HW #2

6.2 $\tau_{p} = \frac{\text{Round-trip time}}{\text{fraction lost}} = \frac{2(d_{1}+d_{2})/c}{1 - R_{1}R_{2}R_{3}R_{4}} = 78.9 \text{ nsec}$

6.3 $\lambda_0 = 5000 \text{ Å}; \ \therefore \ v_0 = 6^{+14} \text{ Hz} = 600 \text{ THz}; \ \Delta v_{1/2} = \frac{1}{2\pi\tau_p} = 2.02 \text{ MHz};$ $Q = \frac{v_0}{\Delta v_{1/2}} = 2.98 \times 10^{+8}$

6.4 (a) If path 1 had a power gain of G; $\tau_p = \frac{2(d_1 + d_2)/c}{1 - GR_1R_2R_3R_4} = 38.8 \text{ ns if G} = 0.85;$

(b) If G = 1.1, $\tau_p = 253.8$ ns; (c) If τ_p is positive, dN_p/dt is negative, and N_p decreases (passive cavity). If τ_p is negative, dN_p/dt is positive, and N_p increases. Something has to give: N_p cannot increase indefinitely.