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The Virtual Reality Modeling Language (VRML) offers capabilities far beyond the virtual exploration of solid
models. The scripting capabilities and the execution mechanism enable the creation of complex applications.
Indeed, applications can be implemented as a collection of modules interacting in a decentralized fashion, com-
municating through the exchange of messages. In this paper, an architecture is presented for creating large
VRML worlds. The architecture includes a definition of functional modules that serve as the foundation for the
application. In addition, object model architectures are structured into three layers that separate pure behavior
from editing controls and also from the interface to the visualization, supporting module diversity and reuse. An
urban planning example application is presented that incorporates these ideas and features a graphical user
interface (GUI), collision management, a simple simulation manager, and an interface to a web server. Finally,
several object examples are described followed by a presentation of an example session.
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1. Introduction
The growth of the Internet has provided opportunities for tech-
nological advances in how people communicate information and
ideas. Among the factors driving the advances is the desire to
enhance the way internet content is presented to the user. On
the surface, displaying a web page appears to be a simple mat-
ter of displaying text and images. With the introduction of pro-
gramming capabilities offered by Java, Javascript, and other pro-
gramming and scripting languages, the web page is dynamic
and can be customized for individual users. Paralleling the ad-
vances in web technology, advances in computer technology
support approaches  that were until recently beyond the capa-
bilities of machines generally available. As evidence and in sup-
port of these advances, a 3D interactive visualization language,
the Virtual Reality Modeling Language (VRML), was created,
has been standardized, and is widely available [1]. VRML of-
fers an opportunity to demonstrate the utility in Internet deliv-
ery of interactive 3D web content.

Current web technology provides a variety of architectural
options that distribute the responsibilities between client and
server in various ways. An excellent overview of virtual world
architectural issues can be found in [2,3]. From the literature,
several VRML applications have been demonstrated and show
promise in delivering three dimensional content over the Inter-
net using the unique capabilities offered by VRML. The types
of VRML applications fall into several broad, but non-exclu-
sive, categories. These categories include education and train-
ing [4–9], virtual collaboration, [6, 10, 11], information visual-
ization and retrieval [12–14], games and entertainment [11, 15,

16], design tools [3, 17], and modeling and simulation [11, 18–
20]. Indeed, the applications include components in several of
these categories. The application domains are also broad and
include urban planning [19, 21], geographic information sys-
tems (GIS) [14, 22], medical [5, 9, 23], engineering [3, 17],
business [6–8], and combat simulations [18].

Applications can have many general operational features.
These features affect the flexibility of the application and the
complexity of the implementation. A virtual world is an inter-
acting collection of components that compose the world, each
component manifested by solid models and/or behaviors. The
structure of the virtual world is represented by a scene graph
defining the interrelationship among components in the world.
We define the extent of the virtual world by the way compo-
nents are allocated. The extent can have a great impact on the
capabilities of the world. In a world with static extent, all com-
ponents are loaded and inserted into the scene graph at startup.
Throughout the life of the session, the world scene graph does
not change; components are neither added nor deleted from the
scene graph. A world with reconfigurable extent allows compo-
nents to be added or removed from the scene graph at run time,
but the number of components is fixed at startup. A world with
dynamic reconfigurable extent enables the addition of any num-
ber of components at run time, limited only by the resources of
the client machine.

The three extent models vary in their capabilities and per-
formance. A static extent world offers high performance that is
well suited to many applications. In the event the world scene
graph must be changed, changes must be made to source files
and the world must be reloaded, resulting in significant laten-
cies when reloading complex worlds. A reconfigurable extent
world offers the flexibility to change the scene graph by includ-
ing a fixed size pool of components that may be inserted.
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Since the pool of components is immediately available, the scene
graph can be updated quickly. A reconfigurable extent world
has two shortcomings. First, the number of components is fixed.
If it is not known how users expect to modify the world, many
components provided may be unused, resulting in significant
startup latencies and greater resource requirements for many
sessions. Second, if several different components are desired,
additional demand is required at startup because a fixed alloca-
tion of each type must be provided at startup. Indeed, if too
many different components are available, the reconfigurable
extent world becomes impractical. A dynamic reconfigurable
extent world offers a solution to the start up resource problems
of the reconfigurable extent worlds. In dynamic reconfigurable
extent worlds, components are allocated and added at run time,
as needed. As a result, startup times are lessened compared with
reconfigurable worlds. Dynamic reconfigurable extent worlds
incur some implementation complexities not present in the other
two extent models. The component architectures may require
special features and treatment so that the component can be in-
serted into the world. Furthermore, inserting the component into
the scene graph may require several steps (i.e., allocation, ini-
tialization, scene graph insertion, event routing). This paper de-
scribes an architecture for dynamic reconfigurable extent worlds.

Looking in more detail at some of the applications suggests
the power and also the limitations of VRML technologies. We
describe some of the more notable applications. The Nerve Gar-
den architecture [10] describes how algorithms mimicking life
processes are used to create and plant artificial plants. Nerve
Garden is a collaborative laboratory allowing users to create
and germinate plants in an applet window with subsequent in-
sertion into a scene graph common to all users. Since the num-
ber of plots is fixed, the application likely uses a reconfigurable
extent model along with some fairly significant coupling to the
server. The CADETT interactive multimedia business learning
environment (CIMBLE) [6–8] describes a virtual training en-
vironment allowing participants at distant locations to collabo-
rate. Interaction among users is accomplished using a multi-
user domain (MUD). A key contribution of this work is the
description of a software architecture. [9] describes the archi-
tecture of a web based training system for endoscopic proce-
dures treating abdominal aortic aneurisms. The architecture in-
cludes server and client processes, uses the VRML External
Authoring Interface (EAI) [24]. Computations on the server
model the dynamics of the simulated procedures. [3] describes
an architecture for virtual prototyping in the context of web-
based development environments. In this architecture, virtual
prototypes are built using virtual components, suggesting
reconfigurable extent, whose appearance is defined in VRML
and behavior defined in Java through the EAI. Component in-
teraction is managed at the highest level in a virtual reality
prototyping simulation engine. In the realm of urban and geo-
graphic visualizations, several applications have been reported
[14, 19, 25, 26]. Such applications require the manipulation and
display of large data sets. The general approach followed is for
the server to accept queries from client machine and then per-
form server side processing to satisfy the request. Each modifi-
cation requires the entire world to be reloaded and thus uses a

static extent model. For small data sets, reloading is not a sig-
nificant issue; however, reloading large worlds can add unde-
sirable latencies.

The primary contribution summarized in this paper is the
development of a virtual world architecture for creating VRML
based virtual worlds featuring large scale interactive, modular
visualizations characterized by dynamic reconfigurable extent.
Indeed, few VRML applications support the allocation of dy-
namic content at run time. The modularity of the application is
achieved through the development of generic functional mod-
ules for the application infrastructure with a collection of ob-
jects composing the visualization. The application demonstrates
the integration of a graphical user interface (GUI), dynamically
allocated objects, standard architecture for objects, and the vari-
ous modules that link these together into an application. More
specifically, the fixed backdrop defines the work area where all
additions and modifications occur. The object architecture is
organized into three layers implementing the interface to the
visualization, defining editing controls, and specifying the model
behavior. The interface layer is sufficiently robust to be auto-
matically generated, simplifying the integration of new models
into the application. Furthermore, our architecture supports some
simulation capabilities whose extent shall be explored in the
future. The demonstration application is a tool developed for a
local municipality to complement conventional marketing ef-
forts for marketing an office park. The architecture is constructed
so that updates to the world occur dynamically on the client
machine, lessening the load on client, server, and network re-
sources when compared with a full reload of the virtual world.
For any modification to the world, the server logs for the ses-
sion are updated. Finally, the server supports save and restore
of client sessions by storing all client sessions and supporting
user authentication [27].

This paper is organized into eight sections, including an in-
troduction, a brief tutorial on VRML, a presentation of the ar-
chitecture, a description of the object architecture, a summary
of some example objects, a run through of an example session,
a discussion of the architecture, and a summary.

2. VRML
A VRML application is typically a hierarchical organization of
geometries, sensors, light sources, script methods, and group-
ing primitives assembled in a meaningful fashion. In VRML,
these primitives are termed nodes. Each node can have several
fields to define node appearance and also to define inputs to
(eventIn fields) and outputs from (eventOut fields) the node. A
node can define a solid model, such as a box; a capability, such
as tracking the pointing device; or an arbitrary behavior, such as
what can be defined in a script. Extensibility and model reuse
are accomplished with prototype definitions that specify user
defined nodes. The subset of VRML node types (language primi-
tives) used in the architecture is discussed in this section. Sev-
eral excellent VRML resources exist in the literature [28, 29]
that the reader is encouraged to consult. Figure 1 gives an ab-
breviated overview and relationships of the more significant
VRML nodes used in our application.
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Grouping Nodes. The Group, LOD, Switch, and Transform nodes
define how a collection of nodes can be grouped and also pro-
vide some useful control over their appearance. The Group node
is the most basic grouping node that associates groups of chil-
dren nodes. One effect that the Group node imparts is to associ-
ate a sensor with the entire child hierarchy. The Transform node
provides the same capabilities, but additionally allows arbitrary
scale, translation, and rotations of the child hierarchy. Nodes
can be dynamically added and removed from Group and Trans-
form nodes. The LOD node provides some control over the level
of detail, or appearance as a function of the distance from the
camera. The Switch node allows the selection of one node to be
visible from a collection of nodes.

Sensor Nodes. VRML has a total of eight sensor nodes, of which
four are used here, that generate events when the conditions
occur to which they are sensitive. For example, the TouchSensor
node generates an event when the mouse cursor is over an asso-
ciated geometry and the mouse button is depressed. The
PlaneSensor senses mouse drag actions while the mouse button
is depressed. Using a TouchSensor in conjunction with a
PlaneSensor enables a mouse click to select a geometry
(TouchSensor) and a mouse drag to change the position of the
geometry (PlaneSensor). The TimeSensor provides a mecha-
nism for inserting delays and synchronizing different anima-
tions within the visualization.

Figure 1. Abbreviated Overview of VRML Nodes Used in the Architecture
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Geometry Specifications. Shape geometries can be basic or gen-
eral. Basic shapes such as boxes, cylinders, cones, and spheres
are defined by name with fields to specify the expected dimen-
sions. More general shape geometries include Extrusion and
IndexedFaceSet geometries enabling specification of fairly ar-
bitrary geometries. The Extrusion geometry is an analogy with
the shape a material, such as modeling clay, makes after being
forced through an opening with a varying cross section. The
IndexedFaceSet provides a general appearance representing the
object with simple faces.

Scripts. The Script node allows the implementation of arbitrary
methods and behaviors. The script receives input, does the re-
quired processing, and then generates the necessary output
events. For example, a script can take events from a PlaneSensor
that is tracking a mouse drag and transform this into an output
event consisting of a set of vertices that defines another geom-
etry. In addition, Script nodes provide an interface to the browser
plug-in to facilitate such things as inserting new nodes into the
world or loading uniform resource locators (URLs). Script func-
tionality can be provided using ECMAScript or Java methods.
The Script interface can be customized to serve whatever pur-
pose necessary. Each ECMAScript is a collection of methods
including a method for each input event. ECMAScript methods
provide basic programming structures (looping, conditional) that
may call one and other as well as other plug-in browser meth-
ods. For dynamic worlds, several browser methods supply es-
sential functionality. For example, the loadURL browser method
can be used to request web content. The createVrmlFromURL
browser method provides the run time function of allocating
content dynamically and then inserting it into the scene graph at
a selected point. Additionally, the addRoute and deleteRoute
browser methods make and respectively break event routes be-
tween nodes. In the proper context, createVrmlFromURL in
conjunction with addRoute can be used to allocate and then fully
integrate any dynamic content at run time.

Fields and Events. VRML has a variety of built-in data types
that can serve as variables or pass information between nodes.
The basic types relevant to our application are outlined in Table
1. The fields can be further qualified by field, eventIn, eventOut,
and exposedField qualifiers. The field qualifier declares a vari-
able that can be changed only at instantiation. The eventIn and
eventOut fields declare variables that are either inputs or out-
puts respectively. An exposedField variable serves as field,
eventIn, and eventOut, simultaneously.

Events can be sent and received by most nodes. For example,
a TouchSensor node generates an event resulting from a mouse
click on the associated geometry. This event could be received
by a script resulting in the appearance of a wire frame bounding
the extent of the selected geometry. ROUTE declarations con-
nect output events from one node to input events of another.
Routes can either be explicitly declared or be dynamically
formed in script nodes. Events can be simple, passing a simple
value, or complex, passing a node, enabling many interesting
capabilities. These capabilities include simple interactions with
objects such as dragging an object through the visualization,
transmitting information between models, and dynamically in-
serting objects. Finally, it is possible to circumvent explicit rout-
ing by directly accessing node input and output events within a
script method.

Prototype Nodes. PROTO declarations enable the definition of
new node types that can be used in much the same way as the
standard VRML nodes. The prototype can be defined either in
the same file or in a separate file declared using an
EXTERNPROTO declaration. PROTO nodes provide the in-
valuable benefits of model reuse and hiding of implementation
details.

The VRML Execution Engine. A VRML world can be viewed
schematically as a scene graph where nodes describe functional
units and routes define information flow between nodes. The

Table 1. A Description of some of VRML’s basic types

Field Type Description
SFBool Boolean
SFInt32 32 bit signed integer
MFInt32 Array of SFInt32
SFFloat 32 bit floating point number (IEEE 754)
MFFloat Array of SFFloat
SFVec3f point in 3D space represented as three SFFloat values
MFVec3f Array of SFVec3f
SFColor RGB color represented as three SFFloat values in range [0,1]
MFColor Array of SFColor
SFRotation rotation in 3D space represented as four SFFloat values
MFRotation Array of SFRotation
SFNode VRML node or reference to a node
MFNode Array of SFNode
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VRML execution engine is an integral part of VRML browser
plug-in that “executes” the scene graph [29]. Consistent with
the existing routes, the execution engine receives events from
the scene graph and then delivers the events to the respective
destinations, assigning a time-stamp along the way. Events that
cascade from an initiating event during the same time delta re-
ceive the same time-stamp.

3. The Application Architecture
In this paper, we present an architecture for representing large
VRML applications that support dynamic reconfigurable extent.
The architecture consists primarily of several generic functional
modules coupled with an application specific GUI and objects.

A high level overview of the resulting software architecture is
shown in Figure 3. The software architecture is a decentralized
collection of seven interconnected, concurrently operating mod-
ules. These modules are (1) the GUI, (2) the resource manager,
(3) the arbiter, (4) the fixed landscape (not shown in the figure),
(5) the collision manager, (6) a simple simulation manager, and
(7) the object models. Object models are self-contained and en-
capsulate all object capabilities. The significant events that drive
the flow of information processing are presented in Table 8.
The first six modules are discussed in this section. Because of
special requirements and capabilities, objects models are dis-
cussed separately in Section 4.

Figure 2. Example Call to createVrmlFromURL Browser Method

Signal Purpose Source
command user request menu
objectType send information about selected object,

usually occurs after mouse click on
object

object

request object request for menu control object, resource manager
grant grants object menu control main arbiter

Table 2. Major Events

. . .
DEF S Script {

eventIn  SFBool set_create     #some precipitating event
eventIn  MFNode set_node       #event that receives new node
eventOut MFNode     addChildren #route this to desired group node
field    SFNode     S USE S    #node that receives new node
field    MFString   urls []    #used to help package browser call
directOutput TRUE
. . .
url "javascript:

. . .
function set_node(val,ts) {

// val contains the newly created node.
// Node fields are initialized, routes are added, and
//   the node is inserted into a grouping node
addChildren=val;

}
function set_create(val) {

urls=new MFString(’foo.wrl’);
Browser.createVrmlFromURL(urls,S,’set_node’);

}
. . .

"
}
. . .
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3.1. The GUI

The GUI enables the user to control the major operational modes
and make specific input selections. The GUI consists of the menu
and the work zone. The menu is a hierarchy of interconnected
geometries as illustrated in Figure 4. The output produced by
the menu hierarchy is the command event that initiates object
addition and controls object manipulation. Elsewhere in the ar-
chitecture, the command event is monitored by the resource
manager and existing objects. The menu hierarchy receives the
objectType input event, sent by an object selected by a mouse
click, and results in the relevant menu appearing. Furthermore,
the menu hierarchy is enabled or disabled as required during
new object processing. Edges in Figure 4 represent the flow of
events between menus. Individual menus are constructed from
a collection of button nodes with an accompanying script node
to encode button events into command events. The button node
is defined as a PROTO node having the expected behavior. For
example, the button changes color during the mouse-down in-
terval to simulate the appearance of a depressed button. Also,
the button function can be disabled and the button itself can be
hidden. A typical menu is shown in Figure 5. The work zone
defines the working area for adding and modifying objects in
the session. In addition, the work zone provides a visual cue to
the user during object insertion and detects the appropriate num-
ber of mouse click events to define the initial geometry of an
object. Figure 6 shows the work zone in both active and inac-
tive states. The work zone prototype is designed so that the work
zone is specified parametrically.

3.2. Resource Manager

The resource manager is the key module in making architecture
support worlds with dynamic reconfigurable extent. The resource
manager manages the sequencing necessary to dynamically al-
locate and insert objects into the world. Upon receipt of an add
command event from the menu, the resource manager creates a
new object using the createVrmlFromURL browser method. The
createVrmlFromURL browser method enables an application
to allocate new VRML content, defined by a URL, and then
dynamically insert the new content into a declared location in
the scene graph. Figure 2 gives an example call as deployed in

this application. The createVrmlFromURL browser method
should not be confused with the addChildren events associated
with grouping nodes. addChildren events require that the VRML
content is already allocated within the application, whereas the
createVrmlFromURL browser method allocates entirely new and
even dynamic content from anywhere on the Internet. Immedi-
ately after allocation, the new object is assigned a unique serial
number and is initialized. Once the object signals that
initializations are complete, the resource manager connects
routes between the object and the relevant managers using the
addRoute browser method, fully inserting the object into the
scene graph. The resource manager has tables to define the ini-
tial properties of objects and to track objects that have been
added to or deleted from the current session.

3.3. The Arbiter

The arbiter controls access to a common resource, in this appli-
cation, the menu, among a collection of objects. An object is
selected by a user mouse click on any visible geometry on that
object. The arbitration scheme employs centralized and decen-
tralized processes characterized by two events—request and
grant. Each is an SFInt32 data type that is used to communicate
the serial number of objects involved in the arbitration process.
The arbitration process has a centralized arbiter that receives all
selection request events from objects and then identifies the ob-
ject to be selected through the grant event. During quiescent
times, the arbiter retains the serial number of the selected object
and simultaneously monitors the request event that can come
from unselected objects. Each object has a local arbiter module
that submits requests for selection and then receives the results
determined by the centralized arbiter. The local arbiter will ini-
tiate selection and deselection processes for the object. After an
object has been selected, the object issues an objectType event.
As described above, the objectType event is used by the menu
hierarchy to identify and then display the appropriate menu for
the selected object. A schematic outlining arbiter operation is
presented in Figure 7.

Figure 3. Overview of the Visualization Software Architecture
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3.4. Collision Manager

The collision manager monitors spatial extent of all objects and
signals when collisions occur between affected objects. The
collision manager maintains a sorted list of bounding boxes for
all relevant objects in the scene. In our application, only one
object at a time moves or can have its geometry modified. When
objects move or dimensions change, a bounding box event is
sent to the collision manager. The collision manager compares

the new bounding box to those of all other objects being moni-
tored. When a collision is detected, a collision event is transmit-
ted to the moving object. In this application, the response is
simply to freeze the ability to move or otherwise modify the
object. In more sophisticated simulations, the object behavior
can use more complex bounding volumes and collision re-
sponses. While only simple collision detection is supported, the
collision manager can be extended to support more sophisti-

Figure 4. Menu Hierarchy
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Figure 6. Work Zone

(b) Prompting Input
(a) Normal

Figure 5. An Example Menu



32 TRANSACTIONS Volume 18, Number 1

cated collision response scenarios such as keeping a car on a
road, restricting an object within a set boundary, or enforcing
setbacks.1

3.5. Simulation Manager

A simple simulation manager is included that broadcasts simu-
lation data to objects. As a demonstration, the simulation man-
ager has been programmed to generate an oscillating wind and
the pine tree model responds by swaying in the wind. The simu-
lation manager sends periodic updates to all objects, so each

can respond in its own particular fashion. More advanced capa-
bilities envisioned include modeling the mutual interaction
among different objects in the application. For example, the plug
and socket interaction model described in [30] is one mecha-
nism that can be used to enable objects to exchange informa-
tion.

3.6 The Fixed Landscape

The fixed landscape is the solid model for the work zone. This
includes information converted from city GIS data, the outlying
area, example landscaping, roadways, buildings and any other
models that are anticipated to be permanent and unmovable. In
addition, contents restored from prior sessions are inserted into
the fixed landscape.

4. Object Architecture
The object architecture is designed to serve several purposes.
First and foremost, the object architecture is designed to sup-
port independence and autonomy of object behaviors in the vi-
sualization, placing few restrictions on object behavior. Second,
the objects manage their own user interactions and interface to
the visualization. As a result, the visualization architecture is
simplified since it is not required to directly handle user-object
interactions. Third, the object defines a uniform interface be-
tween the object and the architecture.

In order to achieve these purposes, the object architecture is
structured into layers that isolate the functions that interface the
object to the visualization, from those that change the object
geometry, and also from those that define the object behavior.
This organization permits modular design of the architecture
and provides a framework for adding new capabilities in a regular
fashion. Paralleling this structure, the object architecture is or-
ganized into three layers—the interaction layer, the edit layer,
and the model layer, as shown in Figure 8. The interaction layer
manages the interface to the visualization and any user interac-
tions that affect the object as a unit, such as object drag and
rotation. The edit layer defines the nature and appearance of

Figure 7. Arbitration

Figure 8. Object Architecture

1 VRML has a limited collision detection capability, but only between
the avatar associated with the active viewpoint and objects that are
encountered during certain navigation modes.
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controls and provides an interface between the model and the
interaction layer. Finally, in the model layer, the appearance of
the object is defined as is any ability for the object to change
appearance or shape. The layer structure provides additional ben-
efits including the support of reuse of layer methods and sim-
pler definition of new objects. Indeed, the interaction layer is
sufficiently well defined that it is automatically generated for
most objects implemented. The objects could have been defined
as flat, i.e., without breaking the architecture into layers. In such
an architecture, defining a uniform interface would be more dif-
ficult because the details of the interface, editing controls, and
model behavior may become tangled. Furthermore, the flattened
architecture can make it to difficult expand the variety of new
objects.

4.1. The Interaction Layer

The interaction layer encapsulates methods for managing ob-
jects, the visualization interface, and the server interface. The
interaction layer is independent of the behavior and appearance
of the object providing methods that support initialization, ob-
ject selection, drag and drop, arbitration, object identity, colli-
sion response, and the web server interface. In addition, the in-
teraction layer serves as an information conduit from the
visualization to the edit and model layers for initialization and
simulation events. Figure 8 gives a schematic representation of
the interaction layer. The layer functionality and the interface to
the visualization are discussed in more detail.

4.1.1. Functionality

The interaction layer functionality consists of a collection of
methods and processes that the user can use to control the ob-
ject through mouse input, serve as the interface to the visualiza-
tion, and isolate the edit and model layers from the visualiza-
tion infrastructure. The functions are partitioned into
initialization, user requests, object identity, object highlight,
object specific views, the monitor, static instantiations, and col-
lision response.

Initialization. Objects are created dynamically and initializa-
tion occurs in concert with the resource manager that allocates
the object using the createVrmlFromURL method. The com-
plexity arises from the circumstance that no seminal event sig-
nals when the object is fully loaded and all data structures are
stable. Before the object is loaded, any events sent to the object
may not be received.2 Since the object includes at least three
nested levels of EXTERNPROTO instantiations (for each of
the object layers), the object signals initialization complete only
after all nested nodes report completion of initialization. In ad-
dition, using TimeSensor nodes, a delay, whose length is com-
mensurate with the model complexity, is inserted to provide a
margin against other nondeterministic effects.

User Interactions. Drag and drop functionality is provided by
the coordination of TouchSensor and PlanSensor functionality

associated with each object. Upon detecting a mouse click on
the object, a request is transmitted to the main arbiter for recog-
nition and to request control of the necessary resources. At times
when it is undesirable to activate an object, such as during the
initialization sequence of another object, the ability to recog-
nize a mouse click is disabled. When the main arbiter recog-
nizes an object, its interaction layer sends an objectType event
to the menu that responds by displaying the appropriate menu.
A PlaneSensor tracks the mouse position and is used to drag
and drop the object to another position. The PlaneSensor alone
can provide the drag and drop behavior, but coordinating
PlaneSensor with a TouchSensor provides a way to select an
object for drag and drop. In object rotation, the orientation change
is computed using the vector formed by the mouse position in
the drag plane relative to the initial mouse down point.

Object Identity. Objects are uniquely identified by a serial num-
ber assigned when the object is created. When an object is se-
lected, the serial number is sent to the visualization’s main arbi-
ter. Furthermore, an object can be activated when its serial
number is broadcast on the grant event. The object with the
matching serial number is activated while the rest are deacti-
vated. In addition, the serial number appears in all communica-
tions with the server.

Object Highlight. Highlighting an object provides a visual cue
to the user of the selected object. Two approaches are used to
highlight an object. The first method is to surround the object
with a wire frame demarking the bounding volume. For example,
wire frames are used to highlight a selected tree or street light.
The second method requires the object to provide a suitable vi-
sual cue. For a roadway object, the cue is the appearance of
editing controls.

Object Specific Views. Objects have particular views that are
customarily desired to evaluate placement and configuration.
The object specific views, including animated view points, are
associated with the interaction layer and are added to the browser
viewpoint list when the object is selected.

Monitor. The monitor is the object’s interface to the web server
and consists of loadURL browser method calls to a servlet or
common gateway interface (CGI) script that performs the pro-
cessing necessary to log session information on the server. The
interaction layer has direct access to the object serial number
and any changes of position and orientation.

Model updates are passed from the edit layer and are then
communicated to the server in the interaction layer. The infor-
mation passed to the server includes the serial number, the kind
of manipulation, and specific parameters of the manipulation.
For example, an object translation might be logged as

ser. no. : type : mode : x : y

12 : 42 : (translation) : 1000 : 200

2 Indeed, CosmoPlayer can malfunction when an event is sent prema-
turely.
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where the different fields are separated by colons. Extra white
space has been added here to enhance readability. The transla-
tion mode is an example and other modes have different forms.

Static Instantiation. Objects in the static landscape are statically
instantiated. In addition, restoring a previous session requires
that the previously defined objects be instantiated into the scene
at start-up. Static instantiation is achieved by defining fields
designed to capture all aspects of the object appearance and lo-
cation to make the object appear exactly as in a prior session. In
the roadway initialization method, the roadway is defined by an
array of points defining the course of the roadway, otherwise
the roadway object waits until the appropriate number of points
have been input.

Collision Response. Collision detection and response is an ex-
pected capability when working with solid models that can be
moved or modified. With each translation, rotation, or update in
geometry, the object sends a bounding volume event to the col-
lision manager. The collision manager determines whether the
current geometry overlaps another and if so, sends relevant
events to the colliding objects. For the present application, col-
lision detection simply freezes the object’s position and adjusts
the position in the event that processing latencies result in the
collision being detected too late. The freeze is implemented by
filtering the mouse position tracked by the plane sensor and upon
collision detection, blocking any subsequent position updates.
More elaborate collision detection responses can be devised with
the response methods implemented in edit and model layers.

4.1.2. Object Layer Interface

The interface between the visualization and the object layer is
complex and provides a broad range of capabilities. The at-
tributes of major partitions of the interface are summarized in
Table 3. Initialization attributes must support both static and
dynamic instantiation. For example, in static instantiation, if an

Interface Purpose
Initialization initialization sequencing for both static and dynamic

instantiation
Control control of object through command events and

communication of status information
Interaction object interactions between the user and the object,

such as selection and drag and drop
Arbitration menu arbitration among all objects
Server interface enable server communication, mechanism for

passing object update information to server
Collision outputs bounding box when geometry changes,

defines object specific collision response
Pipeline enables information to be passed between the

application and through all object layers and
provides a mechanism for defining simulation
parameters globally

Table 3. Object Interface Attributes

initial position is given, the object is placed and made visible.
For objects added during a session, the remaining fields control
the sequencing necessary to initialize the object and to integrate
it into the visualization. The user interacts with objects in a fash-
ion consistent with the function and form of the object. The
object level interactions supported in the object layer interface
are selection through mouse clicks, and drag and drop. The ar-
bitration process begins with a mouse click on an unselected
object. As a result of the mouse click, a request is sent to the
main arbiter with an orderly transfer of control synchronized by
the clock associated with the main arbiter. The local arbiter moni-
tors the progress of the arbitration process and at the appropri-
ate time, fully activates the selected object. Object control in-
cludes receipt of commands from the menu and covers a wide
range of capabilities. The set_command input receives com-
mands generated by the resource manager or the menu and the
associated method provides the required response. The inter-
face to the web server is implemented using the loadURL
browser method. The URL is in reality a CGI-script or servlet
that logs the parameters supplied with the URL. After any change
in appearance or position, the object sends an event to the colli-
sion manager updating the bounding volume. In response, the
collision manager determines if a collision has occurred and
sends the collision overshoot. The pipeline interface enables in-
formation to be transmitted globally to all objects and for an
object to pass information back to the visualization. Informa-
tion is synchronized using a latching signal event to ensure that
all parameters are acted upon only after all information has been
supplied. The pipeline can be defined so that any desired infor-
mation can be communicated.

4.2. Edit Layer

The edit layer requirements are uniform across all objects, al-
though this does not necessarily need to be the case. As noted
earlier, this facilitates integration of new models into the appli-
cation. The edit layer instantiates the model layer and contains
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drag controls for controlling the appearance of the model.
Changes to the appearance of the objects are reflected in the
positions of the drag controls in the edit layer. The changes are
communicated both to the child model layer and the parent in-
teraction layer. The edit layer interface is shown in Figure 9.
The fields are divided into four groups, representing initializa-
tion fields, control fields, geometry change fields, and simula-
tion fields. The initialization fields communicate with the inter-
action layer when the object is created. The control fields signal
the edit layer when an object is selected, should report debug-
ging information, or should reset its state. In the event the ob-
ject changes its geometry, the specific changes to the geometry
are communicated in sufficient detail to recreate the object and
also to update the bounding volume. Finally, the simulation pa-
rameters can be monitored by the edit layer and can be passed
to the model layer.

4.3 Model Layer

The model layer is the most deeply nested layer. In the applica-
tion presented in this paper, the model layer represents the pure
behavior of the model. Requested changes to the geometry are
generated by the edit layer and then passed to the model layer.
After the geometry of an object has been modified, a new bound-
ing box is calculated. In addition, as a result of internally gener-
ated dynamics or the effects of other external processes, the
model layer can change its appearance or state.

PROTO objectModel [
# Initialization fields
eventIn  SFVec3f set_position
field    MFVec3f     points []
eventOut SFBool      new_changed
eventOut SFBool      created_changed
eventOut SFInt32     workzonePoints_changed
eventIn  SFBool  set_done  # edit done
# control fields
eventIn  SFBool  set_reset
eventIn  SFBool      isActive
eventIn  SFBool  set_debug
field    SFBool      debug FALSE
# events generated with change in object geometry
eventOut MFVec3f     points_changed   #specific changes
eventOut MFVec3f     corners_changed  #bounding volume
# simulation parameters passed directly to model
eventIn SFBool   set_latch   # synchronizes simulation parameters
eventIn  MFInt32 set_intParams
field    MFInt32     intParams []
eventIn  MFFloat set_fltParams
field    MFFloat     fltParams []
eventIn  MFVec2f set__2dParams
field    MFVec2f     _2dParams []
eventIn  MFVec3f set__3dParams
field    MFVec3f     _3dParams []

]

5. Example Objects and Capabilities
In this section, several objects having a variety of capabilities
are described. Generically, the capabilities can be related to the
composition and morphology of the object. For example, the
path for roadway objects is represented by a sequence of linear
segments termed a spine whose path is modified by changing
the underlying spine. Buildings are composite objects whose
final form depends on the architectural definition and desired
area. The capabilities are related to the appearance and func-
tions of the objects. In each case, the object is an independent
and autonomous entity, managing object relevant user interac-
tion capabilities, modifications, and collision response.

5.1. Trees and Lights: Simple Geometries

The appearance of simple geometries such as trees and external
lighting are defined by solid models. The simplicity of the ge-
ometries does not reduce the overhead associated with manag-
ing and updating these objects. The only aspect of these models
that varies is their location. Furthermore, each of these objects
achieves full collision detection capabilities between each other
and the building solid model.

5.2. Buildings and Parking Lots

The building model is a composite geometry consisting of a
one or two story structure integrated with parking lots. General-
ity in building appearance is achieved through two mechanisms,
the first of which is defined in this subsection, and the second is

Figure 9. Edit Layer Interface
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described in the following subsection. The building solid model
is defined using the createVrmlFromURL browser model, al-
lowing any solid model to be inserted. In this manner, any build-
ing size can be integrated with the same parking lot infrastruc-
ture. The parking lot size is determined from city building codes,
or if appropriate, through direct entry by the user. The parking
lot area is divided into two pieces that are sized and placed at
the sides of the building. The parking lot models dynamically
create the appropriate number of trees to satisfy canopy cover
building codes. Furthermore, the parking lot aspect ratio can be
adjusted and all trees can be individually placed.

5.3. Buildings: One Model, General Appearance

In the visualization, one or two story buildings may appear with
one of eight entrance options, selected through the menu. The
building solid model is defined parametrically by a footprint
and a height. To simplify the application, the building footprint
and height are hard coded, but do not need to be in principle.
The solid model for each story of the building is the three di-
mensional shape formed by sweeping the footprint through the
height of the building. As a result, only the area and number of
stories for the building are selected by the user. The building
model scales the inherent foot print to give the appropriate area.
If a second story is requested, it is simply a second instantiation
of the first floor, translated vertically. In order to render a typi-
cal pattern of windows on each floor, two textures have been
defined and are shown in Figure 10. The window tile describes
a fixed width texture for a single window. The number of win-
dows per side of building is calculated and then is used to de-
fine the appropriate texture tiling. Since the building dimen-
sions do not typically require an integral number of window

tiles, a variable width corner tile is defined to fill out the build-
ing side. Building sides are represented using three
IndexedFaceSet geometries. The three geometries specify three
faces composed of a center face where an integral number of
window tiles are placed, and two edges that use the corner tile.
The tiles are translated and scaled to fit the building side and to
give a natural appearance. The following equation defines the
number of window tiles that must be placed on a side of the
building

P =
L
S ,

where P is the number of window tiles, L is the length of the
side of the building, and S is the natural width of the window
tile. Next the edges of the corner tiles must be filled in. The
length of each corner tile is

F =
L ±SP
2

where F is the size of each corner tile. These parameters are
used to calculate the vertices of an indexed face set for the build-
ing for all four sides. The faces for one side are illustrated in
Figure 11. Finally, the origin of the texture must be translated to
give symmetric placement of the windows. The translation of
the coordinate system for the window tilings is

 T = -(L - SP),

where T is the desired translation. The translation is negative
because the VRML TextureTransform node translates the ori-
gin rather than the texture itself.

Figure 10. Building Textures

(1)

(2)

(3)

Figure 10a. Window Tile Figure 10b. Corner Tile
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In addition to defining one and two story buildings, a build-
ing entrance can also be defined. The visualization allows for
three building types, requiring only two structure geometries.
An office structure is defined as a rectangular box. Finally, manu-
facturing and warehouse structures have a loading dock area at
the rear of the building.

5.4. Roadways and Landscaping Borders

The Extrusion node is used to define the appearance of road-
ways and landscaping borders. The appearances of each differ
in the extrusion cross section and surface texture. The path of
the extrusion is defined by a spine that defines the course of the
object. Editing controls rather than a wire frame appear for se-
lected roadway or landscaping border objects. The controls are
located in a manner consistent with the geometry type. For ex-
ample, the spines for a straight road, berm, and hedge are de-
fined by the two end points. The spine of the ring road geom-
etry is defined by the center point and one point on the perimeter.
Internally, sufficient points are sampled along the circle circum-
ference to give the appearance of a smooth curve. The spine of
a curved road is the arc from the circle intersecting the three
points input by the user. The appearance of each of these ob-
jects is calculated and modified as the controls associated with
each are dragged.

6. Example Session
An example session is presented here, beginning with the open-
ing scene of the visualization, and finishing with several views
of the scene. The opening of the visualization shown in Figure
12 is a view from about 2,000 feet (about 600 meters) above the
work zone. In addition, the menu appears in the right part of the
opening view. A site can be successively built up beginning with
the definition of the site boundary, addition of the building, place-
ment of the roadways, arrangement of the landscaping, and place-
ment of lighting. Once the site has been created, top and front
views of the site are shown in Figure 13. Note the menu has
been moved to the upper left hand corner of the view port for
screen captures in this figure. Such a scene can be created
quickly, in about a half of an hour. A client based version of the

application can be found at http://www.lions.odu.edu/˜lbelfore/
urbanVisualization and currently only operates under
CosmoPlayer.

7. Discussion
The architecture that is presented in this paper provides many
functional capabilities. In this section, we discuss some advan-
tages and disadvantages of the proposed architecture from dif-
ferent perspectives. First, the efforts necessary to develop vir-
tual worlds are discussed. Second, the technological aspects of
employing VRML technology are reviewed. Third, the specific
issues relevant to the proposed architecture are discussed.

No formal study was conducted to measure the effort re-
quired to create applications for different sites, but some anec-
dotal information is provided. The general goal during develop-
ment was to construct an architecture that could be easily adapted
to different situations and sites. In support of this, the different
modules described in Section 3 have been constructed so that
custom information is defined either in parameters during
instantiation (work zone), in tables associated with each (re-
source manager), or without change at all (arbiters). Construc-
tion of new menu hierarchies requires some additional work,
but each object menu is defined parametrically using a generic
menu model. The structure and protocols for communications
between different layers in the menu are defined so that auto-
mating the construction of the menu hierarchy should be straight-
forward. Depending on the detail required for background mod-
els, a more significant effort may be necessary in their creation.
Furthermore, different applications may require a different col-
lection of objects. For simple objects with features similar to
the objects described in object-examples, new objects can be
quickly developed and integrated. For example, using the model
for roadways, complementary railway models were created as
well as the accompanying menus. The time needed to accom-
plish this addition required about four hours of development
time including menu modifications. On a larger scale, a demon-
stration application was created to visualize a hazardous waste
cleanup site requiring a total effort of about 200 hours. It should
be noted that the majority of this effort was devoted to adding
capabilities beyond what are described here and that approxi-
mately 40 hours was devoted to issues directly related to adapt-
ing the visualization architecture.

Strictly from a technological perspective, VRML offers three
important benefits. First, in addition to the capability of repre-
senting virtual worlds, VRML is an internationally standard-
ized language. Tools that generate VRML content in conform-
ance with the standard are expected to produce content that can
be reviewed on browsers that are also compliant. Second, in
principle, developers are not restricted to one vendor’s software
for either development or rendering. Third, VRML is designed
to be delivered over the Internet. Anyone with a browser any-
where on the Internet need only download and install a plug-in
to browse VRML content. On the negative side, complex vir-
tual worlds can require significant download times. In addition,
because the configuration of the client machines can vary, the
realism of the experience can be directly affected.

Figure 11. Panel Placement. Calculated Parameters Indicated
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Figure 12. Opening View

Figure 13. View Scene Created

(a) Top View (b) Front View

The proposed architecture offers solutions that compensate
for some of the technological challenges. First, objects can be
allocated and added dynamically at the request of the user. This
important capability reduces download times because at startup
only the initial configuration of the world is required. In addi-
tion, the dependence on the client machine configuration is re-
duced since start-up resources are minimized and additional re-
sources are necessary. Indeed, the world does not have to be
reloaded in response to additions or modifications to the world.
Second, the architecture is designed to be modular, enabling
replacement of any user visible components without modifica-

tion of the underlying architecture. For example, the comple-
ment of objects can be changed and new work zone configura-
tions can be specified. Among the disadvantages in developing
the architecture include the added complexity necessary to allo-
cate and insert content dynamically. An additional disadvan-
tage is that the CosmoPlayer [16] plug-in, used to render our
application, is neither currently in development nor is new de-
velopment expected in the future. Similar to ours, some appli-
cation areas still depend on CosmoPlayer 31, but clearly this
dependence cannot continue indefinitely. We have begun ex-
ploring porting this work to other VRML plug-ins.
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8. Summary and Future Work
In this paper, we have presented an architecture for creating
large virtual worlds. The architecture features dynamic
reconfigurable extent where nodes are allocated and inserted
into the world at run time. The application architecture includes
modules comprising the infrastructure of the application that
manages the application and interactions with the user. Included
in the infrastructure are resource, collision, and simulation man-
agers that suggest a wide range of behaviors are possible. Fur-
thermore, the object architectures have been designed to sup-
port modularity and object independence. The object
architectures are organized into three layers that separate the
object interface to the application, from editing controls, and
also from the behavior. In addition, we have demonstrated a
significant application that applies the architecture described in
this paper.

We intend to pursue two avenues of future work. First, we
plan to study the types of simulations that can be performed on
the architecture we have presented. In particular, we would like
to experiment more with model dynamics and the collective in-
teraction of objects within a visualization. Second, we would
like to provide stronger links between the application and a web
server. The web server can provide many valuable capabilities
including access to data bases and generation of models dy-
namically.
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