel techniques for proton imaging in the pres-
ence of high concentrations of oxygen have been used
to image lung structure and to measure regional lung
volume, while ultra-fast imaging techniques with con-
trast have allowed for quantified perfusion studies. Ad-
vances in hyperpolarized gas imaging (He and Xe)
have allowed for the regional assessment of peripheral
airspace size using the apparent diffusion coefficients,
as well as indices of regional ventilation (V), perfusion
(Q), V/Q relationships, and regional oxygen concentra-
tions. Because of the advantages of MRI in terms of
radiation exposure, volumetric imaging, and temporal
resolution, there is a clear need to quantitate and vali-
date these novel MRI measures against gold standards

which, in large part, are found in newly established CT
measures, and to assess the complementary roles that
CT and MRI can play in the functional evaluation of
the lung.

RADIATION DOSE REDUCTION IN
X-RAY CT

Public concern over the consequences of ionizing radi-
ation has made it clear that, in addition to advancing
methods for volumetric quantitative functional lung imag-
ing, we must keep dose minimization as a high priority as
we seek to deploy the growing armamentarium of CT-
based lung imaging tools. The concerns regarding radia-
tion dose are in part caused by increased doses delivered
by MDCT scanners (22–27), their increased use and thus
increased public health risk (despite low personal risk),
the rapid development of a market for CT screening ex-
ams, and concerns that exams on children were being
performed at adult doses (28). In addition, the 55-year
Hiroshima data suggest that small but measurable risks
might now be estimated. While these concerns remain
controversial (24,28–30), when one considers that 2.7
million CT scans are performed on children alone, even a
minor risk becomes an appreciable public health problem.
There is now international pressure to target exposures at
below 10 mSv when possible (31). Clearly, if the over-
riding goal is to provide early detection of lung diseases
and quantitative tools to detect small changes in the
course of a pathologic process modified by an interven-
tion, the imaging community must address these concerns
over dose. To date, low-dose CT imaging has largely
been evaluated in terms of measured noise (27,32) and
suitability for visual interpretation (33–39). While dose-
reduction measures come primarily from the lowering of
mAs with associated increased image noise, recent studies
have achieved a significant dose reduction without in-
creased noise by modulating the dose as the scanner
rotates around the body (32,40–43). This allows dose
reduction up to 30%–40% for typical elliptical body sec-
tions. However, the gain diminishes for circular body sec-
tions. New paradigms must be explored; and, again, care
must be taken to assure that not only structural, but also
functional information embedded in the reconstructed im-
ages must remain quantifiable. This means that recon-
structed attenuation coefficients (Houndsfield Units [HU])
must not be corrupted by dose-reduction schemes. Newly
emerging dose-reduction methods include the use of a

priori knowledge from one scan to allow reduction of
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dose in subsequent scans. As additional examples of how
dose might be reduced, in functional studies requiring
time series of axial scans (to image regional ventilation or
perfusion) it is possible to lower scan dose by identifying
the minimal number of time points needed to accurately
assess a functional parameter, or to identify the robust
curve fitting algorithms which are minimally susceptible
to noise. Through improved image processing algorithms,
it is expected that one can begin to significantly lower
dose without effecting computer-based measures of the
resultant images. Finally, through the use of complemen-
tary strengths of CT and MR, it should be possible to
establish longitudinal studies which incorporate the
strengths of both modalities to follow structural and func-
tional changes in the lung.

QUANTITATIVE IMAGE ANALYSIS

Critical to taking full advantage of MDCT and MRI is
the ability to objectively evaluate the information content
of the images. In the case of the lung, the starting point is
reliable detection of the lungs (44), lobes (45), airways
(46–51), and blood vessels (52,53), followed by an analy-
sis of parenchymal density and texture (54–56), and fi-
nally a regional quantification of ventilation (57) and per-
fusion (58) parameters.

EVALUATION OF THE LUNG AT ITS
FUNCTIONAL INTERFACE

Computer-based methods for objective quantitation of
CT data sets to compare normal and diseased lung are
increasingly being used in conjunction with 2-dimensional
data sets. Methods have ranged from counting the number
of voxels below a cut-off (�850, �910, �950 HU) (59–
70) to those which make use of measures derived from
the histogram including skewness, kurtosis, etc (71).
High-resolution computed tomography enhances the re-
solving power of the image (72–76) allowing detection of
less severe emphysema. Various computer-assisted tex-
ture-based methods have successfully been used for tissue
characterization. Traditional methods of texture analysis
can be grouped into statistical, structural, and hybrid
methods (77). Methods for tissue classification typically
rely on region gray scale statistical measures (ie, mean,
variance, frequency histogram) or textural measures (auto-

correlation, co-occurrence matrices, run-length matrices,
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etc) (60,61,69,71,78–88). Lung tissue can be objectively
evaluated using the density of lung tissue, either as mean
lung density, or by measuring the density of lung falling
below a set value (the density mask) (60,61,69,71,87). It
has been shown that lung tissue mean density can be an
index of emphysema (60,61,69). However, a later study
showed significant lung density variation in normal indi-
viduals that could be misleading (87). A density-masking
approach alone is not sufficient to distinguish normal
from diseased lung (89–91). More recently, texture is
increasingly being used for detection and classification of
solitary pulmonary nodules.

FUNCTIONAL IMAGING

Numerous methods have been developed to assess ven-
tilation (57), perfusion (58), or their functional outcome,
gas exchange (92,93). While clearly useful, traditional
pulmonary function tests are global measurements of air-
flow, lung volumes, and gas exchange from which are
inferred primary structural and functional alterations. Im-
aging techniques such as positron emission tomography
and the newly emerging hyperpolarized gas imaging via
MRI (94–100) offer unique, complementary regional in-
formation to x-ray CT and, as they develop, are expected
to offer enhancements to the knowledge base that we pro-
pose to build using x-ray CT. In the sections below we
will show examples of the use of CT imaging technology
to probe normal and abnormal cardiopulmonary structure
and function. CT technology offers a unique and compre-
hensive approach to evaluating the structural and func-
tional complexity of the respiratory and cardiopulmonary
systems. It is likely that MR scanning will continue to
evolve such that it will complement CT in expanding our
understanding of the lung and facilitate radiation exposure
reduction in human studies. The extensive tool set devel-
oped to objectively and quantitatively evaluate CT images
are the gold standard that will assist in the development
of MR as a complement to other imaging modalities in
evaluating lung structure and function.

VENTILATION ASSESSED BY CT

The measurement of lung ventilation, lung volume,
and tidal volume has traditionally been made for the en-
tire lung, despite the fact that lung function in both health

and disease is inhomogeneous. Attempts have been made
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to quantify regional ventilation both directly and indi-
rectly with a variety of invasive techniques or radioiso-
tope imaging (101–110), but these methods have been
limited by invasiveness, poor spatial and temporal resolu-
tion, qualitative nature, and/or complexity. Xenon-en-
hanced MDCT (Xe-MDCT) is a method for the noninva-
sive measurement of regional pulmonary ventilation, de-
termined from the wash-in and wash-out rates of the
radiodense, non-radioactive gas xenon as measured in
serially acquired, axial CT scans. Little work had been
done since the original description of this technique
nearly 25 years ago (111–114), although the US Food and
Drug Administration approval of Xe-MDCT for measure-
ment of cerebral blood flow has met with moderate clini-
cal acceptance (115). Recently, however, the application
of Xe-MDCT for measurement of regional pulmonary
ventilation has been updated, validated, and refined, pri-
marily by three of the collaborators in this project, includ-
ing extension of the technique to estimate regional perfu-
sion and V/Q (57,93,116–122).

PERFUSION ASSESSED BY CT

Dynamic imaging methods have been used to estimate
arterial, venous, and capillary transit times and capillary flow
distributions (123–130). These methods involve two types of
image data collection regimes. Inlet–outlet detection is typi-
cally used for conducting vessels and whole organ analysis.
The other data collection regime is referred to as residue
detection. Residue detection is typically used, alone or in
conjunction with inlet detection, for analysis of microvascu-
lar regions wherein the individual vessels are below the res-
olution of the imaging system. Various approaches for deter-
mining blood flow and/or mean transit time have been
described (124,127–137).

MRI ASSESSMENT OF LUNG FUNCTION

Over the past 10 years there has been renewed interest
in applying MR imaging to the lung. Several methods
have been developed that are of interest in this respect.

Proton MRI has been attempted using fast, heavily
T2-weighted sequences (138) and more successfully by
application of high oxygen concentration (139–141). Fur-
thermore, combination of oxygen-enhanced ventilation
imaging with techniques to visualize the lung perfusion,

such as Gadolinium-enhanced and arterial spin labeling
methods, has allowed further assessment of the interaction
between ventilation and perfusion (96,142–144). How-
ever, several problems exist with this technology, such as
the need for intravenous contrast, the inability to separate
the oxygen dependent signal change in alveoli, lung tis-
sue, and blood, and the lack of spatial and temporal reso-
lution.

Hyperpolarized gas MRI is based on the introduction
of spins into the lungs, thus allowing imaging to take
place. The most commonly applied method uses hyperpo-
larized 3-Helium (HP 3-He), which does not cross the
alveolar wall and remains entirely inert. Spin depolariza-
tion takes place as a result of the RF pulses used and the
paramagnetic properties of oxygen.

HP 3-He MRI has several advantages rendering it of
potential use for the purpose of functional lung imaging.
First, it enables probing of the lung microstructure
through diffusion imaging (apparent diffusion coefficient),
which is a direct correlate for alveolar and airway size
(145–148). Second, it allows the visualization of ventila-
tion distribution at high spatial resolution (149–152).
Third, it is capable of ultra-fast imaging, allowing for
assessment of gas flow patterns within the lobar and seg-
mental airways (153–155). Finally, the local rate of depo-
larization enables direct measurement of partial pressure
of oxygen and associated gas exchange mechanism (in-
cluding V/Q ratios) (156–158). In spite of these great
promises, several issues of HP 3-He MRI remain to be
solved, such as the intra- and inter-subject variation of
signal caused by influences such as polarization level,
patient characteristics, and RF coil design. This makes it
even more important to compare these new methodologies
with reference methods.

MODELING

Application of modern computational techniques to
anatomically and biophysically based models of human
physiology provides a means to integrate vast amounts of
data across many spatial and temporal scales into a
framework that can be linked to whole-body physiology
and clinical medicine. Development of pulmonary models
that can be customized to any subject means that an indi-
vidual’s structure can be linked to personalized predic-
tions of function, allowing the better understanding of the
influence of structural differences on imaged ventilation
and perfusion, and to predict patient-specific drug deposi-

tion patterns.
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COMPUTATIONAL MODELS

Integrative, anatomically based modeling takes a fun-
damentally different approach from traditional computa-
tional models through the incorporation of accurate de-
scriptions of tissue properties and anatomic structure at a
range of levels of interest. In this sense, the model acts as
a central resource that encapsulates physiologic, anatomic,
and biophysical data, but it also uses physical laws to
describe the processes that determine the interaction be-
tween subsystems or substructures within the organ (eg,
airways, blood vessels, parenchyma). The development of
these integrative models and their associated databases
has been termed the “Physiome Project” (159). Effort in
this area over the past 10 years has primarily been fo-
cused on the heart (the Cardiome project), though work
has also progressed on a Microcirculation Physiome, and
an Endotheliome. Progress towards a Lung Physiome has
been limited: having compiled a database of publications,
models, and data relating to the pulmonary circulation the
University of Auckland has established a web-accessible
ontology for Physiome databases, including the lung, and
has developed hierarchical models of pulmonary struc-
tures (160–163), which can be incorporated into a valid
Lung Atlas.

COMPUTATIONAL FLUID DYNAMICS

As a first step in understanding image-based measures
in terms of structure-function relationships, the role
played by the properties of contrast agents (iodinated
compounds used for assessing blood flow (92) or dense
gases such as xenon and krypton (57,164), or lighter gas
such as helium to assess regional ventilation (16,21,165–
167) must be understood. Computational fluid dynamics
techniques are used currently to predict particle deposition
patterns in the lung but have been limited to artificial ge-
ometries and a few generations of airways. Furthermore,
little attention is paid to gas flow, particularly as it relates
to significant departures from standard room air mixtures
of O2, CO2, and N2. Accurate representation of the geom-
etry of organs is critically important when modeling phys-
iologic behavior, although the structural components or
level of detail required in a model is particular to the
functional problem to which it is applied. The method for
generating computational meshes from imaging data and
the degree of anatomic accuracy and complexity will de-

pend on the task at hand (168,169).
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Simulation of ventilation distribution requires computa-
tional meshes that extend through the entire conducting
airway system. However, image-derived data can be used
to create meshes of only a portion of the tree. A further
technique is required to extend this image-derived tree out
to the terminal conducting airways. This can be accom-
plished by attaching airway segments that have dimen-
sions based on either the Weibel symmetric (170) or
Horsfield asymmetric (171) models, but neither of these
idealized models includes spatial positioning or relate to
the geometry of an individual. The Kitaoka algorithm
(172) can be used to grow an airway-like structure into
idealized lobe shapes; however, it does not yet allow gen-
eration into anatomically realistic (imaging-based) vol-
umes. Tawhai et al (161) have developed an algorithm to
generate host-volume dependent airway-consistent mod-
els. The ability to fill any shaped host volume means that
the airway models can be customized to individual geom-
etry, allowing us to predict ventilation distribution for an
individual.

Simulation of blood flow is approached differently
for the large pulmonary vessels and the microcircula-
tion and there is a need to provide the linkage between
these two vascular bed components if we are to under-
stand the perfusion side of functional heterogeneity in
health and disease. Linking large vessel perfusion pre-
dictions in customized vessel models to anatomically
based microvasculature models such as Burrowes et al
(162) will provide a tool for investigating inter-individ-
ual differences in cell transit times that may contribute
to differences in the pattern of development of, for ex-
ample, emphysema. In the larger vessels the blood is
treated as a Newtonian fluid and its transport can be
simulated by solution of Navier Stokes equations,
which can be reduced to 1 dimension. One-dimensional
models of vascular blood flow have been developed to
model flow through relatively simple network geome-
tries (173–175), and to model transient flow through an
anatomically based coronary artery model (176). Re-
duction of the governing equations to 1 dimension is
attractive computationally; however, we expect that
this reduction may not be suitable for all simulation
conditions (eg, high flow), or all physical locations (eg,
largest vessels). Blood transported through the micro-
circulatory vessels is non-Newtonian and requires gov-
erning equations that incorporate its two-phase nature,
and changes in hematocrit and vessel resistance (177).
The classic sheet-flow model (178) for the pulmonary

microcirculation has contributed much to our under-
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standing of the system, but to investigate the distribu-
tion of transit times of blood cells requires a model
that includes the segmented structure of the capillary
bed (162).

LUNG ATLAS

A consortium of investigators (including the authors
of this special review) have embarked on a project
over the past 5 years to establish a normative atlas of
the human lung for four decades of age range for both
the male and female lung (1). These evolving elec-
tronic atlases of the lung (atlases specific to age and
gender) serve to house our knowledgebase of the lung.
Developing standardized lung atlases is important for
defining normal ranges of anatomic shape and function,
standardizing nomenclature, illustrating anatomy and
function, and defining a standard coordinate system for
reporting anatomic and functional observations. When
complete, the lung atlases will contain information
such as textual annotations (XML, FieldML, etc),
physiome ontology (see below), hyperlinks, segmenta-
tions, surfaces, surface curvature, material properties,
FEM descriptions, and CT/MR image data non-rigidly
registered to the atlas coordinate system. The atlas co-
ordinate system will provide a standard for reporting
anatomic and functional observations across patients
and research labs, ie, it will allow statements such as
perfusion was reduced by 20% at atlas coordinate
“350, 457, 168” in the emphysema population com-
pared with the normal population.

DEFORMABLE MODELS

An electronic deformable image atlas can change its
shape to adjust to individual differences. This is accom-
plished by a mapping or transformation that relates corre-
sponding points in the coordinate system of the atlas with
the implicit coordinate system of a target medical image
from an individual. The transformation maps the informa-
tion from the atlas to the individual producing an individ-
ualized atlas, ie, a new knowledgebase describing the in-
dividual. Abnormalities in anatomic shape and function
can be located and quantified based on the parameters in
the individualized atlas that exceed normative values de-
fined by the original atlas.

As defined above, the atlas itself is a model. Be-

cause an atlas fully describes an object, it can include
a variety of models, provided that they are referenced
to the coordinate system of the atlas. Hence, computa-
tional geometric models such as FEM models, point
distribution models, and probabilistic shape distribu-
tions on images can all be part of the atlas (once the
images are associated with the coordinate system of the
atlas) and can be used to model shape, motion, disease,
or any other desired information. Information derived
or gleaned from the various computation models con-
tained within the atlas becomes part of the knowledge
base associated with the lung. A large body of litera-
ture has been published on medical image registration
techniques (179 –181). Registration methods in the
medical image domain focus primarily on the brain
(182–199), but also other organ systems, such as the
spine (200), inner ear (201), breast (202), and cervix
(203). To date, few groups (9,10,204 –209) have con-
centrated on lung image registration, and very little
work has been performed to incorporate the airway,
vasculature, and lobar structure of the lung in the im-
age registration algorithms.

CONCLUSION

With the growing understanding of the environmen-
tal and genetic basis of lung disease, the rapid evolu-
tion of potentially beneficial interventions to lung dis-
ease, and the use of the inhaled route for systemic drug
delivery, there is a need for multidisciplinary efforts to
advance the field of lung imaging. While there have
been dramatic advances in imaging methodologies in-
cluding multidetector row CT, hyperpolarized gas MRI,
positron emission tomography, SPECT, new endobron-
chial imaging methods, and more, these advances bring
a growing challenge to the community to develop stan-
dards for imaging protocols, objective and quantitative
methods for image analysis, tools for establishing nor-
mative databases, and more. As the need grows for
“team science,” so too grows the need for forums
where scientists of varying backgrounds can simulta-
neously find a place to exchange ideas. In the field of
lung imaging, we would like to thank Academic Radi-
ology for stepping up to the plate.
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