R. Bowen Loftin,
Mark W. Scerbo,
Frederic D.
McKenzie, and
Jean M.
Catanzaro

Virginia
Modeling,
Analysis, and
Simulation
Center

1 Quantico
terrain used for
checkpoint
location.

Projects in VR

Editors: Lawrence Rosenblum and
Michael Macedonia

Training in Peacekeeping Operations

Using Virtual Environments

uring the past 20 years, the US has engaged in two

wars but has participated in roughly 30 major mil-
itary operations. Although such operations have far
more complex rules of engagement than large-scale
wars, most military training still focuses on war fight-
ing. Furthermore, because military operations today
receive such intense news media scrutiny, the actions of
even the most junior members of a military unit can
profoundly shape world opinion, affecting the most
senior levels of leadership, as we have recently seen.

Consider the current war in Iraq. During the war, a
suicide bomber in a taxicab at a checkpoint near Najaf
feigned engine trouble and then blew up the vehicle,
killing four Coalition soldiers when they approached to
investigate. Soon afterward, another vehicle approach-
ing a checkpoint near Najaf failed to heed warnings to
stop. Soldiers fired into it, killing seven women and chil-
dren. Iraq remains a dangerous place. The Bush
Administration declared the official war over nearly a
year ago, but Coalition soldiers, military quarters, and
supply lines continue to fall under attack.

Such incidents make headlines and require military
commanders to continually reevaluate their rules of
engagement. Proper training of military personnel, at
all levels, has never been more crucial. In this article,

July/August 2004

wu gE oma WM
G caE Al EW

Published by the IEEE Computer Society

we describe the application of virtual environment tech-
nology to a novel and complex task—the military check-
point. In the process, we also address differences
between an immersive virtual environment training sys-
tem and a desktop version.

The training system

In developing the application, our primary objective
was to reproduce the kind of experiences a military
guard would encounter while standing watch. Thus, we
created the task, setting, and virtual characters to match
typical checkpoint conditions as closely as possible. The
application recreates a checkpoint locale from the US
Marine Corps training town in Quantico, Virginia.
Figure 1 shows a bird’s eye view of the terrain.

To create virtual human agents, we used Jack, a 3D
modeling environment that supports high degree-of-
freedom human models.! We selected the human mod-
els within Jack for this project because of the range of
dynamic motion available, which includes utilities for
locomotion; head and eye movement; and arm, leg, and
all other joint movements. In Jack, the extent of motion
of the human models is always within the physical con-
straints of selectable human body types, assuring us that
the gestures and positions are within the realm of pos-
sibility given the particular human
in a particular environment.

Because the process of manning a
checkpoint can be a highly repeti-
tive, mundane activity in which
unusual events are rare, we devel-
oped two sets of training scenarios.
The first contained general or neu-
tral scenarios in which a vehicle
approaches and stops at the check-
point. The trainee inspects the vehi-
cle and asks the driver—a virtual
human intelligent agent—for iden-
tification. The trainee’s partner
(another virtual agent) provides
cover for the trainee during the
interaction. To more closely repro-
duce this activity’s true conditions,
each neutral interaction had to be
unique, so we generated a pool of
neutral scenarios that varied in vehi-

0272-1716/04/$20.00 © 2004 IEEE

cle type and color as well as driver’s gender and skin,
hair, and shirt colors.

The second set of critical scenarios let the trainees
exercise their judgment. The critical scenarios appeared
at random intervals throughout the training session,
unfolding without any cues to distinguish them from
the neutral scenarios. For example, in one scenario, an
ambulance arrives and the driver tells the trainee that he
does not have time to go through the normal identifica-
tion verification routine because he has an injured pas-
senger. The trainee is expected to follow proper
procedure and perform an identification check on both
the driver and passenger, even if confronted with an
urgent situation. Other scenarios required the trainee
to be on the look out for a specific vehicle, detect a miss-
ing license plate, or identify the presence of contraband
items, making the scenarios representative of the kinds
of judgments a checkpoint guard must make.

Immersive virtual environment

The first experiment took place in a fully immersive
CAVE automatic virtual environment. With the images
presented on two of the CAVE’s 10 x 10-foot walls at a
resolution of 1,280 x 1,024 pixels, we used LCD
CrystalEyes stereo shutter glasses to view the images
stereoscopically. Positional tracking was provided
through Ascension Technology’s Flock of Birds software,
a six degrees-of-freedom tracker with a single head sen-
sor attached to the CrystalEyes glasses. Three main com-
puting systems connected through a 100-megabits-
per-second network switch:

B An SGI Onyx 2 computer displayed the application in
the CAVE, provided the sound playback, and read the
information from the tracking devices. This comput-
er uses Titan Corporation’s VrTool which includes
VrGui and VrSpeech, VRCO’s TrackD, Jack, Python
opensource scripting language, SGI Open Inventor,
and IRIX 6.5 operating system .

B An SGI O2 computer served as the experiment’s main
console. From here, users could launch the applica-
tion and operate override controls during the simu-
lation. This computer uses IRIX 6.5, SGI Motif, and
SGI.

B A PC computer also hosted the voice-recognition soft-
ware, communicating the information to the SGI
ONYX trough a network socket. This computer uses
Microsoft Windows 2000, IBM ViaVoice, and
VrSpeech.

The “Porting to PCs” sidebar discusses our efforts to move
the application to less expensive PC-based systems.

Interactivity

Head tracking and voice recognition were the two
human-computer inputs available to the trainee. The
trainee’s tracking position fed into our virtual environ-
ments for training (VET) system, which in turn updat-
ed the VR automobile driver’s head and eye orientation.
As a result, the virtual humans commanded a life-like
presence in the environment.

Trainees also wore wireless microphone headsets to

Porting to PCs

Because expensive graphics workstations are becoming less
popular and new PC-based VR environments are emerging, we
ported our checkpoint training system to such an environment
using the Quantum3D ObsidianNV Rack for the PC platform. The
Quantum3D ObsidianNV Rack has four interlocked PCs that can
drive four channels simultaneously. It’s suited for a multidisplay VR
environment. Currently, the system drives separate flat panel
displays using distributed Vega—MultiGen-Paradigm’s software
environment for the creation and deployment of real-time virtual
reality applications—to drive the multiple scenes. However, the
system clearly can directly drive a CAVE as well. Of the six
components that were necessary, we only used two in the port.

Scene graph construction and rendering was done with Titan
Corporation’s VrTool. There are two scene graphs, one in VrTool
and the other in Jack. The Vega platform supports distributed
simulation and real-time rendering. Porting from VrTool to Vega
was fairly straightforward; they both follow the same design
philosophy, both having a user-friendly, top-level configuration
editor working in conjunction with a lower-level API for complex
programming. Vega has some nice, simple programming examples
that are well suited for beginners and people without significant
technical backgrounds. Most surprisingly, the Vega documentation
is good in parts but in others, particularly for the more complex
areas, whole sections had been left out. For example, nowhere
does the documentation explain how to retrieve information on
more than one isector segment from a collision detection volume.

Porting from Jack to Boston Dynamics DI-Guy was more difficult.
We decided not to continue using the Jack toolkit in our PC port for
four reasons:

W the licenses for it were expensive,
M the software was not mature,

M it had poor documentation, and
M it was poorly supported.

In the PC port, we used DI-Guy instead, choosing that option
because of its high-quality human models, and its ability to
generate high-fidelity animated actions.

LWNets are a component of the Jack toolkit used to control the
behaviors of the virtual humans. As Jack was not ported to the PC,
we developed a decision and logic network using states and
conditions based on time and location.

Porting VRCO's TrackD was by far the easiest. Our experience
reflects on TrackD’s well considered design and multiplatform
support. Essentially, the code was exactly the same for both
aspects.

Porting the windowing system was also easy. By using Vega, it
was not necessary to create the graphics display windows, as these
were created automatically. We used standard win32 API calls for
human-computer input.

Finally, no porting was needed for the speech recognition because
the original was already designed to run on a windows PC laptop.

issue voice commands to the PC running IBM’s ViaVoice
software. This software recognized any valid words or
sentences according to the grammar that we developed,
transmitting the results via network socket communi-
cation to the SGI computer running the main program.
The main program then checked words and sentences to

IEEE Computer Graphics and Applications

Projects in VR

3 GUI created for the desktop system.

determine if they were valid commands; if so, the appli-
cation set a corresponding event.

Scenarios were scripted using a simple text configu-
ration file—essentially a large table of the elements that
needed to be present in each scenario. Elements includ-
ed vehicle type, driver’s gender, driver’s ID type, pas-
senger’s ID type, and sticker or pass information. For
each scenario, the program initialized according to
these parameters. Other parts of the scripting, such as
virtual driver responses, used the current scenario num-
ber as an index to a large bank of over 1,500 sound and
voice files. The application created background and
other supplemental audio sounds—including gunfire,
airplane flybys, wind, and the approach of a car on a

July/August 2004

gravel surface—using a combination of existing sound
samples and environmental sound recordings.

The combination of interactive elements provided a sig-
nificant sense of immersion and a level of interactivity
believed to be unparalleled when developed last year.
Figure 2 shows the system in use. In this particular scenario,
the driver suspiciously averts eye contact to check his car
rearview mirror and his cohorts in the vehicle behind. If the
trainee neglects to signal his virtual partner, the driver in
the vehicle behind would produce a gun and fire.

Desktop virtual environment
implementation

We created a different interface for a desktop version
that lets trainees navigate and inspect the vehicles.
There were two main differences in the desktop system’s
hardware:

B We replaced the SGI ONYX2 Image Generator with
an SGI Octane desktop computer. Also, the desktop
version does not display images stereoscopically,
instead presenting them on an 18-inch Sony flat panel
display. Therefore, no shutter glasses were used.

B There was no positional tracking with the desktop sys-
tem. Instead, we developed a new interface to let par-
ticipants navigate within the scene and inspect the
vehicles.

The trainee’s graphical user interface sits over the ren-
dered scenarios as Figure 3 shows. The GUI has two drop-
down menu options in the toolbar: menu (play, pause,
speech toggle, or quit) and zoom (zoom in, zoom out, or
zoom reset). Pushbuttons provide features such as “walk
to driver,” “walk to neutral,” “look at driver,” and “change
view.” The first two let the trainee avatar walk to a loca-
tion that is offset from the driver and walk back to a pre-
determined neutral location. The “look at driver” feature
bends the avatar’s torso so that the driver comes within
his line of sight. “Change view” simply toggles between
the original camera view (overlooking the checkpoint
scene) and the avatar’s view. In addition, the GUI has
buttons (large directional triangles) to pan the camera
left, right, up, and down, and also to reset it to a default
position. Using these buttons, a trainee could inspect a
vehicle’s front and back seats.

Trainees used the GUI to navigate within the scenar-
ios and inspect the vehicles. The experimenter used a
second GUI to control the driver and passenger respons-
es. The experimenter’s GUI had all the capabilities of
the trainee’s GUI for accomplishing the appropriate
adjustments, prompting, and demonstrating. Driver and
passenger control was available in the form of button
pushes for triggered responses such as, “Yes sir,” “I don’t
understand,” and “Okay.”

Computing elements

Most of the source code concerns setting up a world
state and then rendering the virtual world according to
this state. It has a main loop that cycles through at
approximately every 10 milliseconds to update this
state. Included are such tasks as collecting user input,
calculating the objects’ positions and orientations in the

virtual world, and outputting to a number of displays.

Jack uses an abstract factory design pattern to gen-
erate virtual humans. This pattern creates families of
related objects without specifying concrete classes.
Essentially, Jack lets users designate procedures that are
responsible for creating, updating, and deleting com-
ponents of the virtual humans, such as the limb seg-
ments and joints. The class we designed for creating
each virtual human derives from Jack’s behavior base
class. This class contains a collection of variables used
throughout the program for scripting and other pur-
poses, and also contains several figure objects. Each fig-
ure is a special object-oriented class that encapsulates
the human’s geometry and has the procedures that pass
to Jack’s abstract factory and serve to convert the geom-
etry into virtual humans in the scene graph.

We used VrTool for scene graph construction and ren-
dering. There are two scene graphs, one in VrTool and
the other in Jack. VrTool’s scene graph is what is actual-
ly rendered on the screen, whereas Jack’s serves inter-
nally for dynamic character animation calculations. A
special type of inventor file called a scene file initializes
VrTool when it starts up. We can set all of these using the
top-level configuration editor, VrGui, which is similar to
MultiGen-Paradigm Vega’s Lynx. Any number of other
visualizers would have also been appropriate in place of
VrTool’s, such as Vega’s Lynx or even straight OpenGL.

Performance

Undergraduate students from Old Dominion
University trained in either the system’s immersive vir-
tual environment or desktop versions.? We selected this
population because these students are representative of
the type of individual who would likely be assigned to
military guard duty. We gave them background infor-
mation on their role and responsibilities, told them to
assess the vehicles and occupants, and asked them ren-
der decisions as to whether vehicles could enter. Half
performed a 45-minute shift, received feedback on that
shift, and then performed a second 45-minute shift. The
remaining participants performed only a single session.
We compared the performance of these participants to
that of another group who only performed a single ses-
sion using the second session’s scenarios.

We assessed performance by the total number of
errors each participant made on each scenario type. As
expected, more errors were committed on the critical
scenarios. Also, the trainees who received two sessions
made about two-thirds fewer errors on their second ses-
sion. Table 1 shows results for critical scenarios.

A second analysis compared performance between the
participants in group 2 and group 1 in their second ses-
sion. The group 1 trainees also made about two-thirds
fewer errors in their second session when compared to
group 2 participants. The better performance of partic-
ipants in group 1, session 2, over those of group 2 indi-
cates that they benefited from their training experience.

Table 1 also shows performance with the desktop sys-
tem. The overall pattern of results was similar across sys-
tems. Those individuals who participated in two sessions
showed marked improvement in their second session and
performed better than another group of individuals who

Table 1. Mean Number of Errors for Critical Scenarios in the
Immersive and Desktop Studies.*

Immersive VE Desktop System

Session Group 1 Group 2 Group 1 Group 2
1 6.36 (6.0) 5.47(3.41) 7.43(3.26) 8.14(5.24)
2 1.87 (4.51) 3.0 (2.71)

*Standard deviations appear in parentheses.

only participated in a single session. More importantly,
the overall performance levels for all participants in all
conditions were better with the immersive environment
than with the desktop system. This difference might be
attributable to the CAVE experience and the benefits of
immersive virtual environment technology. Such results
indicate that CAVE technology has great potential as a
training tool with applicability to the development of
decision aids and selection tools.

The objective data indicate that the participants
responded well to the virtual environment. Most partic-
ipants acclimated quickly to the environment, became
accustomed to the methods of interaction, and interact-
ed with virtual objects rather naturally. On a more sub-
jective level, evidence suggested that the participants
were immersed in the task: We observed some individ-
uals using hand gestures to motion cars to pull up to the
gate and others reaching out to try and hold the ID card
presented by the driver.

Conclusions

These results indicate that individuals can benefit
from training in a virtual environment that places
greater emphasis on social interaction skills. Individuals
with little or no military training were able to learn some
of the fundamentals for performing checkpoint duty in
an experiential context. These findings should encour-
age those in the development community to continue
to improve and refine the technology required for this
class of virtual environments. Additional work on mod-
eling body gestures, facial expressions, and voice recog-
nition in real-time simulations is needed to develop
training for more complex human interactions. |

References
1. N.I. Badler et al., “Parameterized Action Representation
for Virtual Human Agents,” Embodied Conversational
Agents, J. Cassell, ed., MIT Press, 2000, pp. 256-284.
2. B. Loftin et al., Virtual Environments for Training: Final
Report, Office of Naval Research, under Grant NO0014-95-
1-1044, 30 Dec. 2002.

Readers may contact the department editors at rosen-
blu@ait.nrl.navy.mil or michael_macedonia@stri-
com.army.ml.

Readers may contact Bowen Loftin at the Virginia Mod-
eling, Analysis, and Simulation Center, Old Dominion Uni-
versity, 1 Old Dominion Univ.,, Norfolk, VA 23529;
bloftin@odu.edu.

IEEE Computer Graphics and Applications 5

