HW #5

7.6

Assume T = 300K and M = 22 AMU, 1.0 AMU = 1.67^{-27} kg; $\Delta v_D = (8kT \ln 2/Mc^2)^{1/2}v_0 = 3.17 \times 10^{-6} v_0$

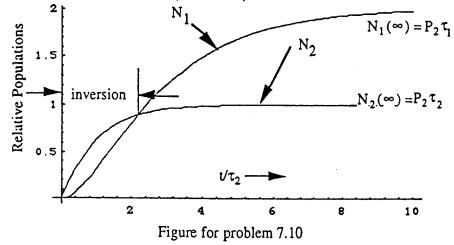
λ	v_0	Δv_D	$\Delta \lambda_{ m D}$
6328Å	4.74 ¹⁴ Hz	1.5GHz	0.02Å
1.1523µm	2.614	0.823	0.036 5 Å
3.39µm	8.8513	0.28	0.107Å

7.10

This is a reasonable model for the pulsed N_2 laser which has a very high gain and lases at 0.337 μm . Its major drawback is that it is self-terminating because the inversion can not be maintained indefinitely – fact that comes out of the analysis that follows.

$$\begin{split} \frac{dN_2}{dt} &= P_2 - \frac{N_2}{\tau_2} \quad \text{whose solution is: } N_2(t) = P_2\tau_2(1 - \exp[-t/\tau_2]) \\ \frac{dN_1}{dt} &= + \frac{N_2}{\tau_2} - \frac{N_1}{\tau_1} \qquad \text{or} \qquad \qquad \frac{dN_1}{dt} + \frac{N_1}{\tau_1} = P_2(1 - \exp[-t/\tau_2]) \\ N_1 &= P_2\tau_1 \left\{ 1 - \frac{\tau_1/\tau_2}{\tau_1/\tau_2 - 1} \, e^{-t/\tau_1} + \frac{1}{\tau_1/\tau_2 - 1} \, e^{-t/\tau_2} \right\} \end{split}$$

It is informative to consider the steady-state populations, i.e., where $t >> \tau_{2,1}$. N_2 $(t \rightarrow \infty) = P_2\tau_2$ and $N_1(t \rightarrow \infty) = P_2\tau_1$. Note that since $\tau_1 > \tau_2$, we have the undesirable situation of $N_1 > N_2$ which means that the system will not lase in a steady state. However, one can obtain a transient inversion (and a laser) as the sketch below indicates.



 $N_2(t\to\infty) = 10^{20} \times 10^{-6} = 10^{14} \text{ cm}^{-3}, N_1(t\to\infty) = 10^{20} \times 2 \times 10^{-6} = 2 \times 10^{14} \text{ cm}^{-3}$ Let $t/\tau_1 = x$; $(\tau_1/\tau_2) = 2$; $N_1 = N_2$ when $2(1 - 2e^{-x} + e^{-2x}) = (1 - e^{-2x})$;

Collect terms, multiply by e^{2x} and factor: $f(x) = [e^{x}-3][e^{x}-1] = 0$; where $x=t/\tau_1$; F(x) = 0 at x = 0 (i.e. at the start) or $x=t/\tau_1 = \ln 3$: $\therefore t = 1.0986\tau_1 = 2.2$ usec