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Abstract—This paper examines the feasibility of using arti-
ficial neural networks (ANNs) and genetic algorithms (GAs) to
develop discrete time dynamic models for fault free and faulted
switched–reluctance–motor (SRM) drive systems. The results of
using the ANN-GA-based (neurogenetic) model to predict the
performance characteristics of prototype SRM drive motor under
normal and abnormal operating conditions are presented and
verified by comparison to test data.

Index Terms—Fault tolerance, finite–element methods, genetic
algorithms, neural networks, synchronous motors.

I. INTRODUCTION

T HE WORK presented here examines the feasibility of
employing artificial–neural–network (ANN) models that

are constructed by using genetic algorithms (GAs) to model
the performance characteristics of switched–reluctance–motor
(SRM) drive systems during normal and abnormal operating
conditions. The modeling of these conditions requires the
use of coupled magnetic and state space/lumped parameter
circuit models of the machine and the associated converter [1].
However, a drawback with this approach is that one needs to
fully repeat the analysis for any changes in the system topology,
loading, or fault conditions to characterize the motor drive
system. On the other hand, ANN–built models, due to their
interpolation property can avail that.

Feedforward backpropagation ANNs have shown promise
in modeling many electromechanical applications (see, for
example, [2]–[4]) The work of reference [2] investigated the
use of ANNs to detect faults in induction motors. ANN inputs
included the motor speed, current, and the three quadratic
functions of the speed and current. The models developed
in [3], [4] present a feedforward ANN to control position
and speed in dc motors. These models have several features
including the use of ANN–projected outputs being delayed and
fed back to the ANN inputs.

The purpose of this paper is to present a methodology that
can be used to construct an ANN capable of modeling the dy-
namics of SRM drive systems, or any dynamical system. Using
ad-hoc techniques to find good ANN architectures consume sig-
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nificant engineering effort and were unsuccessful for solving
the problem described in this paper. As a result, GAs were em-
ployed to search for a suitable ANN.

This paper is organized into six sections, including an in-
troduction, a presentation of the indirectly coupled finite–el-
ements/state–space (FE/SS) modeling environment, the mod-
eling approach, the neurogenetic (GA based ANN model) used
in this work, a presentation of results and conclusions.

II. I NTEGRATED FINITE- ELEMENTS/STATE–SPACE

MODELING ENVIRONMENT

In this section, the details of generating training data sets,
for the SRM drive system and ANN networks discussed in
this paper, are presented. Most modern electromagnetic (EM)
systems involve nonlinear external circuit modules that include
solid–state switching devices in addition to the EM device
that comprises nonlinear magnetic materials. The magnetic
and electrical circuits are interacting during normal operating
conditions. This interaction (coupling) becomes more evident
during abnormal (fault) conditions. Accordingly, the coupling
between the nonlinear magnetic and electric circuits should be
accounted for in the analysis when predicting the performance
characteristics of a system, especially when the system is under
fault conditions.

As can be seen in the recent literature, the coupling effects
can be incorporated in the analysis directly or indirectly. In the
direct approach, coupling is accounted for by adding the ex-
ternal circuit currents as unknowns directly into the finite–ele-
ment matrix equation [5], or through the modeling of the circuit
elements with zero-dimensional finite elements [6]. The direct
approach requires extensive computational time and memory
storage space to account for motion and magnetic material non-
linearities.

In the indirect approach, a series of nonlinear field solutions
is used, assuming a known current excitation, to determine the
magnetic device lumped parameters. Next, these parameters are
used with the external circuit electrical equations to predict the
performance characteristics of the system [7]. However, when
studying faults, the currents exciting the nonlinear magnetic de-
vice are unknown as in the case of an SRM drive system under
internal or external fault conditions. In these cases, the instanta-
neous values of the machine lumped parameters, which are the
windings self and mutual inductances, continuously vary due to
saturation caused by the fault currents, the change in the rotor
speed and the change in the topology of the external circuits.
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As stated earlier, a modeling environment based on using
ANNs and GAs to predict the performance characteristics of
faulted SRM drive systems is presented. As detailed below, the
ANNs are applied for their well–known interpolation capabili-
ties for highly nonlinear systems and theAUTHOR, PLEASE
DEFINE THIS ACRONYM EAs are employed for their ability
to search a complex structural and parametric space as neces-
sary to find good ANN solutions. Furthermore, an integrated
FE/SS modeling approach is used to generate training data sets
for the ANN model of an SRM drive system. The FE/SS ap-
proach presented is indirect and is based on the use of nonlinear
magnetic field solutions and state–space models, including the
speed equation.

The two–dimensional equation governing the field in the
magnetic device after neglecting the displacement and induced
current terms can be expressed as

(1)

where
z-component of the magnetic vector potential (mvp);
magnetic reluctivity;
z-component of the excitation current density vector;

Meanwhile, the state space model describing the motor-drive
system is as follows:

(2)

where
state variables of the system that are the machine phase
currents , , and ;
SRM self and mutual inductances;
machine terminal voltages to the external circuits (Fig.
1b);
diagonal matrix representing the phase resistances;
rotor position;
rotor speed.

In addition, the equation used to solve for the rotor speed
is given as

(3)

where
inertia of the rotor;
developed electromechanical torque;
coefficient of viscous friction;
load torque.

Based on this approach, the unknown values of the excita-
tion currents, machine inductances, and rotor speed are contin-
uously updated during a sustained fault condition using an iter-
ative technique.

III. M ODELING APPROACH

To study the coupled problem in an SRM drive system during
sustained fault conditions, an iterative approach is used. This ap-
proach is based on the use of 2D FE analysis, (1), in conjunction
with the energy perturbation method for inductance calculation
and results from SS models, (2) and (3). A flowchart outlining

Fig. 1. SRM drive system.

this approach is shown in Fig. 2. The step–by–step procedure is
outlined as follows [2]:

Step 1) Perform a series of FE field solutions corresponding
to a set of rotor positions covering a period of [0to
180 ] using intervals of 2 mechanical each to deter-
mine the inductances for a no fault load condition.

Step 2) Using the computed inductances in the SS model, a
fault condition is simulated. The SS model equations
are integrated until the fault reaches steady state.

Step 3) The currents from this analysis are then used in the
FE model to predict a new set of updated induc-
tances.

Step 4) These updated inductances are next used in the SS
model to predict a new set of fault currents.

Step 5) Repeat Steps 2 through 4 until a convergence crite-
rion is satisfied.

The normalized rotor speed computed from the SS model is
used as the criterion for convergence during the fault condition.
The normalized speed change from one iteration to the next is
as follows:

(4)

where
speed at iteration;
speed at iteration ;
steady-state speed prior to the onset of the fault.

If the normalized speed change is less than a convergence
tolerance, the resulting fault condition is considered to have
converged.

The implementation of Step 1 of this iterative approach re-
quired the use of FE analysis. Furthermore, the implementa-
tion of Steps 1 and 3 required the calculation of the inductance
values. This was performed by using an energy and current per-
turbation approach applied to numerical magnetic field solu-
tions. This approach was developed and experimentally verified
in earlier works [8], [9]. Also, the implementation of Step 3 re-
quired the use of the calculated inductances in the state model
of (2). This was accomplished by representing the machine self
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and mutual inductances by Fourier series-type expressions of
the form

(5)

where
dc value of the inductance;
magnitude of the th harmonic;
phase shift;
limit of the harmonic order.

IV. NEUROGENETICMODEL

In this work, a discrete time model for an SRM drive system
is constructed using ANNs. ANN’s are employed for their
well known interpolation capabilities. A properly designed and
trained ANN is capable of interpolating for cases in which it
was not trained. This is in contrast to the conventional approach
of [1] where the FE and SS analysis must be performed for each
new operating condition. Furthermore, the ANN can be trained
directly from actual SRM measured data or from simulation
data. Relevant ANN model design considerations are the
selection of inputs, the number of hidden layers, the number
of neurons in each hidden layer and training parameters. For
temporal modeling, the number of time delayed samples for
inputs must be selected as well. The ANN model used in this
work is illustrated in Fig. 3. The model assumes one ANN, N1,
models the dynamics of the SRM while the second ANN, N2,
maps the state variables and inputs to the predicted torque. N1
is trained as a feedforward ANN that computes state-variable
updates for current (), position ( ) and speed ( ). The
position is represented by two parameters that are the sin
and cosine of the mechanical phase (or rotor position) rather
than . Decoupling the rotor position in this fashion provides
two benefits. First, the model training is not confounded by
discontinuities in the mechanical phase because simulation
models report . Second, if the position were the
continuous linear phase since the beginning of the simulation,
training may be overly biased to synchronize the ANN outputs
with , rather being less capable of modeling true dynamical
behaviors. Ad-hoc techniques were employed, without success,
to find an acceptable ANN model.

GAs are algorithms based on an analogy with evolution
observed in nature. GAs are optimization techniques that
perform a directed, randomized search of the problem space to
find optimal and nearly optimal solutions [10], [11]. Due to the
randomized nature of the search, GAs can search for solutions
without making assumptions about the structure of the best
solution. Furthermore, GAs are relatively immune to becoming
trapped in local minima, because of the randomized search
process. The genetic algorithm uses an averaging operator to
combine parent organizms. This operator was selected because
organism genomes specify coarser structural aspects of the
organism. This operator was selected because of the parametric
nature of the ANN structure. Furthermore, the probability of
a mutation in the child is 5%. The mutation operator consists
of Gaussian additive noise for the number of layers in the

Fig. 2. Flowchart of iterative finite element approach.

Fig. 3. ANN architecture for modeling SRM.

Fig. 4. Normal (no fault) condition, phase a current.

network, the number of neurons in each layer, the number of
delayed samples for each input, and the training time. For the
learning rate, the mutation was constructed so that the range
of the mutated values remained in the range of [0,1]. The
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following equation describes the mutation for the learning rate
and momentum:

(6)

where is a normal random number with a mean of
one and a standard deviation of 0.1. This relation ensures that a
value in the range [0,1] remains in that range and that the affect
on the variable is symmetric with respect to the midpoint of the
range of values. The GA is used to determine the structure of the
ANN and the ANN is trained using backpropagation to perform
a local search.

In order to determine how well prospective ANN’s model
the SRM, a fitness function is defined. The fitness function is
designed to have two fitness tiers. The first tier selects ANNs
that have low open-loop error. The second tier selects ANNs
with low closed-loop error. The two tier strategy works under the
premise that a network having a low closed-loop error will also
have a low open-loop error. The fitness is computed according
the following formula:

(7)

where
fitness;

current generation;

number of training epochs;

total number of weights in the network;

total number of neurons in the network;

number of layers in the network;

open-loop error;

closed-loop error.

The decay as a function of generation for training and struc-
tural resources is set so that after ten generations, these contri-
butions are one tenth the initial contribution. For each genera-
tion, the population is simulated and the fitness is determined
for each individual using (7) followed by a ranking based on fit-
ness. The subsequent generation is determined from the present
generation using a process that favors better solutions, yet en-
ables variations in prospective solutions to search the space.

V. RESULTS OF ACASE STUDY

The neurogenetic models described earlier were used to
model the SRM drive system of Fig. 1(a) under normal and
fault conditions. Using the GA described before, the fittest
ANN was found in the 71st generation. The average open-loop
mean-square error for this network is 0.001 37, an average
closed-loop mean-square error is 0.007 20 and a resulting
fitness of 75.72. This ANN has two hidden layers of 13

and 18 neurons, respectively. For each input, the number of
time-delayed samples for each input averaged approximately 4
samples per input. The ANN was trained with a learning rate

, a learning momentum for 14 epochs.
The neurogenetic model was used to predict the performance

characteristics of the SRM drive system of Fig. 1(a) under the
following:

Case 1) Normal (No Fault) Condition in Fig. 4;
Case 2) Transistor Fault Condition in Fig. 5;
Case 3) Partial Phase Fault condition in Fig. 6

It should be noted here that Case #2 corresponds to the condi-
tion when transistor Q2 fails and results in the loss of phase
(b) of the SRM. Meanwhile, Case #3 corresponds to a par-
tial failure of phase (b) resulting from a short in the winding
of phase (b). Sample results for current waveforms and torque
profiles are given in Figs. 4–6, for these cases, respectively. In
these figures, the ANN results are shown and compared to FE
simulation results obtained from the conventional models de-
scribed in [1]. Also, a comparison of RMS measures from the
ANN, the FE, and test data is given in Table I. An inspection
of the waveforms in Figs. 4–6 as well as the results in Table I
reveal good agreement between the three sets of data. Accord-
ingly, it is demonstrated that the GA-based ANN (neurogenetic)
models can be used for the characterization of motor drive sys-
tems under normal and fault conditions.

While the agreement and general characterization are good,
errors in the mappings are of concern. Since the ANN mapping
is trained using backpropagation, after training, small mapping
errors are present. An additional complication is that the ANN
represents the SS mapping relation, where errors in the state can
perturb subsequent state updates. Indeed, the torque shows some
sensitivity at specific rotor positions. In particular, the model in
this case study is sensitive to the current switching on and off
in phase a. The sensitivity is likely a result of the decoupling of
the torque prediction from the rest of the mappings. The currents
used in training the torque are not the currents predicted by the
ANN mapping, but rather are the currents taken from the orig-
inal FE/SS simulation. Such excursions are seen in the torque
curves in Figs. 4(b) and 5(b)

VI. CONCLUSIONS

This work showed the feasibility in constructing a multilay-
ered feedforward ANN using GA methodologies to model the
discrete time dynamics of faulted and fault-free SRM drive sys-
tems. The GA search is run for 20 generations and included a
search of the number of time-delayed samples for each input,
the number of layers, the number of neurons in each layer, the
training duration and training rates. A local search, in the form
of the backpropagation learning algorithm, is performed on the
organizm defined by these quantities. The performance of fittest
ANN model was excellent, in comparison to the simulated and
test results.
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Fig. 5. Transistor fault condition, phase a current.

Fig. 6. Partial phase short condition, phase b current.
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